Low Rank Approximation Lecture 7. Daniel Kressner Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL

Size: px
Start display at page:

Download "Low Rank Approximation Lecture 7. Daniel Kressner Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL"

Transcription

1 Low Rank Approximation Lecture 7 Daniel Kressner Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL daniel.kressner@epfl.ch 1

2 Alternating least-squares / linear scheme General setting: Solve optimization problem min f (X), X where X is a (large) matrix or tensor and f is simple (e.g., convex). Constrain X to M r, set of rank-r matrices or tensors and aim at solving min X M r f (X), Set X = i(u 1, U 2,..., U d ). (e.g., X = U 1 U2 T ). Low-rank formats are multilinear there is hope that optimizing for each component is simple: min U µ f (i(u 1, U 2,..., U d )). 2

3 Alternating least-squares / linear scheme Set f (U 1,..., U d ) := f (i(u 1,..., U d )). ALS: 1: while not converged do 2: U 1 arg min U1 f (i(u 1, U 2,..., U d )) 3: U 2 arg min U1 f (i(u 1, U 2,..., U d )) 4:... 5: U d arg min U1 f (i(u 1, U 2,..., U d )) 6: end while Examples: ALS for fitting CP decomposition Subspace iteration. Closely related: Block Gauss-Seidel, Block Coordinate Descent. Difficulties: Representation (U 1, U 2,..., U d ) often non-unique, parameters may become unbounded. M r not closed Convergence (analysis) 3

4 Subspace iteration and ALS Given A R m n, consider computation of best rank-r approximation: min f (U, V ), U R m r,v R n r f (U, V ) := A UV T 2 F Representation UV T is unique for each U, V individually if U, V have rank r. f is convex wrt U and V individually. Hence, U f (U, V ), H = f (U + H, V ) f (U, V ) + O( H 2 2) = 2 AV UV T V, H. 0 = U f (U, V ) = 2(AV UV T V ) U = AV (V T V ) 1. For stability it is advisable to choose V such that it has orthonormal columns. 4

5 Subspace iteration and ALS ALS for low-rank matrix approximation: 1: while not converged do 2: Compute economy size QR factorization: V = QR and update V Q. 3: U AV 4: Compute economy size QR factorization: U = QR and update U Q. 5: V A T U 6: end while Returns an approximation A UV T. This is the subspace iteration from Lecture 1! EFY. Develop an ALS method for solving the weighted low-rank approximation problem with square and invertible matrices W L, W R. min U,V W L (A UV T )W R F 5

6 Linear matrix equations For linear operator L : R m n R m n, consider linear system Examples: 1 Sylvester matrix equation: L(X) = C, C, X R m n. AX + XB = C, A R m m, B R n n, C, X R m n. Applications: Discretized 2D Laplace on rectangle, stability analysis, optimal control, model reduction of linear control systems. Special case Lyapunov equations: m = n, A = B T, C symmetric (and often negative semi-definite) Stochastic Galerkin methods in uncertainty quantification. Stochastic control. 1 See [V. Simoncini, Computational methods for linear matrix equations, SIAM Rev., 58 (2016), pp ] for details and references. 6

7 Linear matrix equations Using the matrix M L representing L in canonical bases, we can rewrite L(X) = B as linear system M L (vec(x)) = vec(c). Assumption: M L has low Kronecker rank: M L = B 1 A B R A R, R m, n. Equivalently, L(X) = A 1 XB T A R XB T R EFY. Develop a variant of ACA (from Lecture 3) that aims at approximating a given sparse matrix A by a matrix of low Kronecker rank for given m, n. EFY. Show that if m = n, M L is symmetric and has Kronecker rank R, one can find symmetric matrices A 1,..., A R, B 1,..., B R such that L(X) = A 1 XB A R XB R. Is it always possible to choose all A k, B k positive semi-definite if M L is positive definite? 7

8 Linear matrix equations Two ways of turning L(X) = C into optimization problem: 1. If M L is symmetric positive definite: 2. General L: min L(X), X X, B. 2 X 1 Will focus on spd M L in the following. min L(X) B 2 F X 8

9 Linear matrix equations Low-rank approximation of L(X) = B obtained by solving min f (U, V ) for f (U, V ) = 1 U,V 2 L(UV T ), UV T UV T, C. Let L have Kronecker rank R. Then L(UV T ), UV T = R R A k UV T B k, UV T = A k UV T B k V, U. k=1 k=1 This shows that arg min U f (U, V ) is solution of linear matrix equation A 1 U(V T B 1 V ) + + A R U(V T B R V ) = CV. EFY. Show that this linear matrix equation always has a unique solution under the assumption that L is symmetric positive definite. For R = 2, can be reduced to R linear systems of size n n. For R > 2, need to solve Rn Rn system. 9

10 Linear matrix equations ALS for linear matrix equations: 1: while not converged do 2: Compute economy size QR factorization: V = QR and update V Q. 3: Solve A 1 U(V T B 1 V ) + + A R U(V T B R V ) = CV for U. 4: Compute economy size QR factorization: U = QR and update U Q. 5: Solve (U T A 1 U)V T B (U T A R U)V T B R = U T C for V. 6: end while Returns an approximation X UV T. For R = 2, there are better alternatives: ADI, Krylov subspace methods,... [Simoncini 2016]. 10

