ADI-preconditioned FGMRES for solving large generalized Lyapunov equations - A case study

Size: px
Start display at page:

Download "ADI-preconditioned FGMRES for solving large generalized Lyapunov equations - A case study"

Transcription

1 -preconditioned for large - A case study Matthias Bollhöfer, André Eppler TU Braunschweig Institute Computational Mathematics Syrene-MOR Workshop, TU Hamburg October 30, 2008

2 2 / 20 Outline 1 2 Overview CF- 3 CF- with Krylov-subspace 4

3 3 / 20 Outline CF- with 1 2 Overview CF- 3 CF- with Krylov-subspace 4

4 4 / 20 Linear Descriptor system CF- with Eẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) + Du(t) with x state variables, u input variables, y output variables

5 5 / 20 Model Reduction by Balanced Truncation CF- with When applying BT one has to solve of type AXE T +EXA T = BB T, A T YE +E T YA = C T C. (1) Properties pair (E,A) stable large scale E,A sparse

6 6 / 20 Outline CF- with 1 2 Overview CF- 3 CF- with Krylov-subspace 4

7 7 / 20 Different solvers CF- with Direct methods Bartels-Stewart Hammarlings method... Iterative methods Sign function method type methods (CF-, Cyclic LR-Smith..) (Preconditioned) Krylov-subspace methods...

8 8 / 20 CF- method [Li,White 04] CF- with Cholesky Factor Alternating Direct Iimplicit Iteration computes the Cholesky factor Z of desired solution X = ZZ T Algorithm 1 compute shift params. p 1,...p j e.g. [Wachspress 95] 2 z 1 = 2p 1 (A + p 1 E) 1 B Z = [z] 3 For i=2..j z i = P i 1 z i 1,where 2pi+1 P i = [I (p i+1 + p i )(A + p i+1 E) 1 ] 2pi Z = [Z z i ]

9 9 / 20 Outline CF- with 1 2 Overview CF- 3 CF- with Krylov-subspace 4

10 10 / 20 (m) [Saad 95] CF- with Flexible GMRES, m steps per restart to solve Px = b Algorithm 1 given initial solution x 0 2 Arnoldi process: r 0 = b Px 0 β = r 0 v 1 = r 0 /β For j = 1..m l j := M 1 j v j q = Pl j For i = 1..j h i,j := (q, v i ) q := q h ij v i h j+1,j = q v j+1 = q/h j+1,j X m = x 0 + m i=1 l ic i, where c = (c 1,..., c m ) T solves H m c βe 1 3 Restart if necessary, goto 2

11 11 / 20 Changes in for equation 1 CF- with b BB T x 0 X 0 Y 0 X T 0 r 0 BB T AX 0 Y 0 X T 0 E T EX 0 Y 0 X T 0 AT R 0 S 0 R T 0 K m (r 0, P) = span{r 0, Pr 0,..., P m 1 r 0 } K m (R 0 S 0 R0 T, A, E) = span{r 0 S 0 R T 0, AR 0S 0 R T 0 E T + ER 0 S 0 R T 0 AT,...} span{r 0 S 0 R T 0, R 1S 1 R T 1,...}

12 12 / 20 Changes in for equation 2 CF- with Main observation If x 0 and b are symmetric, low rank matrices then r 0 and all elements of the Krylov-subspace methods are symmetric as well. Explicit structure preservation in Krylov-subspace methods!

13 13 / 20 (m) for CF- with Algorithm 1 given initial solution X 0 Y 0 X T 0 2 R 0 S 0 R0 T = BBT AX 0 Y 0 X0 T E T EX 0 Y 0 X0 T AT β = R 0 S 0 R0 T V 1 = R 0 W 1 = S 0 /β For j = 1..m L j D j L T j := M 1 j V j W j Vj T QRQ T AL j D j L T j E T + EL j D j L T j A T For i = 1..j h i,j := (QRQ T, V i W i V T i ) QRQ T QRQ T h ij V i W i V T i h j+1,j = QRQ T, V j+1 W j+1 V j + 1 = QRQ T /h j+1,j X m Y m X T m X 0 Y 0 X T 0 + m i=1 L id i L T i c i, where c = (c 1,..., c m ) T solves H m c βe 1

14 14 / 20 CF- with Remarks 2 is replaced by F standard scalar product (u, v) is replaced by trace(u T V ) usually the ranks can be reduced on the fly using full rank decompositions (SVD,QR...) backward-error can be used as stopping criterion

15 15 / 20 CF- with Remarks 2 is replaced by F standard scalar product (u, v) is replaced by trace(u T V ) usually the ranks can be reduced on the fly using full rank decompositions (SVD,QR...) backward-error can be used as stopping criterion in general preconditioning does not preserve symmetric low-rank matrices CF- used as preconditioner (symmetry is preserved by construction)

16 16 / 20 Outline CF- with 1 2 Overview CF- 3 CF- with Krylov-subspace 4

17 17 / 20 Test example CF- with Consider the discretized 1D Laplacian denoted by T. We want to solve the equation (E = I) of dimension n T = , b = 1 2 TX + XT T = bb T (2) Rn

18 18 / 20 Preconditioning vs None CF- with With Without n rank steps time steps time e e e e e e e e e e e e e e + 02 Remark without determined the ranks too large.

