Model Reduction for Unstable Systems

Size: px
Start display at page:

Download "Model Reduction for Unstable Systems"

Transcription

1 Model Reduction for Unstable Systems Klajdi Sinani Virginia Tech Advisor: Serkan Gugercin October 22, 2015 (VT) SIAM October 22, / 26

2 Overview 1 Introduction 2 Interpolatory Model Reduction 3 Balanced Truncation 4 Rational Krylov Methods for Optimal L 2 Model Reduction 5 Balanced Truncation for Unstable Systems 6 IRKA for Unstable Systems 7 Conclusions and Future Work (VT) SIAM October 22, / 26

3 Model Reduction for Stable Linear Dynamical Systems Consider the linear dynamical system: Eẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) + Du(t) with x(0) = 0 where A, E R n n, B R n m, C R p n, and D R p m are constant matrices. In this presentation we assume m = p = 1. A dynamical system is asymptotically stable or stable if all of its poles lie to the left of the imaginary axis. For large n e.g. n > 10 6, the simulation is very expensive. (VT) SIAM October 22, / 26

4 Model Reduction for Linear Dynamical Systems Use model reduction to replace the original model with a lower dimension model: E r ẋ r (t) = A r x r (t) + B r u(t) y r (t) = C r x r (t) + D r u(t) with x r (0) = 0 where A r, E r R r r, B r R r m, C r R p r, and D r R p m with r << n. The outputs of the reduced system approximate the true outputs. The simulation of the reduced order model is cheaper. (VT) SIAM October 22, / 26

5 Transfer Function in the Frequency Domain Obtain the frequency domain representation of the model by computing Laplace transforms of y(t), y r (t) and u(t). The functions H(s) = C(sE A) 1 B + D H r (s) = C r (se r A r ) 1 B r + D r are the transfer functions associated with the full and reduced model respectively. (VT) SIAM October 22, / 26

6 H 2 and H Norms The H 2 norm is defined as H(s) H2 := ( 1 ) 1/2 H(iω) 2 F 2π where F represents the Frobenius norm. The H norm is defined as H H = sup H(iω) 2 ω R where 2 denotes the 2-norm of a matrix. (VT) SIAM October 22, / 26

7 Error Measures We aim to minimize the error between the full and the reduced model: (VT) SIAM October 22, / 26

8 Error Measures We aim to minimize the error between the full and the reduced model: y y r L H H r H2 u L2 (VT) SIAM October 22, / 26

9 Error Measures We aim to minimize the error between the full and the reduced model: y y r L H H r H2 u L2 y y r L2 H H r H u L2. (VT) SIAM October 22, / 26

10 Rational Interpolation Given a set of interpolation points {s i } r i C we need to construct H r such that H r (s i ) = H(s i ) for i = 1, 2, 3,..., r. We compute H r via projection in the following manner: Compute the model reduction basis V and W: V = [(s 1 E A) 1 B (s r E A) 1 B] W = [C(s 1 E A) 1 C(s r E A) 1 ] Then, E r = W T EV, A r = W T AV, C r = CV, B r = W T B. H r satisfies Hermite interpolation conditions. (VT) SIAM October 22, / 26

11 Rational Krylov Methods We want to find H r such that H H r H2 = min dim(ĥ r )=r H Ĥ r H2. Theorem (Gugercin and Beattie, 2014) Let H r (s) be the best r th order rational approximation of H with respect to the H 2 norm. Then H( λ k ) = H r ( λ k ), H ( λ k ) = H r ( λ k ) for k = 1, 2,..., r where λ k denotes the poles of the reduced system. (VT) SIAM October 22, / 26

12 Iterative Rational Krylov Algorithm (IRKA) Sketch of IRKA Pick an r-fold initial shift set selection closed under conjugation V = [(σ 1 E A) 1 )B... (σ r E A) 1 )B] W = [(σ 1 E A) T ) 1 C T... [(σ r E A) T ) 1 C T ] while (not converged) A r = W T r AV r, E r = W T r EV r, B r = W T r B, and C r = CV r Compute a pole-residue expansion of H r (s): H r (s) = C r (se r A r ) 1 B r = r i=1 σ i λ i, for i = 1,..., r V = [(σ 1 E A) 1 )B... (σ r E A) 1 )B] W T = [(σ 1 E A) T ) 1 C T... [(σ r E A) T ) 1 C T ] φ i s λ i A r = W T r AV r, E r = W T r EV r, B r = W T r B, and C r = CV r (VT) SIAM October 22, / 26

13 Observability and Reachability Consider: ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) + Du(t) [ ] A B Σ : = C D Balanced Truncation eliminates states which are hard to reach and observe. The reachability gramian P is used to classify hard to reach states. The observability gramian Q is used to classify hard to observe states. P and Q are the solutions of the following Lyapunov equations: AP + PA T + BB T = 0, A T Q + QA + C T C = 0 The values σ i = λ i (PQ) are known as the Hankel singular values of the system. (VT) SIAM October 22, / 26

14 Balancing Transformation Transform the gramians in order to ensure the states which are difficult to reach are also difficult to observe. (VT) SIAM October 22, / 26

15 Balancing Transformation Transform the gramians in order to ensure the states which are difficult to reach are also difficult to observe. If A is asymptotically stable, P and Q are symmetric positive semi-definite. (VT) SIAM October 22, / 26