11 2D eigenvalue problem u(x) + V (x)u = λu(x) in Ω = [0, 1] [0, 1] with Dirichlet b.c. and Henon-Heiles potential V Regular discretization Reshaped ground state into matrix Ground state 10 0 Singular values Excellent rank-10 approximation possible 11

12 Rayleigh quotients wrt low-rank matrices Consider symmetric n 2 n 2 matrix A. Then We now... x, Ax λ min (A) = min x 0 x, x. reshape vector x into n n matrix X; reinterpret Ax as linear operator A : X A(X). 12

13 Rayleigh quotients wrt low-rank matrices Consider symmetric n 2 n 2 matrix A. Then X, A(X) λ min (A) = min X 0 X, X with matrix inner product,. We now... restrict X to low-rank matrices. 13

14 Rayleigh quotients wrt low-rank matrices Consider symmetric n 2 n 2 matrix A. Then λ min (A) min X=UV T 0 X, A(X). X, X Approximation error governed by low-rank approximability of X. Solved by Riemannian optimization techniques or ALS. 14

15 ALS for eigenvalue problem ALS for solving X, A(X) λ min (A) min. X=UV T 0 X, X Initially: fix target rank r U R m r, V n r randomly, such that V is ONB λ λ = residual =

16 ALS for eigenvalue problem ALS for solving Fix V, optimize for U. λ min (A) min X=UV T 0 X, A(X). X, X X, A(X) = vec(uv T ) T A vec(uv T ) = vec(u) T (V I) T A(V I)vec(U) Compute smallest eigenvalue of reduced matrix (rn rn) matrix (V I) T A(V I). Note: Computation of reduced matrix benefits from Kronecker structure of A. 16

17 ALS for eigenvalue problem ALS for solving Fix V, optimize for U. λ min (A) min X=UV T 0 X, A(X). X, X λ λ = residual =

18 ALS for eigenvalue problem ALS for solving λ min (A) min X=UV T 0 Orthonormalize U, fix U, optimize for V. X, A(X). X, X X, A(X) = vec(uv T ) T A vec(uv T ) = vec(v T )(I U) T A(I U)vec(V T ) Compute smallest eigenvalue of reduced matrix (rn rn) matrix (I U) T A(I U). Note: Computation of reduced matrix benefits from Kronecker structure of A. 18

19 ALS for eigenvalue problem ALS for solving λ min (A) min X=UV T 0 Orthonormalize U, fix U, optimize for V. X, A(X). X, X λ λ = residual =

20 ALS ALS for solving λ min (A) min X=UV T 0 Orthonormalize V, fix V, optimize for U. X, A(X). X, X λ λ = residual =

21 ALS for eigenvalue problem ALS for solving λ min (A) min X=UV T 0 Orthonormalize U, fix U, optimize for V. X, A(X). X, X λ λ = residual =

22 Extension of ALS to TT Recall interface matrices X µ 1 R n 1n 2 n µ r µ 1, X µ R n µ+1n µ+2 n d r µ 1 yielding factorization X <µ> = X µ 1 X µ, T µ = 1,..., d 1. Combined with recursion X µ+1 T = Uµ R (X µ T I nµ ), this yields X <µ> = X µ 1 Uµ R X µ+1, T µ = 1,..., d 1. Hence, vec(x ) = (X µ+1 X µ 1 ) vec(u µ ) This formula allows us to pull out µth core! 22

23 Extension of ALS to TT A TT decomposition is called µ-orthogonal if and (U L ν) T U L ν = I rν, X T νx ν = I rν for ν = 1,..., µ 1. U R ν (U R ν ) T = I rν, X ν X T ν = I rµ for ν = µ + 1,..., d. This implies that X µ+1 X µ 1 has orthonormal columns! Consider eigenvalue problem Optimizing for µth core X, A(X ) λ min (A) = min X =0 X, X X, A(X ) vec U µ, A µ vec U µ min = min U µ 0 X, X U µ 0 vec U µ, vec U µ with r µ 1 n µ r µ r µ 1 n µ r µ matrix A µ = (X µ+1 X µ 1 ) T A(X µ+1 X µ 1 ) 23

24 Extension of ALS to TT U µ is obtained as eigenvector belonging to smallest eigenvalue of A µ. Computation of A µ for large d only feasible if A has low operator TT ranks (and is in operator TT decomposition). One microstep of ALS optimizes U µ and prepares for next core, by adjusting orthogonalization. One sweep of ALS consists of processing cores twice: once from left to right and once from right to left. 24

25 Extension of ALS to TT Input: X in right-orthogonal TT decomposition. 1: for µ = 1, 2,..., d 1 do 2: Compute A µ and replace core U µ by an eigenvector belonging to smallest eigenvalue of A µ. 3: Compute QR decomposition U L µ = QR. 4: Set U L µ Q. 5: Update U µ+1 R 1 U µ+1. 6: end for 7: for µ = d, d 1,..., 2 do 8: Compute A µ and replace core U µ by an eigenvector belonging to smallest eigenvalue of A µ. 9: Compute QR decomposition (U R µ ) T = QR. 10: Set U R µ Q T. 11: Update U µ 1 R 3 U µ 1. 12: end for 25