19 19 / 20 Example with jumping coefficients n = 500 CF- with step CF &CF e e e e e e e e e e e e e e 03 Remark CF is sensitive to wrong shift parameters

20 20 / 20 Benefits CF- with With the combination of both algorithms we were able get benefits of both: fast convergence of structure preserving (symmetry) property of GMRES as Krylov subspace method robustness of GMRES low rank truncation only as accurate as the desired approximate solution (10 8 ) preconditioning allows even coarser truncation (e.g.10 4 ) The combined approach generalizes earlier work in [Damm 08].

21 21 / 20 Future work investigate further parameter influences on algorithm apply this to arising from circuit use further Krylov-subspace methods e.g. BICGStab improve low rank truncation implementation in C

22 22 / 20 Discussion Thank you for your attention!

23 Prof. Dr. M.Sc. H. Faßbender J. Amorocho D. TU Braunschweig TU Braunschweig Prof. Dr. Peter Benner Chemnitz UT Dr. P. Lang ITWM Kaiserslautern Dipl.-Math. techn. A. Schneider Dipl.-Math. techn. Chemnitz UT T. Mach Chemnitz UT Pro M. Bo TU Brau System Reduction for Nanoscale IC Design Dipl.-Math. O. Schmidt ITWM Kaiserslautern Dr. Tatjana Stykel TU Berlin Dipl.-Ma A. E TU Brau Prof. Dr. M. Hinze Dipl.-Math. techn. M.Sc.??? University of Hamburg M. Kunkel H. M. Sahadet M. Vierling University of Hamburg TU Berlin University of Hamburg

Structure preserving Krylov-subspace methods for Lyapunov equations

Structure preserving Krylov-subspace methods for Lyapunov equations Structure preserving Krylov-subspace methods for Lyapunov equations Matthias Bollhöfer, André Eppler Institute Computational Mathematics TU Braunschweig MoRePas Workshop, Münster September 17, 2009 System

More information

SyreNe System Reduction for Nanoscale IC Design

SyreNe System Reduction for Nanoscale IC Design System Reduction for Nanoscale Max Planck Institute for Dynamics of Complex Technical Systeme Computational Methods in Systems and Control Theory Group Magdeburg Technische Universität Chemnitz Fakultät

More information

Model reduction of coupled systems

Model reduction of coupled systems Model reduction of coupled systems Tatjana Stykel Technische Universität Berlin ( joint work with Timo Reis, TU Kaiserslautern ) Model order reduction, coupled problems and optimization Lorentz Center,

More information

System Reduction for Nanoscale IC Design (SyreNe)

System Reduction for Nanoscale IC Design (SyreNe) System Reduction for Nanoscale IC Design (SyreNe) Peter Benner February 26, 2009 1 Introduction Since 1993, the German Federal Ministry of Education and Research (BMBF Bundesministerium füa Bildung und

More information

Krylov Subspace Type Methods for Solving Projected Generalized Continuous-Time Lyapunov Equations

Krylov Subspace Type Methods for Solving Projected Generalized Continuous-Time Lyapunov Equations Krylov Subspace Type Methods for Solving Proected Generalized Continuous-Time Lyapunov Equations YUIAN ZHOU YIQIN LIN Hunan University of Science and Engineering Institute of Computational Mathematics

More information

A Newton-Galerkin-ADI Method for Large-Scale Algebraic Riccati Equations

A Newton-Galerkin-ADI Method for Large-Scale Algebraic Riccati Equations A Newton-Galerkin-ADI Method for Large-Scale Algebraic Riccati Equations Peter Benner Max-Planck-Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory

More information

S N. hochdimensionaler Lyapunov- und Sylvestergleichungen. Peter Benner. Mathematik in Industrie und Technik Fakultät für Mathematik TU Chemnitz

S N. hochdimensionaler Lyapunov- und Sylvestergleichungen. Peter Benner. Mathematik in Industrie und Technik Fakultät für Mathematik TU Chemnitz Ansätze zur numerischen Lösung hochdimensionaler Lyapunov- und Sylvestergleichungen Peter Benner Mathematik in Industrie und Technik Fakultät für Mathematik TU Chemnitz S N SIMULATION www.tu-chemnitz.de/~benner

More information

M.A. Botchev. September 5, 2014

M.A. Botchev. September 5, 2014 Rome-Moscow school of Matrix Methods and Applied Linear Algebra 2014 A short introduction to Krylov subspaces for linear systems, matrix functions and inexact Newton methods. Plan and exercises. M.A. Botchev