16 Balancing Transformation Transform the gramians in order to ensure the states which are difficult to reach are also difficult to observe. If A is asymptotically stable, P and Q are symmetric positive semi-definite. Compute the Cholesky factor U of P and the eigendecomposition of U T QU: P = UU T, U T QU = KG 2 K T (VT) SIAM October 22, / 26

17 Balancing Transformation Transform the gramians in order to ensure the states which are difficult to reach are also difficult to observe. If A is asymptotically stable, P and Q are symmetric positive semi-definite. Compute the Cholesky factor U of P and the eigendecomposition of U T QU: P = UU T, U T QU = KG 2 K T Compute the balancing transformation T : T = G 1/2 K T U 1 and T 1 = UKG 1/2. (VT) SIAM October 22, / 26

18 Balancing Transformation Transform the gramians in order to ensure the states which are difficult to reach are also difficult to observe. If A is asymptotically stable, P and Q are symmetric positive semi-definite. Compute the Cholesky factor U of P and the eigendecomposition of U T QU: P = UU T, U T QU = KG 2 K T Compute the balancing transformation T : T = G 1/2 K T U 1 and T 1 = UKG 1/2. The balancing state transformation yields: ˆP = TPT T, ˆQ = T T QT 1. (VT) SIAM October 22, / 26

19 Truncation We obtain a balanced system [ Â ˆB ˆΣ = Ĉ ˆD ] (VT) SIAM October 22, / 26

20 Truncation We obtain a balanced system Consider the partitions: [ ] A11 A Â = 12, ˆB = A 21 A 22 [ Â ˆB ˆΣ = Ĉ ˆD [ B1 B 2 ] ], Ĉ = [ C 1 C 2 ], G = [ G G 22 for G = diag(σ 1,..., σ n ) = P = Q, G 1 = (σ 1,..., σ r ), G 2 = (σ r+1,..., σ N ), where σ i denotes the i-th Hankel singular values of the system for i = 1, 2,..., n. ] (VT) SIAM October 22, / 26

21 (VT) SIAM 2(σ σ. October 22, / 26 Truncation We obtain a balanced system Consider the partitions: [ ] A11 A Â = 12, ˆB = A 21 A 22 [ Â ˆB ˆΣ = Ĉ ˆD [ B1 B 2 ] ], Ĉ = [ C 1 C 2 ], G = [ G G 22 for G = diag(σ 1,..., σ n ) = P = Q, G 1 = (σ 1,..., σ r ), G 2 = (σ r+1,..., σ N ), where σ i denotes the i-th Hankel singular values of the system for i = 1, 2,..., n. The reduced system of order r is [ ] A11 B Σ r = 1 D C 1 ]

22 Model Reduction for Unstable Linear Dynamical Systems Consider the linear dynamical system: ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) Suppose the system is unstable. We want to find a reduced model ẋ r (t) = A r x r (t) + B r u(t) y r (t) = C r x r (t) which approximates the full order system with some error measure. (VT) SIAM October 22, / 26

23 L 2 Systems L n 2 (R) = {x(t) Rn x(t) 2 dt < } Magruder, Beattie and Gugercin, 2010 showed the unstable system can be associated with a bounded map from L 2 (R) to itself. We can reduce the model with respect to the L 2 norm defined by H L2 = ( H(iω) 2 dω) 1/2 (VT) SIAM October 22, / 26

24 L 2 IRKA Split the original systems into two systems where one is strictly stable and the other is strictly unstable. Negate the unstable system Reduce each model separately using IRKA. Negate the part corresponding to the unstable part. Combine the reduced models. The error is determined component wise. (VT) SIAM October 22, / 26

25 System Transformation and Separation Let Σ = [ A B C 0 ] be an unstable system with no poles in the imaginary axis. Suppose T is a transformation such that [ ] TAT 1 A TB 1 0 B 1 CT 1 = 0 A 2 B 2 0 C 1 C 2 0 where A 1 is stable and A 2 is antistable. (VT) SIAM October 22, / 26

26 Observability and Reachability Gramians for Unstable Systems Let P 1, P 2, Q 1, Q 2 0 be solutions to the Lyapunov equations: A 1 P 1 + P 1 A T 1 + B 1 B T 1 = 0, A T 1 Q 1 + Q 1 A 1 + C T 1 C 1 = 0, ( A 2 )P 2 + P 1 ( A 2 ) T + B 2 B T 2 = 0, ( A 2 ) T Q 2 + Q 2 ( A 2 ) + C T 2 C 2 = 0. Zhou et al., 1999 showed P and Q can be computed as [ ] P = T 1 P1 0 T T 0 P 2 Q = T 1 [ Q1 0 0 Q 2 ] T T (VT) SIAM October 22, / 26

27 Truncation Recall the Hankel singular values are defined as σ i = λ i (PQ). P = Q = diag(σ 1,..., σ n ). Eliminate the states associated with the smallest singular values. (VT) SIAM October 22, / 26

28 Reduce Unstable Systems via IRKA What if we reduced an unstable system by applying IRKA directly? (VT) SIAM October 22, / 26