26 Extension of ALS to TT Remarks: Small matrix A µ quickly gets large as TT ranks increase Need to use iterative methods (e.g., Lanczos, LOBPCG), possibly combined with preconditioning [Kressner/Tobler 2011] for solving eigenvalue problems. In ALS TT ranks of X need to be chosen a priori. Adaptive choice of rank by merging neighbouring cores, optimizing for the merged core, and split the optimized merged core DMRG, modified ALS. Cheaper: AMEn [White 2005, Dolgov/Savostyanov 2013]. Principles of ALS easily extend to other optimization problems, e.g., linear systems [Holtz/Rohwedder/Schneider 2012]. 26

27 Numerical Experiments - Sine potential, d = 10 ALS err_lambda res nr_iter Execution time [s] Size = Maximal TT rank 40. See [Kressner/Steinlechner/Uschmajew 2014] for details. 27

28 Numerical Experiments - Henon-Heiles potential, d = 20 ALS err_lambda res nr_iter Execution time [s] Size = Maximal TT rank

29 Numerical Experiments - 1/ ξ 2 potential, d = 20 ALS err_lambda res nr_iter Execution time [s] Size = Maximal TT rank

Numerical tensor methods and their applications

Numerical tensor methods and their applications Numerical tensor methods and their applications 8 May 2013 All lectures 4 lectures, 2 May, 08:00-10:00: Introduction: ideas, matrix results, history. 7 May, 08:00-10:00: Novel tensor formats (TT, HT, QTT).

More information

Preconditioned low-rank Riemannian optimization for linear systems with tensor product structure

Preconditioned low-rank Riemannian optimization for linear systems with tensor product structure Preconditioned low-rank Riemannian optimization for linear systems with tensor product structure Daniel Kressner Michael Steinlechner Bart Vandereycken July 29, 2015 Abstract he numerical solution of partial

More information

Lecture 4. Tensor-Related Singular Value Decompositions. Charles F. Van Loan

Lecture 4. Tensor-Related Singular Value Decompositions. Charles F. Van Loan From Matrix to Tensor: The Transition to Numerical Multilinear Algebra Lecture 4. Tensor-Related Singular Value Decompositions Charles F. Van Loan Cornell University The Gene Golub SIAM Summer School 2010

More information

APPLIED NUMERICAL LINEAR ALGEBRA

APPLIED NUMERICAL LINEAR ALGEBRA APPLIED NUMERICAL LINEAR ALGEBRA James W. Demmel University of California Berkeley, California Society for Industrial and Applied Mathematics Philadelphia Contents Preface 1 Introduction 1 1.1 Basic Notation

More information

arxiv: v2 [math.na] 13 Dec 2014

arxiv: v2 [math.na] 13 Dec 2014 Very Large-Scale Singular Value Decomposition Using Tensor Train Networks arxiv:1410.6895v2 [math.na] 13 Dec 2014 Namgil Lee a and Andrzej Cichocki a a Laboratory for Advanced Brain Signal Processing,

More information

Low Rank Approximation Lecture 3. Daniel Kressner Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL

Low Rank Approximation Lecture 3. Daniel Kressner Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL Low Rank Approximation Lecture 3 Daniel Kressner Chair for Numerical Algorithms and HPC Institute of Mathematics, EPFL daniel.kressner@epfl.ch 1 Sampling based approximation Aim: Obtain rank-r approximation

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

Exploiting off-diagonal rank structures in the solution of linear matrix equations

Exploiting off-diagonal rank structures in the solution of linear matrix equations Stefano Massei Exploiting off-diagonal rank structures in the solution of linear matrix equations Based on joint works with D. Kressner (EPFL), M. Mazza (IPP of Munich), D. Palitta (IDCTS of Magdeburg)

More information

Lecture 4. CP and KSVD Representations. Charles F. Van Loan

Lecture 4. CP and KSVD Representations. Charles F. Van Loan Structured Matrix Computations from Structured Tensors Lecture 4. CP and KSVD Representations Charles F. Van Loan Cornell University CIME-EMS Summer School June 22-26, 2015 Cetraro, Italy Structured Matrix

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Computational methods for large-scale linear matrix equations and application to FDEs. V. Simoncini

Computational methods for large-scale linear matrix equations and application to FDEs. V. Simoncini Computational methods for large-scale linear matrix equations and application to FDEs V. Simoncini Dipartimento di Matematica, Università di Bologna valeria.simoncini@unibo.it Joint work with: Tobias Breiten,

More information

In this section again we shall assume that the matrix A is m m, real and symmetric.