More information

Inexactness and flexibility in linear Krylov solvers

Inexactness and flexibility in linear Krylov solvers Inexactness and flexibility in linear Krylov solvers Luc Giraud ENSEEIHT (N7) - IRIT, Toulouse Matrix Analysis and Applications CIRM Luminy - October 15-19, 2007 in honor of Gérard Meurant for his 60 th

More information

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers MAX PLANCK INSTITUTE International Conference on Communications, Computing and Control Applications March 3-5, 2011, Hammamet, Tunisia. Model order reduction of large-scale dynamical systems with Jacobi-Davidson

More information

Lecture 8: Fast Linear Solvers (Part 7)

Lecture 8: Fast Linear Solvers (Part 7) Lecture 8: Fast Linear Solvers (Part 7) 1 Modified Gram-Schmidt Process with Reorthogonalization Test Reorthogonalization If Av k 2 + δ v k+1 2 = Av k 2 to working precision. δ = 10 3 2 Householder Arnoldi

More information

Krylov subspace methods for projected Lyapunov equations

Krylov subspace methods for projected Lyapunov equations Krylov subspace methods for projected Lyapunov equations Tatjana Stykel and Valeria Simoncini Technical Report 735-2010 DFG Research Center Matheon Mathematics for key technologies http://www.matheon.de

More information

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES 48 Arnoldi Iteration, Krylov Subspaces and GMRES We start with the problem of using a similarity transformation to convert an n n matrix A to upper Hessenberg form H, ie, A = QHQ, (30) with an appropriate

More information

Model Order Reduction of Continuous LTI Large Descriptor System Using LRCF-ADI and Square Root Balanced Truncation

Model Order Reduction of Continuous LTI Large Descriptor System Using LRCF-ADI and Square Root Balanced Truncation , July 1-3, 15, London, U.K. Model Order Reduction of Continuous LI Large Descriptor System Using LRCF-ADI and Square Root Balanced runcation Mehrab Hossain Likhon, Shamsil Arifeen, and Mohammad Sahadet

More information

Passivity Preserving Model Reduction for Large-Scale Systems. Peter Benner.

Passivity Preserving Model Reduction for Large-Scale Systems. Peter Benner. Passivity Preserving Model Reduction for Large-Scale Systems Peter Benner Mathematik in Industrie und Technik Fakultät für Mathematik Sonderforschungsbereich 393 S N benner@mathematik.tu-chemnitz.de SIMULATION

More information

Lecture 17 Methods for System of Linear Equations: Part 2. Songting Luo. Department of Mathematics Iowa State University

Lecture 17 Methods for System of Linear Equations: Part 2. Songting Luo. Department of Mathematics Iowa State University Lecture 17 Methods for System of Linear Equations: Part 2 Songting Luo Department of Mathematics Iowa State University MATH 481 Numerical Methods for Differential Equations Songting Luo ( Department of

More information

9.1 Preconditioned Krylov Subspace Methods

9.1 Preconditioned Krylov Subspace Methods Chapter 9 PRECONDITIONING 9.1 Preconditioned Krylov Subspace Methods 9.2 Preconditioned Conjugate Gradient 9.3 Preconditioned Generalized Minimal Residual 9.4 Relaxation Method Preconditioners 9.5 Incomplete

More information

Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method

Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method Summary of Iterative Methods for Non-symmetric Linear Equations That Are Related to the Conjugate Gradient (CG) Method Leslie Foster 11-5-2012 We will discuss the FOM (full orthogonalization method), CG,

More information

Parametrische Modellreduktion mit dünnen Gittern

Parametrische Modellreduktion mit dünnen Gittern Parametrische Modellreduktion mit dünnen Gittern (Parametric model reduction with sparse grids) Ulrike Baur Peter Benner Mathematik in Industrie und Technik, Fakultät für Mathematik Technische Universität

More information

Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems

Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems Balanced Truncation Model Reduction of Large and Sparse Generalized Linear Systems Jos M. Badía 1, Peter Benner 2, Rafael Mayo 1, Enrique S. Quintana-Ortí 1, Gregorio Quintana-Ortí 1, A. Remón 1 1 Depto.

More information

Model order reduction of electrical circuits with nonlinear elements

Model order reduction of electrical circuits with nonlinear elements Model order reduction of electrical circuits with nonlinear elements Andreas Steinbrecher and Tatjana Stykel 1 Introduction The efficient and robust numerical simulation of electrical circuits plays a

More information

Algorithms that use the Arnoldi Basis

Algorithms that use the Arnoldi Basis AMSC 600 /CMSC 760 Advanced Linear Numerical Analysis Fall 2007 Arnoldi Methods Dianne P. O Leary c 2006, 2007 Algorithms that use the Arnoldi Basis Reference: Chapter 6 of Saad The Arnoldi Basis How to