29 Reduce Unstable Systems via IRKA What if we reduced an unstable system by applying IRKA directly? While the algorithm may not converge, under certain conditions, the unstable poles are captured. Often, even if the poles are not captured very accurately, the stability is preserved. (VT) SIAM October 22, / 26

30 Pole Capture Initial Shifts Final Shifts (VT) SIAM October 22, / 26

31 Pole Capture Initial Shifts Final Shifts i i i i i i (VT) SIAM October 22, / 26

32 Comparisons of Algorithms r=12 L 2 IRKA L 2 IRKA Initialization Pole reflection Bal. truncation poles H 2 Relative error H Relative error r=12 IRKAfUS IRKAfUS Initialization Pole reflection Bal. truncation poles H 2 Relative error H Relative error r=12 Bal. Truncation L 2 IRKA Initialization - IRKAfUS poles H 2 Relative error H Relative error (VT) SIAM October 22, / 26

33 Conclusions and Future Work For unstable systems with few unstable poles, numerical simulations show IRKA captures the unstable poles. These obtained poles appear to be good initializations for L 2 IRKA. Investigate delay systems and develop techniques to reduce such systems. Consider second-order models and compare structure preserving algorithms with optimal ones such as IRKA. (VT) SIAM October 22, / 26

34 References S. Gugercin and C. Beattie (2014) Model Reduction by Rational Interpolation Model Reduction and Approximation for Complex Systems C. magruder, S. Gugercin and C. Beattie (2010) Rational Krylov Methods for Optimal L 2 Model Reduction 49th IEEE Conference on Decision Control S. Gugercin and C. Beattie (2014) Model Reduction by Rational Interpolation Model Reduction and Approximation for Complex Systems K. Zhou, G. Salomon and E. Wu (1999) Balanced Realization and Model Reduction for Unstable Systems Int. J. Robust Nonlinear Control S. Gugercin (2003) Projection Methods for Model Reduction of Large-Scale Dynamical Systems (PhD Thesis) Rice University (VT) SIAM October 22, / 26

35 Thank you! (VT) SIAM October 22, / 26

Iterative Rational Krylov Algorithm for Unstable Dynamical Systems and Generalized Coprime Factorizations

Iterative Rational Krylov Algorithm for Unstable Dynamical Systems and Generalized Coprime Factorizations Iterative Rational Krylov Algorithm for Unstable Dynamical Systems and Generalized Coprime Factorizations Klajdi Sinani Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University

More information

Approximation of the Linearized Boussinesq Equations

Approximation of the Linearized Boussinesq Equations Approximation of the Linearized Boussinesq Equations Alan Lattimer Advisors Jeffrey Borggaard Serkan Gugercin Department of Mathematics Virginia Tech SIAM Talk Series, Virginia Tech, April 22, 2014 Alan

More information

Model reduction for linear systems by balancing

Model reduction for linear systems by balancing Model reduction for linear systems by balancing Bart Besselink Jan C. Willems Center for Systems and Control Johann Bernoulli Institute for Mathematics and Computer Science University of Groningen, Groningen,

More information

Fluid flow dynamical model approximation and control

Fluid flow dynamical model approximation and control Fluid flow dynamical model approximation and control... a case-study on an open cavity flow C. Poussot-Vassal & D. Sipp Journée conjointe GT Contrôle de Décollement & GT MOSAR Frequency response of an

More information

BALANCING-RELATED MODEL REDUCTION FOR DATA-SPARSE SYSTEMS

BALANCING-RELATED MODEL REDUCTION FOR DATA-SPARSE SYSTEMS BALANCING-RELATED Peter Benner Professur Mathematik in Industrie und Technik Fakultät für Mathematik Technische Universität Chemnitz Computational Methods with Applications Harrachov, 19 25 August 2007

More information

L 2 -optimal model reduction for unstable systems using iterative rational

L 2 -optimal model reduction for unstable systems using iterative rational L 2 -optimal model reduction for unstable systems using iterative rational Krylov algorithm Caleb agruder, Christopher Beattie, Serkan Gugercin Abstract Unstable dynamical systems can be viewed from a

More information

Robust Multivariable Control

Robust Multivariable Control Lecture 2 Anders Helmersson anders.helmersson@liu.se ISY/Reglerteknik Linköpings universitet Today s topics Today s topics Norms Today s topics Norms Representation of dynamic systems Today s topics Norms

More information

Krylov-Subspace Based Model Reduction of Nonlinear Circuit Models Using Bilinear and Quadratic-Linear Approximations

Krylov-Subspace Based Model Reduction of Nonlinear Circuit Models Using Bilinear and Quadratic-Linear Approximations Krylov-Subspace Based Model Reduction of Nonlinear Circuit Models Using Bilinear and Quadratic-Linear Approximations Peter Benner and Tobias Breiten Abstract We discuss Krylov-subspace based model reduction

More information

Krylov Techniques for Model Reduction of Second-Order Systems

Krylov Techniques for Model Reduction of Second-Order Systems Krylov Techniques for Model Reduction of Second-Order Systems A Vandendorpe and P Van Dooren February 4, 2004 Abstract The purpose of this paper is to present a Krylov technique for model reduction of