In this section again we shall assume that the matrix A is m m, real and symmetric. 84 3. The QR algorithm without shifts See Chapter 28 of the textbook In this section again we shall assume that the matrix A is m m, real and symmetric. 3.1. Simultaneous Iterations algorithm Suppose we

More information

Numerical Methods in Matrix Computations

Numerical Methods in Matrix Computations Ake Bjorck Numerical Methods in Matrix Computations Springer Contents 1 Direct Methods for Linear Systems 1 1.1 Elements of Matrix Theory 1 1.1.1 Matrix Algebra 2 1.1.2 Vector Spaces 6 1.1.3 Submatrices

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

5. Solving the Bellman Equation

5. Solving the Bellman Equation 5. Solving the Bellman Equation In the next two lectures, we will look at several methods to solve Bellman s Equation (BE) for the stochastic shortest path problem: Value Iteration, Policy Iteration and

More information

Domain decomposition on different levels of the Jacobi-Davidson method

Domain decomposition on different levels of the Jacobi-Davidson method hapter 5 Domain decomposition on different levels of the Jacobi-Davidson method Abstract Most computational work of Jacobi-Davidson [46], an iterative method suitable for computing solutions of large dimensional

More information

Krylov subspace methods for linear systems with tensor product structure

Krylov subspace methods for linear systems with tensor product structure Krylov subspace methods for linear systems with tensor product structure Christine Tobler Seminar for Applied Mathematics, ETH Zürich 19. August 2009 Outline 1 Introduction 2 Basic Algorithm 3 Convergence

More information

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators

Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators Preconditioned Locally Minimal Residual Method for Computing Interior Eigenpairs of Symmetric Operators Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University

More information

On the convergence of higher-order orthogonality iteration and its extension

On the convergence of higher-order orthogonality iteration and its extension On the convergence of higher-order orthogonality iteration and its extension Yangyang Xu IMA, University of Minnesota SIAM Conference LA15, Atlanta October 27, 2015 Best low-multilinear-rank approximation

More information

Lecture 18 Classical Iterative Methods

Lecture 18 Classical Iterative Methods Lecture 18 Classical Iterative Methods MIT 18.335J / 6.337J Introduction to Numerical Methods Per-Olof Persson November 14, 2006 1 Iterative Methods for Linear Systems Direct methods for solving Ax = b,

More information

Large-scale eigenvalue problems

Large-scale eigenvalue problems ELE 538B: Mathematics of High-Dimensional Data Large-scale eigenvalue problems Yuxin Chen Princeton University, Fall 208 Outline Power method Lanczos algorithm Eigenvalue problems 4-2 Eigendecomposition

More information

Index. for generalized eigenvalue problem, butterfly form, 211

Index. for generalized eigenvalue problem, butterfly form, 211 Index ad hoc shifts, 165 aggressive early deflation, 205 207 algebraic multiplicity, 35 algebraic Riccati equation, 100 Arnoldi process, 372 block, 418 Hamiltonian skew symmetric, 420 implicitly restarted,

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

Iterative methods for symmetric eigenvalue problems

Iterative methods for symmetric eigenvalue problems s Iterative s for symmetric eigenvalue problems, PhD McMaster University School of Computational Engineering and Science February 11, 2008 s 1 The power and its variants Inverse power Rayleigh quotient

More information

1 Non-negative Matrix Factorization (NMF)

1 Non-negative Matrix Factorization (NMF) 2018-06-21 1 Non-negative Matrix Factorization NMF) In the last lecture, we considered low rank approximations to data matrices. We started with the optimal rank k approximation to A R m n via the SVD,

More information

Introduction to Iterative Solvers of Linear Systems

Introduction to Iterative Solvers of Linear Systems Introduction to Iterative Solvers of Linear Systems SFB Training Event January 2012 Prof. Dr. Andreas Frommer Typeset by Lukas Krämer, Simon-Wolfgang Mages and Rudolf Rödl 1 Classes of Matrices and their

More information

Lecture 3: Inexact inverse iteration with preconditioning

Lecture 3: Inexact inverse iteration with preconditioning Lecture 3: Department of Mathematical Sciences CLAPDE, Durham, July 2008 Joint work with M. Freitag (Bath), and M. Robbé & M. Sadkane (Brest) 1 Introduction 2 Preconditioned GMRES for Inverse Power Method

More information

Lecture 9: Krylov Subspace Methods. 2 Derivation of the Conjugate Gradient Algorithm

Lecture 9: Krylov Subspace Methods. 2 Derivation of the Conjugate Gradient Algorithm CS 622 Data-Sparse Matrix Computations September 19, 217 Lecture 9: Krylov Subspace Methods Lecturer: Anil Damle Scribes: David Eriksson, Marc Aurele Gilles, Ariah Klages-Mundt, Sophia Novitzky 1 Introduction

More information

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors.

MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. MATH 304 Linear Algebra Lecture 20: The Gram-Schmidt process (continued). Eigenvalues and eigenvectors. Orthogonal sets Let V be a vector space with an inner product. Definition. Nonzero vectors v 1,v

More information

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T.