More information

SYSTEM-THEORETIC METHODS FOR MODEL REDUCTION OF LARGE-SCALE SYSTEMS: SIMULATION, CONTROL, AND INVERSE PROBLEMS. Peter Benner

SYSTEM-THEORETIC METHODS FOR MODEL REDUCTION OF LARGE-SCALE SYSTEMS: SIMULATION, CONTROL, AND INVERSE PROBLEMS. Peter Benner SYSTEM-THEORETIC METHODS FOR MODEL REDUCTION OF LARGE-SCALE SYSTEMS: SIMULATION, CONTROL, AND INVERSE PROBLEMS Professur Mathematik in Industrie und Technik Fakultät für Mathematik Technische Universität

More information

Linear and Nonlinear Matrix Equations Arising in Model Reduction

Linear and Nonlinear Matrix Equations Arising in Model Reduction International Conference on Numerical Linear Algebra and its Applications Guwahati, January 15 18, 2013 Linear and Nonlinear Matrix Equations Arising in Model Reduction Peter Benner Tobias Breiten Max

More information

MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS

MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS Ulrike Baur joint work with Peter Benner Mathematics in Industry and Technology Faculty of Mathematics Chemnitz University of Technology

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf-Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2018/19 Part 4: Iterative Methods PD

More information

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems

Topics. The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems Topics The CG Algorithm Algorithmic Options CG s Two Main Convergence Theorems What about non-spd systems? Methods requiring small history Methods requiring large history Summary of solvers 1 / 52 Conjugate

More information

6.4 Krylov Subspaces and Conjugate Gradients

6.4 Krylov Subspaces and Conjugate Gradients 6.4 Krylov Subspaces and Conjugate Gradients Our original equation is Ax = b. The preconditioned equation is P Ax = P b. When we write P, we never intend that an inverse will be explicitly computed. P

More information

Model Reduction for Dynamical Systems

Model Reduction for Dynamical Systems Otto-von-Guericke Universität Magdeburg Faculty of Mathematics Summer term 2015 Model Reduction for Dynamical Systems Lecture 8 Peter Benner Lihong Feng Max Planck Institute for Dynamics of Complex Technical

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

FEM and sparse linear system solving

FEM and sparse linear system solving FEM & sparse linear system solving, Lecture 9, Nov 19, 2017 1/36 Lecture 9, Nov 17, 2017: Krylov space methods http://people.inf.ethz.ch/arbenz/fem17 Peter Arbenz Computer Science Department, ETH Zürich

More information

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294)

Conjugate gradient method. Descent method. Conjugate search direction. Conjugate Gradient Algorithm (294) Conjugate gradient method Descent method Hestenes, Stiefel 1952 For A N N SPD In exact arithmetic, solves in N steps In real arithmetic No guaranteed stopping Often converges in many fewer than N steps

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning

AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 23: GMRES and Other Krylov Subspace Methods; Preconditioning Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 18 Outline

More information

BALANCING-RELATED MODEL REDUCTION FOR DATA-SPARSE SYSTEMS

BALANCING-RELATED MODEL REDUCTION FOR DATA-SPARSE SYSTEMS BALANCING-RELATED Peter Benner Professur Mathematik in Industrie und Technik Fakultät für Mathematik Technische Universität Chemnitz Computational Methods with Applications Harrachov, 19 25 August 2007

More information

Model Reduction for Unstable Systems

Model Reduction for Unstable Systems Model Reduction for Unstable Systems Klajdi Sinani Virginia Tech klajdi@vt.edu Advisor: Serkan Gugercin October 22, 2015 (VT) SIAM October 22, 2015 1 / 26 Overview 1 Introduction 2 Interpolatory Model

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

Krylov Subspace Methods for Nonlinear Model Reduction

Krylov Subspace Methods for Nonlinear Model Reduction MAX PLANCK INSTITUT Conference in honour of Nancy Nichols 70th birthday Reading, 2 3 July 2012 Krylov Subspace Methods for Nonlinear Model Reduction Peter Benner and Tobias Breiten Max Planck Institute

More information

Iterative methods for Linear System

Iterative methods for Linear System Iterative methods for Linear System JASS 2009 Student: Rishi Patil Advisor: Prof. Thomas Huckle Outline Basics: Matrices and their properties Eigenvalues, Condition Number Iterative Methods Direct and

More information

The Newton-ADI Method for Large-Scale Algebraic Riccati Equations. Peter Benner.