More information

H 2 optimal model reduction - Wilson s conditions for the cross-gramian

H 2 optimal model reduction - Wilson s conditions for the cross-gramian H 2 optimal model reduction - Wilson s conditions for the cross-gramian Ha Binh Minh a, Carles Batlle b a School of Applied Mathematics and Informatics, Hanoi University of Science and Technology, Dai

More information

CME 345: MODEL REDUCTION

CME 345: MODEL REDUCTION CME 345: MODEL REDUCTION Balanced Truncation Charbel Farhat & David Amsallem Stanford University cfarhat@stanford.edu These slides are based on the recommended textbook: A.C. Antoulas, Approximation of

More information

Large-scale and infinite dimensional dynamical systems approximation

Large-scale and infinite dimensional dynamical systems approximation Large-scale and infinite dimensional dynamical systems approximation Igor PONTES DUFF PEREIRA Doctorant 3ème année - ONERA/DCSD Directeur de thèse: Charles POUSSOT-VASSAL Co-encadrant: Cédric SEREN 1 What

More information

Model Reduction of Inhomogeneous Initial Conditions

Model Reduction of Inhomogeneous Initial Conditions Model Reduction of Inhomogeneous Initial Conditions Caleb Magruder Abstract Our goal is to develop model reduction processes for linear dynamical systems with non-zero initial conditions. Standard model

More information

Model reduction of large-scale dynamical systems

Model reduction of large-scale dynamical systems Model reduction of large-scale dynamical systems Lecture III: Krylov approximation and rational interpolation Thanos Antoulas Rice University and Jacobs University email: aca@rice.edu URL: www.ece.rice.edu/

More information

Balanced Truncation 1

Balanced Truncation 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 2004: MODEL REDUCTION Balanced Truncation This lecture introduces balanced truncation for LTI

More information

Gramians of structured systems and an error bound for structure-preserving model reduction

Gramians of structured systems and an error bound for structure-preserving model reduction Gramians of structured systems and an error bound for structure-preserving model reduction D.C. Sorensen and A.C. Antoulas e-mail:{sorensen@rice.edu, aca@rice.edu} September 3, 24 Abstract In this paper

More information

Chris Beattie and Serkan Gugercin

Chris Beattie and Serkan Gugercin Krylov-based model reduction of second-order systems with proportional damping Chris Beattie and Serkan Gugercin Department of Mathematics, Virginia Tech, USA 44th IEEE Conference on Decision and Control

More information

Problem set 5 solutions 1

Problem set 5 solutions 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 24: MODEL REDUCTION Problem set 5 solutions Problem 5. For each of the stetements below, state

More information

Stability preserving post-processing methods applied in the Loewner framework

Stability preserving post-processing methods applied in the Loewner framework Ion Victor Gosea and Athanasios C. Antoulas (Jacobs University Bremen and Rice University May 11, 2016 Houston 1 / 20 Stability preserving post-processing methods applied in the Loewner framework Ion Victor

More information

Model reduction of interconnected systems

Model reduction of interconnected systems Model reduction of interconnected systems A Vandendorpe and P Van Dooren 1 Introduction Large scale linear systems are often composed of subsystems that interconnect to each other Instead of reducing the

More information

Model reduction of large-scale systems by least squares

Model reduction of large-scale systems by least squares Model reduction of large-scale systems by least squares Serkan Gugercin Department of Mathematics, Virginia Tech, Blacksburg, VA, USA gugercin@mathvtedu Athanasios C Antoulas Department of Electrical and

More information

FEL3210 Multivariable Feedback Control

FEL3210 Multivariable Feedback Control FEL3210 Multivariable Feedback Control Lecture 8: Youla parametrization, LMIs, Model Reduction and Summary [Ch. 11-12] Elling W. Jacobsen, Automatic Control Lab, KTH Lecture 8: Youla, LMIs, Model Reduction

More information

3 Gramians and Balanced Realizations

3 Gramians and Balanced Realizations 3 Gramians and Balanced Realizations In this lecture, we use an optimization approach to find suitable realizations for truncation and singular perturbation of G. It turns out that the recommended realizations

More information

An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems

An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems Serkan Gugercin Department of Mathematics, Virginia Tech., Blacksburg, VA, USA, 24061-0123 gugercin@math.vt.edu

More information

An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems

An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems Available online at www.sciencedirect.com Linear Algebra and its Applications 428 (2008) 1964 1986 www.elsevier.com/locate/laa An iterative SVD-Krylov based method for model reduction of large-scale dynamical

More information

Implicit Volterra Series Interpolation for Model Reduction of Bilinear Systems

Implicit Volterra Series Interpolation for Model Reduction of Bilinear Systems Max Planck Institute Magdeburg Preprints Mian Ilyas Ahmad Ulrike Baur Peter Benner Implicit Volterra Series Interpolation for Model Reduction of Bilinear Systems MAX PLANCK INSTITUT FÜR DYNAMIK KOMPLEXER

More information

MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS

MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS MODEL REDUCTION BY A CROSS-GRAMIAN APPROACH FOR DATA-SPARSE SYSTEMS Ulrike Baur joint work with Peter Benner Mathematics in Industry and Technology Faculty of Mathematics Chemnitz University of Technology

More information

Structure-preserving tangential interpolation for model reduction of port-hamiltonian Systems