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T. Notes on singular value decomposition for Math 54 Recall that if A is a symmetric n n matrix, then A has real eigenvalues λ 1,, λ n (possibly repeated), and R n has an orthonormal basis v 1,, v n, where

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

Maths for Signals and Systems Linear Algebra in Engineering

Maths for Signals and Systems Linear Algebra in Engineering Maths for Signals and Systems Linear Algebra in Engineering Lecture 18, Friday 18 th November 2016 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Mathematics

More information

QR-decomposition. The QR-decomposition of an n k matrix A, k n, is an n n unitary matrix Q and an n k upper triangular matrix R for which A = QR

QR-decomposition. The QR-decomposition of an n k matrix A, k n, is an n n unitary matrix Q and an n k upper triangular matrix R for which A = QR QR-decomposition The QR-decomposition of an n k matrix A, k n, is an n n unitary matrix Q and an n k upper triangular matrix R for which In Matlab A = QR [Q,R]=qr(A); Note. The QR-decomposition is unique

More information

Introduction to Arnoldi method

Introduction to Arnoldi method Introduction to Arnoldi method SF2524 - Matrix Computations for Large-scale Systems KTH Royal Institute of Technology (Elias Jarlebring) 2014-11-07 KTH Royal Institute of Technology (Elias Jarlebring)Introduction

More information

Numerical Methods - Numerical Linear Algebra

Numerical Methods - Numerical Linear Algebra Numerical Methods - Numerical Linear Algebra Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Numerical Linear Algebra I 2013 1 / 62 Outline 1 Motivation 2 Solving Linear

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview & Matrix-Vector Multiplication Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 20 Outline 1 Course

More information

Inexact Inverse Iteration for Symmetric Matrices

Inexact Inverse Iteration for Symmetric Matrices Inexact Inverse Iteration for Symmetric Matrices Jörg Berns-Müller Ivan G. Graham Alastair Spence Abstract In this paper we analyse inexact inverse iteration for the real symmetric eigenvalue problem Av

More information

arxiv: v1 [hep-lat] 2 May 2012

arxiv: v1 [hep-lat] 2 May 2012 A CG Method for Multiple Right Hand Sides and Multiple Shifts in Lattice QCD Calculations arxiv:1205.0359v1 [hep-lat] 2 May 2012 Fachbereich C, Mathematik und Naturwissenschaften, Bergische Universität

More information

Matrix Equations and and Bivariate Function Approximation

Matrix Equations and and Bivariate Function Approximation Matrix Equations and and Bivariate Function Approximation D. Kressner Joint work with L. Grasedyck, C. Tobler, N. Truhar. ETH Zurich, Seminar for Applied Mathematics Manchester, 17.06.2009 Sylvester matrix

More information

MATHEMATICS. Course Syllabus. Section A: Linear Algebra. Subject Code: MA. Course Structure. Ordinary Differential Equations

MATHEMATICS. Course Syllabus. Section A: Linear Algebra. Subject Code: MA. Course Structure. Ordinary Differential Equations MATHEMATICS Subject Code: MA Course Structure Sections/Units Section A Section B Section C Linear Algebra Complex Analysis Real Analysis Topics Section D Section E Section F Section G Section H Section

More information

S N. hochdimensionaler Lyapunov- und Sylvestergleichungen. Peter Benner. Mathematik in Industrie und Technik Fakultät für Mathematik TU Chemnitz

S N. hochdimensionaler Lyapunov- und Sylvestergleichungen. Peter Benner. Mathematik in Industrie und Technik Fakultät für Mathematik TU Chemnitz Ansätze zur numerischen Lösung hochdimensionaler Lyapunov- und Sylvestergleichungen Peter Benner Mathematik in Industrie und Technik Fakultät für Mathematik TU Chemnitz S N SIMULATION www.tu-chemnitz.de/~benner

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences)

AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) AMS526: Numerical Analysis I (Numerical Linear Algebra for Computational and Data Sciences) Lecture 19: Computing the SVD; Sparse Linear Systems Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical

More information

Block Bidiagonal Decomposition and Least Squares Problems

Block Bidiagonal Decomposition and Least Squares Problems Block Bidiagonal Decomposition and Least Squares Problems Åke Björck Department of Mathematics Linköping University Perspectives in Numerical Analysis, Helsinki, May 27 29, 2008 Outline Bidiagonal Decomposition

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 3: Iterative Methods PD

More information

EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems

EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems EIGIFP: A MATLAB Program for Solving Large Symmetric Generalized Eigenvalue Problems JAMES H. MONEY and QIANG YE UNIVERSITY OF KENTUCKY eigifp is a MATLAB program for computing a few extreme eigenvalues

More information

Parallel Numerics, WT 2016/ Iterative Methods for Sparse Linear Systems of Equations. page 1 of 1

Parallel Numerics, WT 2016/ Iterative Methods for Sparse Linear Systems of Equations. page 1 of 1 Parallel Numerics, WT 2016/2017 5 Iterative Methods for Sparse Linear Systems of Equations page 1 of 1 Contents 1 Introduction 1.1 Computer Science Aspects 1.2 Numerical Problems 1.3 Graphs 1.4 Loop Manipulations

More information

The rational Krylov subspace for parameter dependent systems. V. Simoncini

The rational Krylov subspace for parameter dependent systems. V. Simoncini The rational Krylov subspace for parameter dependent systems V. Simoncini Dipartimento di Matematica, Università di Bologna valeria.simoncini@unibo.it 1 Given the continuous-time system Motivation. Model

More information

Iterative Methods for Sparse Linear Systems

Iterative Methods for Sparse Linear Systems Iterative Methods for Sparse Linear Systems Luca Bergamaschi e-mail: berga@dmsa.unipd.it - http://www.dmsa.unipd.it/ berga Department of Mathematical Methods and Models for Scientific Applications University