The Newton-ADI Method for Large-Scale Algebraic Riccati Equations. Peter Benner. The Newton-ADI Method for Large-Scale Algebraic Riccati Equations Mathematik in Industrie und Technik Fakultät für Mathematik Peter Benner benner@mathematik.tu-chemnitz.de Sonderforschungsbereich 393 S

More information

Approximation of the Linearized Boussinesq Equations

Approximation of the Linearized Boussinesq Equations Approximation of the Linearized Boussinesq Equations Alan Lattimer Advisors Jeffrey Borggaard Serkan Gugercin Department of Mathematics Virginia Tech SIAM Talk Series, Virginia Tech, April 22, 2014 Alan

More information

Structured Krylov Subspace Methods for Eigenproblems with Spectral Symmetries

Structured Krylov Subspace Methods for Eigenproblems with Spectral Symmetries Structured Krylov Subspace Methods for Eigenproblems with Spectral Symmetries Fakultät für Mathematik TU Chemnitz, Germany Peter Benner benner@mathematik.tu-chemnitz.de joint work with Heike Faßbender

More information

Recycling Krylov Subspaces for Solving Linear Systems with Successively Changing Right-Hand Sides Arising in Model Reduction

Recycling Krylov Subspaces for Solving Linear Systems with Successively Changing Right-Hand Sides Arising in Model Reduction Recycling Krylov Subspaces for Solving Linear Systems with Successively Changing Right-Hand Sides Arising in Model Reduction Peter Benner and Lihong Feng Abstract We discuss the numerical solution of successive

More information

On the numerical solution of large-scale linear matrix equations. V. Simoncini

On the numerical solution of large-scale linear matrix equations. V. Simoncini On the numerical solution of large-scale linear matrix equations V. Simoncini Dipartimento di Matematica, Università di Bologna (Italy) valeria.simoncini@unibo.it 1 Some matrix equations Sylvester matrix

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 3: Iterative Methods PD

More information

KRYLOV SUBSPACE METHODS FOR PROJECTED LYAPUNOV EQUATIONS. 1. Introduction. Consider the projected continuous-time algebraic Lyapunov equation (PCALE)

KRYLOV SUBSPACE METHODS FOR PROJECTED LYAPUNOV EQUATIONS. 1. Introduction. Consider the projected continuous-time algebraic Lyapunov equation (PCALE) KRYLOV SUBSPACE METHODS FOR PROJECTED LYAPUNOV EQUATIONS TATJANA STYKEL AND VALERIA SIMONCINI Abstract. We consider the numerical solution of projected Lyapunov equations using Krylov subspace iterative

More information

Parallel Model Reduction of Large Linear Descriptor Systems via Balanced Truncation

Parallel Model Reduction of Large Linear Descriptor Systems via Balanced Truncation Parallel Model Reduction of Large Linear Descriptor Systems via Balanced Truncation Peter Benner 1, Enrique S. Quintana-Ortí 2, Gregorio Quintana-Ortí 2 1 Fakultät für Mathematik Technische Universität

More information

Efficient Implementation of Large Scale Lyapunov and Riccati Equation Solvers

Efficient Implementation of Large Scale Lyapunov and Riccati Equation Solvers Efficient Implementation of Large Scale Lyapunov and Riccati Equation Solvers Jens Saak joint work with Peter Benner (MiIT) Professur Mathematik in Industrie und Technik (MiIT) Fakultät für Mathematik

More information

Stability and Inertia Theorems for Generalized Lyapunov Equations

Stability and Inertia Theorems for Generalized Lyapunov Equations Published in Linear Algebra and its Applications, 355(1-3, 2002, pp. 297-314. Stability and Inertia Theorems for Generalized Lyapunov Equations Tatjana Stykel Abstract We study generalized Lyapunov equations

More information

Max Planck Institute Magdeburg Preprints

Max Planck Institute Magdeburg Preprints Peter Benner Patrick Kürschner Jens Saak Real versions of low-rank ADI methods with complex shifts MAXPLANCKINSTITUT FÜR DYNAMIK KOMPLEXER TECHNISCHER SYSTEME MAGDEBURG Max Planck Institute Magdeburg Preprints

More information

PROJECTED GMRES AND ITS VARIANTS

PROJECTED GMRES AND ITS VARIANTS PROJECTED GMRES AND ITS VARIANTS Reinaldo Astudillo Brígida Molina rastudillo@kuaimare.ciens.ucv.ve bmolina@kuaimare.ciens.ucv.ve Centro de Cálculo Científico y Tecnológico (CCCT), Facultad de Ciencias,

More information

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Model Reduction for Piezo-Mechanical Systems Using Balanced Truncation av Mohammad Monir Uddin 2011 - No 5 Advisor: Prof.