Structure-preserving tangential interpolation for model reduction of port-hamiltonian Systems Structure-preserving tangential interpolation for model reduction of port-hamiltonian Systems Serkan Gugercin a, Rostyslav V. Polyuga b, Christopher Beattie a, and Arjan van der Schaft c arxiv:.3485v2

More information

H 2 -optimal model reduction of MIMO systems

H 2 -optimal model reduction of MIMO systems H 2 -optimal model reduction of MIMO systems P. Van Dooren K. A. Gallivan P.-A. Absil Abstract We consider the problem of approximating a p m rational transfer function Hs of high degree by another p m

More information

Interpolatory Model Reduction of Large-scale Dynamical Systems

Interpolatory Model Reduction of Large-scale Dynamical Systems Interpolatory Model Reduction of Large-scale Dynamical Systems Athanasios C. Antoulas, Christopher A. Beattie, and Serkan Gugercin Abstract Large-scale simulations play a crucial role in the study of a

More information

H 2 optimal model approximation by structured time-delay reduced order models

H 2 optimal model approximation by structured time-delay reduced order models H 2 optimal model approximation by structured time-delay reduced order models I. Pontes Duff, Charles Poussot-Vassal, C. Seren 27th September, GT MOSAR and GT SAR meeting 200 150 100 50 0 50 100 150 200

More information

Linear and Nonlinear Matrix Equations Arising in Model Reduction

Linear and Nonlinear Matrix Equations Arising in Model Reduction International Conference on Numerical Linear Algebra and its Applications Guwahati, January 15 18, 2013 Linear and Nonlinear Matrix Equations Arising in Model Reduction Peter Benner Tobias Breiten Max

More information

An Interpolation-Based Approach to the Optimal H Model Reduction

An Interpolation-Based Approach to the Optimal H Model Reduction An Interpolation-Based Approach to the Optimal H Model Reduction Garret M. Flagg Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment

More information

DECENTRALIZED CONTROL DESIGN USING LMI MODEL REDUCTION

DECENTRALIZED CONTROL DESIGN USING LMI MODEL REDUCTION Journal of ELECTRICAL ENGINEERING, VOL. 58, NO. 6, 2007, 307 312 DECENTRALIZED CONTROL DESIGN USING LMI MODEL REDUCTION Szabolcs Dorák Danica Rosinová Decentralized control design approach based on partial

More information

Chapter 6 Balanced Realization 6. Introduction One popular approach for obtaining a minimal realization is known as Balanced Realization. In this appr

Chapter 6 Balanced Realization 6. Introduction One popular approach for obtaining a minimal realization is known as Balanced Realization. In this appr Lectures on ynamic Systems and Control Mohammed ahleh Munther A. ahleh George Verghese epartment of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 6 Balanced

More information

Institut für Mathematik

Institut für Mathematik U n i v e r s i t ä t A u g s b u r g Institut für Mathematik Serkan Gugercin, Tatjana Stykel, Sarah Wyatt Model Reduction of Descriptor Systems by Interpolatory Projection Methods Preprint Nr. 3/213 29.

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 22: Balanced Realization Readings: DDV, Chapter 26 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology April 27, 2011 E. Frazzoli

More information

A Symmetry Approach for Balanced Truncation of Positive Linear Systems

A Symmetry Approach for Balanced Truncation of Positive Linear Systems A Symmetry Approach for Balanced Truncation of Positive Linear Systems Grussler, Christian; Damm, Tobias Published in: IEEE Control Systems Society Conference 2012, Maui 2012 Link to publication Citation

More information

ME 234, Lyapunov and Riccati Problems. 1. This problem is to recall some facts and formulae you already know. e Aτ BB e A τ dτ

ME 234, Lyapunov and Riccati Problems. 1. This problem is to recall some facts and formulae you already know. e Aτ BB e A τ dτ ME 234, Lyapunov and Riccati Problems. This problem is to recall some facts and formulae you already know. (a) Let A and B be matrices of appropriate dimension. Show that (A, B) is controllable if and

More information

Comparison of Model Reduction Methods with Applications to Circuit Simulation

Comparison of Model Reduction Methods with Applications to Circuit Simulation Comparison of Model Reduction Methods with Applications to Circuit Simulation Roxana Ionutiu, Sanda Lefteriu, and Athanasios C. Antoulas Department of Electrical and Computer Engineering, Rice University,

More information

An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems

An iterative SVD-Krylov based method for model reduction of large-scale dynamical systems Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005 Seville, Spain, December 12-15, 2005 WeC10.4 An iterative SVD-Krylov based method for model reduction

More information

Module 07 Controllability and Controller Design of Dynamical LTI Systems

Module 07 Controllability and Controller Design of Dynamical LTI Systems Module 07 Controllability and Controller Design of Dynamical LTI Systems Ahmad F. Taha EE 5143: Linear Systems and Control Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ataha October

More information

Clustering-Based Model Order Reduction for Multi-Agent Systems with General Linear Time-Invariant Agents

Clustering-Based Model Order Reduction for Multi-Agent Systems with General Linear Time-Invariant Agents Max Planck Institute Magdeburg Preprints Petar Mlinarić Sara Grundel Peter Benner Clustering-Based Model Order Reduction for Multi-Agent Systems with General Linear Time-Invariant Agents MAX PLANCK INSTITUT