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

Chapter 7 Iterative Techniques in Matrix Algebra

Chapter 7 Iterative Techniques in Matrix Algebra Chapter 7 Iterative Techniques in Matrix Algebra Per-Olof Persson persson@berkeley.edu Department of Mathematics University of California, Berkeley Math 128B Numerical Analysis Vector Norms Definition

More information

Preconditioned GMRES Revisited

Preconditioned GMRES Revisited Preconditioned GMRES Revisited Roland Herzog Kirk Soodhalter UBC (visiting) RICAM Linz Preconditioning Conference 2017 Vancouver August 01, 2017 Preconditioned GMRES Revisited Vancouver 1 / 32 Table of

More information

Math 671: Tensor Train decomposition methods II

Math 671: Tensor Train decomposition methods II Math 671: Tensor Train decomposition methods II Eduardo Corona 1 1 University of Michigan at Ann Arbor December 13, 2016 Table of Contents 1 What we ve talked about so far: 2 The Tensor Train decomposition

More information

NUMERICAL METHODS WITH TENSOR REPRESENTATIONS OF DATA

NUMERICAL METHODS WITH TENSOR REPRESENTATIONS OF DATA NUMERICAL METHODS WITH TENSOR REPRESENTATIONS OF DATA Institute of Numerical Mathematics of Russian Academy of Sciences eugene.tyrtyshnikov@gmail.com 2 June 2012 COLLABORATION MOSCOW: I.Oseledets, D.Savostyanov

More information

Numerical Methods I: Eigenvalues and eigenvectors

Numerical Methods I: Eigenvalues and eigenvectors 1/25 Numerical Methods I: Eigenvalues and eigenvectors Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu November 2, 2017 Overview 2/25 Conditioning Eigenvalues and eigenvectors How hard are they

More information

Simple iteration procedure

Simple iteration procedure Simple iteration procedure Solve Known approximate solution Preconditionning: Jacobi Gauss-Seidel Lower triangle residue use of pre-conditionner correction residue use of pre-conditionner Convergence Spectral

More information

Lecture Note 7: Iterative methods for solving linear systems. Xiaoqun Zhang Shanghai Jiao Tong University

Lecture Note 7: Iterative methods for solving linear systems. Xiaoqun Zhang Shanghai Jiao Tong University Lecture Note 7: Iterative methods for solving linear systems Xiaoqun Zhang Shanghai Jiao Tong University Last updated: December 24, 2014 1.1 Review on linear algebra Norms of vectors and matrices vector

More information

6.4 Krylov Subspaces and Conjugate Gradients

6.4 Krylov Subspaces and Conjugate Gradients 6.4 Krylov Subspaces and Conjugate Gradients Our original equation is Ax = b. The preconditioned equation is P Ax = P b. When we write P, we never intend that an inverse will be explicitly computed. P

More information

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A.

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A. AMSC/CMSC 661 Scientific Computing II Spring 2005 Solution of Sparse Linear Systems Part 2: Iterative methods Dianne P. O Leary c 2005 Solving Sparse Linear Systems: Iterative methods The plan: Iterative

More information

Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method

Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method Leslie Foster 11-5-2012 We will discuss the FOM (full orthogonalization method), CG,

More information

Lecture 17 Methods for System of Linear Equations: Part 2. Songting Luo. Department of Mathematics Iowa State University

Lecture 17 Methods for System of Linear Equations: Part 2. Songting Luo. Department of Mathematics Iowa State University Lecture 17 Methods for System of Linear Equations: Part 2 Songting Luo Department of Mathematics Iowa State University MATH 481 Numerical Methods for Differential Equations Songting Luo ( Department of

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 16: Rayleigh Quotient Iteration Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 10 Solving Eigenvalue Problems All

More information

18.06SC Final Exam Solutions

18.06SC Final Exam Solutions 18.06SC Final Exam Solutions 1 (4+7=11 pts.) Suppose A is 3 by 4, and Ax = 0 has exactly 2 special solutions: 1 2 x 1 = 1 and x 2 = 1 1 0 0 1 (a) Remembering that A is 3 by 4, find its row reduced echelon

More information

FEM and sparse linear system solving

FEM and sparse linear system solving FEM & sparse linear system solving, Lecture 9, Nov 19, 2017 1/36 Lecture 9, Nov 17, 2017: Krylov space methods http://people.inf.ethz.ch/arbenz/fem17 Peter Arbenz Computer Science Department, ETH Zürich

More information

Structure preserving Krylov-subspace methods for Lyapunov equations

Structure preserving Krylov-subspace methods for Lyapunov equations Structure preserving Krylov-subspace methods for Lyapunov equations Matthias Bollhöfer, André Eppler Institute Computational Mathematics TU Braunschweig MoRePas Workshop, Münster September 17, 2009 System

More information

Numerical Methods for Solving Large Scale Eigenvalue Problems

Numerical Methods for Solving Large Scale Eigenvalue Problems Peter Arbenz Computer Science Department, ETH Zürich E-mail: arbenz@inf.ethz.ch arge scale eigenvalue problems, Lecture 2, February 28, 2018 1/46 Numerical Methods for Solving Large Scale Eigenvalue Problems

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 19: More on Arnoldi Iteration; Lanczos Iteration Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 17 Outline 1

More information

MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates.

MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates. MATH 423 Linear Algebra II Lecture 10: Inverse matrix. Change of coordinates. Let V be a vector space and α = [v 1,...,v n ] be an ordered basis for V. Theorem 1 The coordinate mapping C : V F n given

More information

Orthogonal tensor decomposition

Orthogonal tensor decomposition Orthogonal tensor decomposition Daniel Hsu Columbia University Largely based on 2012 arxiv report Tensor decompositions for learning latent variable models, with Anandkumar, Ge, Kakade, and Telgarsky.

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit VII Sparse Matrix Computations Part 1: Direct Methods Dianne P. O Leary c 2008

More information

Solvability of Linear Matrix Equations in a Symmetric Matrix Variable

Solvability of Linear Matrix Equations in a Symmetric Matrix Variable Solvability of Linear Matrix Equations in a Symmetric Matrix Variable Maurcio C. de Oliveira J. William Helton Abstract We study the solvability of generalized linear matrix equations of the Lyapunov type

More information

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson

Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Final Exam, Linear Algebra, Fall, 2003, W. Stephen Wilson Name: TA Name and section: NO CALCULATORS, SHOW ALL WORK, NO OTHER PAPERS ON DESK. There is very little actual work to be done on this exam if

More information

Mathematical Optimisation, Chpt 2: Linear Equations and inequalities

Mathematical Optimisation, Chpt 2: Linear Equations and inequalities Mathematical Optimisation, Chpt 2: Linear Equations and inequalities Peter J.C. Dickinson p.j.c.dickinson@utwente.nl http://dickinson.website version: 12/02/18 Monday 5th February 2018 Peter J.C. Dickinson

More information

1 Inner Product and Orthogonality

1 Inner Product and Orthogonality CSCI 4/Fall 6/Vora/GWU/Orthogonality and Norms Inner Product and Orthogonality Definition : The inner product of two vectors x and y, x x x =.., y =. x n y y... y n is denoted x, y : Note that n x, y =

More information

Preconditioned inverse iteration and shift-invert Arnoldi method

Preconditioned inverse iteration and shift-invert Arnoldi method Preconditioned inverse iteration and shift-invert Arnoldi method Melina Freitag Department of Mathematical Sciences University of Bath CSC Seminar Max-Planck-Institute for Dynamics of Complex Technical

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review EE 227A: Convex Optimization and Applications January 19 Lecture 2: Linear Algebra Review Lecturer: Mert Pilanci Reading assignment: Appendix C of BV. Sections 2-6 of the web textbook 1 2.1 Vectors 2.1.1

More information

Real Eigenvalue Extraction and the Distance to Uncontrollability

Real Eigenvalue Extraction and the Distance to Uncontrollability Real Eigenvalue Extraction and the Distance to Uncontrollability Emre Mengi Computer Science Department Courant Institute of Mathematical Sciences New York University mengi@cs.nyu.edu May 22nd, 2006 Emre

More information

Inexact inverse iteration for symmetric matrices

Inexact inverse iteration for symmetric matrices Linear Algebra and its Applications 46 (2006) 389 43 www.elsevier.com/locate/laa Inexact inverse iteration for symmetric matrices Jörg Berns-Müller a, Ivan G. Graham b, Alastair Spence b, a Fachbereich

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

PETROV-GALERKIN METHODS

PETROV-GALERKIN METHODS Chapter 7 PETROV-GALERKIN METHODS 7.1 Energy Norm Minimization 7.2 Residual Norm Minimization 7.3 General Projection Methods 7.1 Energy Norm Minimization Saad, Sections 5.3.1, 5.2.1a. 7.1.1 Methods based

More information

Lecture 4 Orthonormal vectors and QR factorization

Lecture 4 Orthonormal vectors and QR factorization Orthonormal vectors and QR factorization 4 1 Lecture 4 Orthonormal vectors and QR factorization EE263 Autumn 2004 orthonormal vectors Gram-Schmidt procedure, QR factorization orthogonal decomposition induced

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Power iteration Notes for 2016-10-17 In most introductory linear algebra classes, one computes eigenvalues as roots of a characteristic polynomial. For most problems, this is a bad idea: the roots of

More information

Motivation: Sparse matrices and numerical PDE's

Motivation: Sparse matrices and numerical PDE's Lecture 20: Numerical Linear Algebra #4 Iterative methods and Eigenproblems Outline 1) Motivation: beyond LU for Ax=b A little PDE's and sparse matrices A) Temperature Equation B) Poisson Equation 2) Splitting

More information

M.A. Botchev. September 5, 2014

M.A. Botchev. September 5, 2014 Rome-Moscow school of Matrix Methods and Applied Linear Algebra 2014 A short introduction to Krylov subspaces for linear systems, matrix functions and inexact Newton methods. Plan and exercises. M.A. Botchev

More information

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White

Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Introduction to Simulation - Lecture 2 Boundary Value Problems - Solving 3-D Finite-Difference problems Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Reminder about

More information

Lecture 9: Numerical Linear Algebra Primer (February 11st)