More information

Iterative Methods and Multigrid

Iterative Methods and Multigrid Iterative Methods and Multigrid Part 3: Preconditioning 2 Eric de Sturler Preconditioning The general idea behind preconditioning is that convergence of some method for the linear system Ax = b can be

More information

A DISSERTATION. Extensions of the Conjugate Residual Method. by Tomohiro Sogabe. Presented to

A DISSERTATION. Extensions of the Conjugate Residual Method. by Tomohiro Sogabe. Presented to A DISSERTATION Extensions of the Conjugate Residual Method ( ) by Tomohiro Sogabe Presented to Department of Applied Physics, The University of Tokyo Contents 1 Introduction 1 2 Krylov subspace methods

More information

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering

A short course on: Preconditioned Krylov subspace methods. Yousef Saad University of Minnesota Dept. of Computer Science and Engineering A short course on: Preconditioned Krylov subspace methods Yousef Saad University of Minnesota Dept. of Computer Science and Engineering Universite du Littoral, Jan 19-3, 25 Outline Part 1 Introd., discretization

More information

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS

ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS ITERATIVE METHODS FOR SPARSE LINEAR SYSTEMS YOUSEF SAAD University of Minnesota PWS PUBLISHING COMPANY I(T)P An International Thomson Publishing Company BOSTON ALBANY BONN CINCINNATI DETROIT LONDON MADRID

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 06-05 Solution of the incompressible Navier Stokes equations with preconditioned Krylov subspace methods M. ur Rehman, C. Vuik G. Segal ISSN 1389-6520 Reports of the

More information

The Lanczos and conjugate gradient algorithms

The Lanczos and conjugate gradient algorithms The Lanczos and conjugate gradient algorithms Gérard MEURANT October, 2008 1 The Lanczos algorithm 2 The Lanczos algorithm in finite precision 3 The nonsymmetric Lanczos algorithm 4 The Golub Kahan bidiagonalization

More information

Numerical Solution of Matrix Equations Arising in Control of Bilinear and Stochastic Systems

Numerical Solution of Matrix Equations Arising in Control of Bilinear and Stochastic Systems MatTriad 2015 Coimbra September 7 11, 2015 Numerical Solution of Matrix Equations Arising in Control of Bilinear and Stochastic Systems Peter Benner Max Planck Institute for Dynamics of Complex Technical

More information

Numerical linear algebra

Numerical linear algebra Numerical linear algebra Purdue University CS 51500 Fall 2017 David Gleich David F. Gleich Call me Prof Gleich Dr. Gleich Please not Hey matrix guy! Huda Nassar Call me Huda Ms. Huda Please not Matrix

More information

Lab 1: Iterative Methods for Solving Linear Systems

Lab 1: Iterative Methods for Solving Linear Systems Lab 1: Iterative Methods for Solving Linear Systems January 22, 2017 Introduction Many real world applications require the solution to very large and sparse linear systems where direct methods such as

More information

A Novel Approach for Solving the Power Flow Equations

A Novel Approach for Solving the Power Flow Equations Vol.1, Issue.2, pp-364-370 ISSN: 2249-6645 A Novel Approach for Solving the Power Flow Equations Anwesh Chowdary 1, Dr. G. MadhusudhanaRao 2 1 Dept.of.EEE, KL University-Guntur, Andhra Pradesh, INDIA 2

More information

Numerical behavior of inexact linear solvers

Numerical behavior of inexact linear solvers Numerical behavior of inexact linear solvers Miro Rozložník joint results with Zhong-zhi Bai and Pavel Jiránek Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic The fourth

More information

Matrix Equations and and Bivariate Function Approximation

Matrix Equations and and Bivariate Function Approximation Matrix Equations and and Bivariate Function Approximation D. Kressner Joint work with L. Grasedyck, C. Tobler, N. Truhar. ETH Zurich, Seminar for Applied Mathematics Manchester, 17.06.2009 Sylvester matrix

More information

AMS Mathematics Subject Classification : 65F10,65F50. Key words and phrases: ILUS factorization, preconditioning, Schur complement, 1.

AMS Mathematics Subject Classification : 65F10,65F50. Key words and phrases: ILUS factorization, preconditioning, Schur complement, 1. J. Appl. Math. & Computing Vol. 15(2004), No. 1, pp. 299-312 BILUS: A BLOCK VERSION OF ILUS FACTORIZATION DAVOD KHOJASTEH SALKUYEH AND FAEZEH TOUTOUNIAN Abstract. ILUS factorization has many desirable

More information

KRYLOV SUBSPACE ITERATION

KRYLOV SUBSPACE ITERATION KRYLOV SUBSPACE ITERATION Presented by: Nab Raj Roshyara Master and Ph.D. Student Supervisors: Prof. Dr. Peter Benner, Department of Mathematics, TU Chemnitz and Dipl.-Geophys. Thomas Günther 1. Februar

More information

On solving linear systems arising from Shishkin mesh discretizations

On solving linear systems arising from Shishkin mesh discretizations On solving linear systems arising from Shishkin mesh discretizations Petr Tichý Faculty of Mathematics and Physics, Charles University joint work with Carlos Echeverría, Jörg Liesen, and Daniel Szyld October

More information

Moving Frontiers in Model Reduction Using Numerical Linear Algebra

Moving Frontiers in Model Reduction Using Numerical Linear Algebra Using Numerical Linear Algebra Max-Planck-Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Group Magdeburg, Germany Technische Universität Chemnitz