More information

Model Reduction using a Frequency-Limited H 2 -Cost

Model Reduction using a Frequency-Limited H 2 -Cost Technical report from Automatic Control at Linköpings universitet Model Reduction using a Frequency-Limited H 2 -Cost Daniel Petersson, Johan Löfberg Division of Automatic Control E-mail: petersson@isy.liu.se,

More information

arxiv: v1 [math.na] 12 Jan 2012

arxiv: v1 [math.na] 12 Jan 2012 Interpolatory Weighted-H 2 Model Reduction Branimir Anić, Christopher A. Beattie, Serkan Gugercin, and Athanasios C. Antoulas Preprint submitted to Automatica, 2 January 22 arxiv:2.2592v [math.na] 2 Jan

More information

Optimal Approximation of Dynamical Systems with Rational Krylov Methods. Department of Mathematics, Virginia Tech, USA

Optimal Approximation of Dynamical Systems with Rational Krylov Methods. Department of Mathematics, Virginia Tech, USA Optimal Approximation of Dynamical Systems with Rational Krylov Methods Serkan Güǧercin Department of Mathematics, Virginia Tech, USA Chris Beattie and Virginia Tech. jointly with Thanos Antoulas Rice

More information

Model Reduction for Linear Dynamical Systems

Model Reduction for Linear Dynamical Systems Summer School on Numerical Linear Algebra for Dynamical and High-Dimensional Problems Trogir, October 10 15, 2011 Model Reduction for Linear Dynamical Systems Peter Benner Max Planck Institute for Dynamics

More information

Technische Universität Berlin

Technische Universität Berlin ; Technische Universität Berlin Institut für Mathematik arxiv:1610.03262v2 [cs.sy] 2 Jan 2017 Model Reduction for Large-scale Dynamical Systems with Inhomogeneous Initial Conditions Christopher A. Beattie

More information

arxiv: v1 [cs.sy] 17 Nov 2015

arxiv: v1 [cs.sy] 17 Nov 2015 Optimal H model approximation based on multiple input/output delays systems I. Pontes Duff a, C. Poussot-Vassal b, C. Seren b a ISAE SUPAERO & ONERA b ONERA - The French Aerospace Lab, F-31055 Toulouse,

More information

Chapter 6 Balanced Realization 6. Introduction One popular approach for obtaining a minimal realization is known as Balanced Realization. In this appr

Chapter 6 Balanced Realization 6. Introduction One popular approach for obtaining a minimal realization is known as Balanced Realization. In this appr Lectures on ynamic Systems and Control Mohammed ahleh Munther A. ahleh George Verghese epartment of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 6 Balanced

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science : Dynamic Systems Spring 2011

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science : Dynamic Systems Spring 2011 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.4: Dynamic Systems Spring Homework Solutions Exercise 3. a) We are given the single input LTI system: [

More information

Gramians based model reduction for hybrid switched systems

Gramians based model reduction for hybrid switched systems Gramians based model reduction for hybrid switched systems Y. Chahlaoui Younes.Chahlaoui@manchester.ac.uk Centre for Interdisciplinary Computational and Dynamical Analysis (CICADA) School of Mathematics

More information

Upper and Lower Bounds of Frequency Interval Gramians for a Class of Perturbed Linear Systems Shaker, Hamid Reza

Upper and Lower Bounds of Frequency Interval Gramians for a Class of Perturbed Linear Systems Shaker, Hamid Reza Aalborg Universitet Upper and Lower Bounds of Frequency Interval Gramians for a Class of Perturbed Linear Systems Shaker, Hamid Reza Published in: 7th IFAC Symposium on Robust Control Design DOI (link

More information

arxiv: v1 [math.oc] 29 Apr 2017

arxiv: v1 [math.oc] 29 Apr 2017 BALANCED TRUNCATION MODEL ORDER REDUCTION FOR QUADRATIC-BILINEAR CONTROL SYSTEMS PETER BENNER AND PAWAN GOYAL arxiv:175.16v1 [math.oc] 29 Apr 217 Abstract. We discuss balanced truncation model order reduction

More information

Rational Krylov Methods for Model Reduction of Large-scale Dynamical Systems

Rational Krylov Methods for Model Reduction of Large-scale Dynamical Systems Rational Krylov Methods for Model Reduction of Large-scale Dynamical Systems Serkan Güǧercin Department of Mathematics, Virginia Tech, USA Aerospace Computational Design Laboratory, Dept. of Aeronautics

More information

Model reduction of coupled systems

Model reduction of coupled systems Model reduction of coupled systems Tatjana Stykel Technische Universität Berlin ( joint work with Timo Reis, TU Kaiserslautern ) Model order reduction, coupled problems and optimization Lorentz Center,

More information

Order Reduction for Large Scale Finite Element Models: a Systems Perspective

Order Reduction for Large Scale Finite Element Models: a Systems Perspective Order Reduction for Large Scale Finite Element Models: a Systems Perspective William Gressick, John T. Wen, Jacob Fish ABSTRACT Large scale finite element models are routinely used in design and optimization

More information

Computing Transfer Function Dominant Poles of Large Second-Order Systems

Computing Transfer Function Dominant Poles of Large Second-Order Systems Computing Transfer Function Dominant Poles of Large Second-Order Systems Joost Rommes Mathematical Institute Utrecht University rommes@math.uu.nl http://www.math.uu.nl/people/rommes joint work with Nelson