Lecture 9: Numerical Linear Algebra Primer (February 11st) 10-725/36-725: Convex Optimization Spring 2015 Lecture 9: Numerical Linear Algebra Primer (February 11st) Lecturer: Ryan Tibshirani Scribes: Avinash Siravuru, Guofan Wu, Maosheng Liu Note: LaTeX template

More information

University of Maryland Department of Computer Science TR-5009 University of Maryland Institute for Advanced Computer Studies TR April 2012

University of Maryland Department of Computer Science TR-5009 University of Maryland Institute for Advanced Computer Studies TR April 2012 University of Maryland Department of Computer Science TR-5009 University of Maryland Institute for Advanced Computer Studies TR-202-07 April 202 LYAPUNOV INVERSE ITERATION FOR COMPUTING A FEW RIGHTMOST

More information

Conjugate Gradient (CG) Method

Conjugate Gradient (CG) Method Conjugate Gradient (CG) Method by K. Ozawa 1 Introduction In the series of this lecture, I will introduce the conjugate gradient method, which solves efficiently large scale sparse linear simultaneous

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 21: Sensitivity of Eigenvalues and Eigenvectors; Conjugate Gradient Method Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 16-02 The Induced Dimension Reduction method applied to convection-diffusion-reaction problems R. Astudillo and M. B. van Gijzen ISSN 1389-6520 Reports of the Delft

More information

CLASSICAL ITERATIVE METHODS

CLASSICAL ITERATIVE METHODS CLASSICAL ITERATIVE METHODS LONG CHEN In this notes we discuss classic iterative methods on solving the linear operator equation (1) Au = f, posed on a finite dimensional Hilbert space V = R N equipped

More information

On Lagrange multipliers of trust-region subproblems

On Lagrange multipliers of trust-region subproblems On Lagrange multipliers of trust-region subproblems Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Institute of Computer Science AS CR, Prague Programy a algoritmy numerické matematiky 14 1.- 6. června 2008

More information

Order reduction numerical methods for the algebraic Riccati equation. V. Simoncini

Order reduction numerical methods for the algebraic Riccati equation. V. Simoncini Order reduction numerical methods for the algebraic Riccati equation V. Simoncini Dipartimento di Matematica Alma Mater Studiorum - Università di Bologna valeria.simoncini@unibo.it 1 The problem Find X

More information

Fast iterative solvers for fractional differential equations

Fast iterative solvers for fractional differential equations Fast iterative solvers for fractional differential equations Tobias Breiten a, Valeria Simoncini b, Martin Stoll c a Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstr 36,

More information

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland

Matrix Algorithms. Volume II: Eigensystems. G. W. Stewart H1HJ1L. University of Maryland College Park, Maryland Matrix Algorithms Volume II: Eigensystems G. W. Stewart University of Maryland College Park, Maryland H1HJ1L Society for Industrial and Applied Mathematics Philadelphia CONTENTS Algorithms Preface xv xvii

More information

Approximate Low Rank Solution of Generalized Lyapunov Matrix Equations via Proper Orthogonal Decomposition

Approximate Low Rank Solution of Generalized Lyapunov Matrix Equations via Proper Orthogonal Decomposition Applied Mathematical Sciences, Vol. 4, 2010, no. 1, 21-30 Approximate Low Rank Solution of Generalized Lyapunov Matrix Equations via Proper Orthogonal Decomposition Amer Kaabi Department of Basic Science

More information

Numerical Methods I Non-Square and Sparse Linear Systems

Numerical Methods I Non-Square and Sparse Linear Systems Numerical Methods I Non-Square and Sparse Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 25th, 2014 A. Donev (Courant

More information

Linear Algebra. Brigitte Bidégaray-Fesquet. MSIAM, September Univ. Grenoble Alpes, Laboratoire Jean Kuntzmann, Grenoble.

Linear Algebra. Brigitte Bidégaray-Fesquet. MSIAM, September Univ. Grenoble Alpes, Laboratoire Jean Kuntzmann, Grenoble. Brigitte Bidégaray-Fesquet Univ. Grenoble Alpes, Laboratoire Jean Kuntzmann, Grenoble MSIAM, 23 24 September 215 Overview 1 Elementary operations Gram Schmidt orthonormalization Matrix norm Conditioning

More information

ON THE GLOBAL KRYLOV SUBSPACE METHODS FOR SOLVING GENERAL COUPLED MATRIX EQUATIONS

ON THE GLOBAL KRYLOV SUBSPACE METHODS FOR SOLVING GENERAL COUPLED MATRIX EQUATIONS ON THE GLOBAL KRYLOV SUBSPACE METHODS FOR SOLVING GENERAL COUPLED MATRIX EQUATIONS Fatemeh Panjeh Ali Beik and Davod Khojasteh Salkuyeh, Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan,

More information

ENGG5781 Matrix Analysis and Computations Lecture 9: Kronecker Product

ENGG5781 Matrix Analysis and Computations Lecture 9: Kronecker Product ENGG5781 Matrix Analysis and Computations Lecture 9: Kronecker Product Wing-Kin (Ken) Ma 2017 2018 Term 2 Department of Electronic Engineering The Chinese University of Hong Kong Kronecker product and

More information