More information

1 Conjugate gradients

1 Conjugate gradients Notes for 2016-11-18 1 Conjugate gradients We now turn to the method of conjugate gradients (CG), perhaps the best known of the Krylov subspace solvers. The CG iteration can be characterized as the iteration

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.4: Krylov Subspace Methods 2 / 51 Krylov Subspace Methods In this chapter we give

More information

Order reduction numerical methods for the algebraic Riccati equation. V. Simoncini

Order reduction numerical methods for the algebraic Riccati equation. V. Simoncini Order reduction numerical methods for the algebraic Riccati equation V. Simoncini Dipartimento di Matematica Alma Mater Studiorum - Università di Bologna valeria.simoncini@unibo.it 1 The problem Find X

More information

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection

Last Time. Social Network Graphs Betweenness. Graph Laplacian. Girvan-Newman Algorithm. Spectral Bisection Eigenvalue Problems Last Time Social Network Graphs Betweenness Girvan-Newman Algorithm Graph Laplacian Spectral Bisection λ 2, w 2 Today Small deviation into eigenvalue problems Formulation Standard eigenvalue

More information

Two-sided Eigenvalue Algorithms for Modal Approximation

Two-sided Eigenvalue Algorithms for Modal Approximation Two-sided Eigenvalue Algorithms for Modal Approximation Master s thesis submitted to Faculty of Mathematics at Chemnitz University of Technology presented by: Supervisor: Advisor: B.sc. Patrick Kürschner

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 10-14 On the Convergence of GMRES with Invariant-Subspace Deflation M.C. Yeung, J.M. Tang, and C. Vuik ISSN 1389-6520 Reports of the Delft Institute of Applied Mathematics

More information

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009)

Iterative methods for Linear System of Equations. Joint Advanced Student School (JASS-2009) Iterative methods for Linear System of Equations Joint Advanced Student School (JASS-2009) Course #2: Numerical Simulation - from Models to Software Introduction In numerical simulation, Partial Differential

More information

Preconditioned Conjugate Gradient-Like Methods for. Nonsymmetric Linear Systems 1. Ulrike Meier Yang 2. July 19, 1994

Preconditioned Conjugate Gradient-Like Methods for. Nonsymmetric Linear Systems 1. Ulrike Meier Yang 2. July 19, 1994 Preconditioned Conjugate Gradient-Like Methods for Nonsymmetric Linear Systems Ulrike Meier Yang 2 July 9, 994 This research was supported by the U.S. Department of Energy under Grant No. DE-FG2-85ER25.

More information

May 9, 2014 MATH 408 MIDTERM EXAM OUTLINE. Sample Questions

May 9, 2014 MATH 408 MIDTERM EXAM OUTLINE. Sample Questions May 9, 24 MATH 48 MIDTERM EXAM OUTLINE This exam will consist of two parts and each part will have multipart questions. Each of the 6 questions is worth 5 points for a total of points. The two part of

More information

IDR(s) as a projection method

IDR(s) as a projection method Delft University of Technology Faculty of Electrical Engineering, Mathematics and Computer Science Delft Institute of Applied Mathematics IDR(s) as a projection method A thesis submitted to the Delft Institute

More information

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 2006 CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT

More information

Indefinite and physics-based preconditioning

Indefinite and physics-based preconditioning Indefinite and physics-based preconditioning Jed Brown VAW, ETH Zürich 2009-01-29 Newton iteration Standard form of a nonlinear system F (u) 0 Iteration Solve: Update: J(ũ)u F (ũ) ũ + ũ + u Example (p-bratu)

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

Matrices and systems of linear equations

Matrices and systems of linear equations Matrices and systems of linear equations Samy Tindel Purdue University Differential equations and linear algebra - MA 262 Taken from Differential equations and linear algebra by Goode and Annin Samy T.

More information

ON THE GLOBAL KRYLOV SUBSPACE METHODS FOR SOLVING GENERAL COUPLED MATRIX EQUATIONS

ON THE GLOBAL KRYLOV SUBSPACE METHODS FOR SOLVING GENERAL COUPLED MATRIX EQUATIONS ON THE GLOBAL KRYLOV SUBSPACE METHODS FOR SOLVING GENERAL COUPLED MATRIX EQUATIONS Fatemeh Panjeh Ali Beik and Davod Khojasteh Salkuyeh, Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan,

More information

Numerical Methods I Non-Square and Sparse Linear Systems

Numerical Methods I Non-Square and Sparse Linear Systems Numerical Methods I Non-Square and Sparse Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 25th, 2014 A. Donev (Courant

More information

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A.