More information

Inexact Solves in Interpolatory Model Reduction

Inexact Solves in Interpolatory Model Reduction Inexact Solves in Interpolatory Model Reduction Sarah Wyatt Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the

More information

Discrete and continuous dynamic systems

Discrete and continuous dynamic systems Discrete and continuous dynamic systems Bounded input bounded output (BIBO) and asymptotic stability Continuous and discrete time linear time-invariant systems Katalin Hangos University of Pannonia Faculty

More information

AN OVERVIEW OF MODEL REDUCTION TECHNIQUES APPLIED TO LARGE-SCALE STRUCTURAL DYNAMICS AND CONTROL MOTIVATING EXAMPLE INVERTED PENDULUM

AN OVERVIEW OF MODEL REDUCTION TECHNIQUES APPLIED TO LARGE-SCALE STRUCTURAL DYNAMICS AND CONTROL MOTIVATING EXAMPLE INVERTED PENDULUM Controls Lab AN OVERVIEW OF MODEL REDUCTION TECHNIQUES APPLIED TO LARGE-SCALE STRUCTURAL DYNAMICS AND CONTROL Eduardo Gildin (UT ICES and Rice Univ.) with Thanos Antoulas (Rice ECE) Danny Sorensen (Rice

More information

Model reduction of large-scale systems

Model reduction of large-scale systems Model reduction of large-scale systems An overview and some new results Thanos Antoulas Rice University email: aca@rice.edu URL: www.ece.rice.edu/ aca LinSys2008, Sde Boker, 15-19 September 2008 Thanos

More information

Downloaded 05/27/14 to Redistribution subject to SIAM license or copyright; see

Downloaded 05/27/14 to Redistribution subject to SIAM license or copyright; see SIAM J. SCI. COMPUT. Vol. 35, No. 5, pp. B1010 B1033 c 2013 Society for Industrial and Applied Mathematics MODEL REDUCTION OF DESCRIPTOR SYSTEMS BY INTERPOLATORY PROJECTION METHODS SERKAN GUGERCIN, TATJANA

More information

Lecture Note #6 (Chap.10)

Lecture Note #6 (Chap.10) System Modeling and Identification Lecture Note #6 (Chap.) CBE 7 Korea University Prof. Dae Ryook Yang Chap. Model Approximation Model approximation Simplification, approximation and order reduction of

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 12: I/O Stability Readings: DDV, Chapters 15, 16 Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology March 14, 2011 E. Frazzoli

More information

Comparison of methods for parametric model order reduction of instationary problems

Comparison of methods for parametric model order reduction of instationary problems Max Planck Institute Magdeburg Preprints Ulrike Baur Peter Benner Bernard Haasdonk Christian Himpe Immanuel Maier Mario Ohlberger Comparison of methods for parametric model order reduction of instationary

More information

Adaptive rational Krylov subspaces for large-scale dynamical systems. V. Simoncini

Adaptive rational Krylov subspaces for large-scale dynamical systems. V. Simoncini Adaptive rational Krylov subspaces for large-scale dynamical systems V. Simoncini Dipartimento di Matematica, Università di Bologna valeria@dm.unibo.it joint work with Vladimir Druskin, Schlumberger Doll

More information

ECE504: Lecture 8. D. Richard Brown III. Worcester Polytechnic Institute. 28-Oct-2008

ECE504: Lecture 8. D. Richard Brown III. Worcester Polytechnic Institute. 28-Oct-2008 ECE504: Lecture 8 D. Richard Brown III Worcester Polytechnic Institute 28-Oct-2008 Worcester Polytechnic Institute D. Richard Brown III 28-Oct-2008 1 / 30 Lecture 8 Major Topics ECE504: Lecture 8 We are

More information

Gramian Based Model Reduction of Large-scale Dynamical Systems

Gramian Based Model Reduction of Large-scale Dynamical Systems Gramian Based Model Reduction of Large-scale Dynamical Systems Paul Van Dooren Université catholique de Louvain Center for Systems Engineering and Applied Mechanics B-1348 Louvain-la-Neuve, Belgium vdooren@csam.ucl.ac.be

More information

Case study: Approximations of the Bessel Function

Case study: Approximations of the Bessel Function Case study: Approximations of the Bessel Function DS Karachalios, IV Gosea, Q Zhang, AC Antoulas May 5, 218 arxiv:181339v1 [mathna] 31 Dec 217 Abstract The purpose of this note is to compare various approximation

More information

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers

Model order reduction of large-scale dynamical systems with Jacobi-Davidson style eigensolvers MAX PLANCK INSTITUTE International Conference on Communications, Computing and Control Applications March 3-5, 2011, Hammamet, Tunisia. Model order reduction of large-scale dynamical systems with Jacobi-Davidson

More information

Problem Set 5 Solutions 1

Problem Set 5 Solutions 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Problem Set 5 Solutions The problem set deals with Hankel

More information

Fourier Model Reduction for Large-Scale Applications in Computational Fluid Dynamics

Fourier Model Reduction for Large-Scale Applications in Computational Fluid Dynamics Fourier Model Reduction for Large-Scale Applications in Computational Fluid Dynamics K. Willcox and A. Megretski A new method, Fourier model reduction (FMR), for obtaining stable, accurate, low-order models