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A. AMSC/CMSC 661 Scientific Computing II Spring 2005 Solution of Sparse Linear Systems Part 2: Iterative methods Dianne P. O Leary c 2005 Solving Sparse Linear Systems: Iterative methods The plan: Iterative

More information

Block Bidiagonal Decomposition and Least Squares Problems

Block Bidiagonal Decomposition and Least Squares Problems Block Bidiagonal Decomposition and Least Squares Problems Åke Björck Department of Mathematics Linköping University Perspectives in Numerical Analysis, Helsinki, May 27 29, 2008 Outline Bidiagonal Decomposition

More information

Arnoldi Methods in SLEPc

Arnoldi Methods in SLEPc Scalable Library for Eigenvalue Problem Computations SLEPc Technical Report STR-4 Available at http://slepc.upv.es Arnoldi Methods in SLEPc V. Hernández J. E. Román A. Tomás V. Vidal Last update: October,

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 15-05 Induced Dimension Reduction method for solving linear matrix equations R. Astudillo and M. B. van Gijzen ISSN 1389-6520 Reports of the Delft Institute of Applied

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 2: Direct Methods PD Dr.

More information

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying I.2 Quadratic Eigenvalue Problems 1 Introduction The quadratic eigenvalue problem QEP is to find scalars λ and nonzero vectors u satisfying where Qλx = 0, 1.1 Qλ = λ 2 M + λd + K, M, D and K are given

More information

Fast iterative solvers

Fast iterative solvers Utrecht, 15 november 2017 Fast iterative solvers Gerard Sleijpen Department of Mathematics http://www.staff.science.uu.nl/ sleij101/ Review. To simplify, take x 0 = 0, assume b 2 = 1. Solving Ax = b for

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 14-1 Nested Krylov methods for shifted linear systems M. Baumann and M. B. van Gizen ISSN 1389-652 Reports of the Delft Institute of Applied Mathematics Delft 214

More information

Accelerating Model Reduction of Large Linear Systems with Graphics Processors

Accelerating Model Reduction of Large Linear Systems with Graphics Processors Accelerating Model Reduction of Large Linear Systems with Graphics Processors P. Benner 1, P. Ezzatti 2, D. Kressner 3, E.S. Quintana-Ortí 4, Alfredo Remón 4 1 Max-Plank-Institute for Dynamics of Complex

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Classical Iterations We have a problem, We assume that the matrix comes from a discretization of a PDE. The best and most popular model problem is, The matrix will be as large

More information

U.C. Berkeley CS270: Algorithms Lecture 21 Professor Vazirani and Professor Rao Last revised. Lecture 21

U.C. Berkeley CS270: Algorithms Lecture 21 Professor Vazirani and Professor Rao Last revised. Lecture 21 U.C. Berkeley CS270: Algorithms Lecture 21 Professor Vazirani and Professor Rao Scribe: Anupam Last revised Lecture 21 1 Laplacian systems in nearly linear time Building upon the ideas introduced in the

More information

In order to solve the linear system KL M N when K is nonsymmetric, we can solve the equivalent system

In order to solve the linear system KL M N when K is nonsymmetric, we can solve the equivalent system !"#$% "&!#' (%)!#" *# %)%(! #! %)!#" +, %"!"#$ %*&%! $#&*! *# %)%! -. -/ 0 -. 12 "**3! * $!#%+,!2!#% 44" #% &#33 # 4"!#" "%! "5"#!!#6 -. - #% " 7% "3#!#3! - + 87&2! * $!#% 44" ) 3( $! # % %#!!#%+ 9332!

More information

Index. for generalized eigenvalue problem, butterfly form, 211

Index. for generalized eigenvalue problem, butterfly form, 211 Index ad hoc shifts, 165 aggressive early deflation, 205 207 algebraic multiplicity, 35 algebraic Riccati equation, 100 Arnoldi process, 372 block, 418 Hamiltonian skew symmetric, 420 implicitly restarted,

More information

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna.

Recent advances in approximation using Krylov subspaces. V. Simoncini. Dipartimento di Matematica, Università di Bologna. Recent advances in approximation using Krylov subspaces V. Simoncini Dipartimento di Matematica, Università di Bologna and CIRSA, Ravenna, Italy valeria@dm.unibo.it 1 The framework It is given an operator

More information

Parallel sparse linear solvers and applications in CFD

Parallel sparse linear solvers and applications in CFD Parallel sparse linear solvers and applications in CFD Jocelyne Erhel Joint work with Désiré Nuentsa Wakam () and Baptiste Poirriez () SAGE team, Inria Rennes, France journée Calcul Intensif Distribué

More information

Implementation of Implicit Solution Techniques for Non-equilibrium Hypersonic Flows

Implementation of Implicit Solution Techniques for Non-equilibrium Hypersonic Flows Short Training Program Report Implementation of Implicit Solution Techniques for Non-equilibrium Hypersonic Flows Julian Koellermeier RWTH Aachen University Supervisor: Advisor: Prof. Thierry Magin von

More information

Chemnitz Scientific Computing Preprints

Chemnitz Scientific Computing Preprints Peter Benner, Mohammad-Sahadet Hossain, Tatjana Styel Low-ran iterative methods of periodic projected Lyapunov equations and their application in model reduction of periodic descriptor systems CSC/11-01

More information