More information

Weighted balanced realization and model reduction for nonlinear systems

Weighted balanced realization and model reduction for nonlinear systems Weighted balanced realization and model reduction for nonlinear systems Daisuke Tsubakino and Kenji Fujimoto Abstract In this paper a weighted balanced realization and model reduction for nonlinear systems

More information

Order Reduction of a Distributed Parameter PEM Fuel Cell Model

Order Reduction of a Distributed Parameter PEM Fuel Cell Model Order Reduction of a Distributed Parameter PEM Fuel Cell Model María Sarmiento Carnevali 1 Carles Batlle Arnau 2 Maria Serra Prat 2,3 Immaculada Massana Hugas 2 (1) Intelligent Energy Limited, (2) Universitat

More information

Passive Interconnect Macromodeling Via Balanced Truncation of Linear Systems in Descriptor Form

Passive Interconnect Macromodeling Via Balanced Truncation of Linear Systems in Descriptor Form Passive Interconnect Macromodeling Via Balanced Truncation of Linear Systems in Descriptor Form Boyuan Yan, Sheldon X.-D. Tan,PuLiu and Bruce McGaughy Department of Electrical Engineering, University of

More information

Parametric Model Order Reduction for Linear Control Systems

Parametric Model Order Reduction for Linear Control Systems Parametric Model Order Reduction for Linear Control Systems Peter Benner HRZZ Project Control of Dynamical Systems (ConDys) second project meeting Zagreb, 2 3 November 2017 Outline 1. Introduction 2. PMOR

More information

SiMpLIfy: A Toolbox for Structured Model Reduction

SiMpLIfy: A Toolbox for Structured Model Reduction SiMpLIfy: A Toolbox for Structured Model Reduction Martin Biel, Farhad Farokhi, and Henrik Sandberg ACCESS Linnaeus Center, KTH Royal Institute of Technology Department of Electrical and Electronic Engineering,

More information

Balancing of Lossless and Passive Systems

Balancing of Lossless and Passive Systems Balancing of Lossless and Passive Systems Arjan van der Schaft Abstract Different balancing techniques are applied to lossless nonlinear systems, with open-loop balancing applied to their scattering representation.

More information

Passivity Preserving Model Reduction for Large-Scale Systems. Peter Benner.

Passivity Preserving Model Reduction for Large-Scale Systems. Peter Benner. Passivity Preserving Model Reduction for Large-Scale Systems Peter Benner Mathematik in Industrie und Technik Fakultät für Mathematik Sonderforschungsbereich 393 S N benner@mathematik.tu-chemnitz.de SIMULATION

More information

Hankel Optimal Model Reduction 1

Hankel Optimal Model Reduction 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 2004: MODEL REDUCTION Hankel Optimal Model Reduction 1 This lecture covers both the theory and

More information

Inexact Solves in Krylov-based Model Reduction

Inexact Solves in Krylov-based Model Reduction Inexact Solves in Krylov-based Model Reduction Christopher A. Beattie and Serkan Gugercin Abstract We investigate the use of inexact solves in a Krylov-based model reduction setting and present the resulting

More information

Moving Frontiers in Model Reduction Using Numerical Linear Algebra

Moving Frontiers in Model Reduction Using Numerical Linear Algebra Using Numerical Linear Algebra Max-Planck-Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Group Magdeburg, Germany Technische Universität Chemnitz

More information

Identification Methods for Structural Systems

Identification Methods for Structural Systems Prof. Dr. Eleni Chatzi System Stability Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can be defined from

More information

Problem Set 4 Solution 1

Problem Set 4 Solution 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.245: MULTIVARIABLE CONTROL SYSTEMS by A. Megretski Problem Set 4 Solution Problem 4. For the SISO feedback

More information

Model reduction via tangential interpolation

Model reduction via tangential interpolation Model reduction via tangential interpolation K. Gallivan, A. Vandendorpe and P. Van Dooren May 14, 2002 1 Introduction Although most of the theory presented in this paper holds for both continuous-time

More information

A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control

A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control B. Besselink a, A. Lutowska b, U. Tabak c, N. van de Wouw a, H. Nijmeijer a, M.E. Hochstenbach

More information

Zentrum für Technomathematik

Zentrum für Technomathematik Zentrum für Technomathematik Fachbereich 3 Mathematik und Informatik h 2 -norm optimal model reduction for large-scale discrete dynamical MIMO systems Angelika Bunse-Gerstner Dorota Kubalińska Georg Vossen

More information

MODEL REDUCTION OF SWITCHED SYSTEMS BASED ON SWITCHING GENERALIZED GRAMIANS. Received May 2011; revised September 2011

MODEL REDUCTION OF SWITCHED SYSTEMS BASED ON SWITCHING GENERALIZED GRAMIANS. Received May 2011; revised September 2011 International Journal of Innovative Computing, Information and Control ICIC International c 2012 ISSN 1349-4198 Volume 8, Number 7(B), July 2012 pp. 5025 5044 MODEL REDUCTION OF SWITCHED SYSTEMS BASED

More information

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli

Control Systems I. Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback. Readings: Emilio Frazzoli Control Systems I Lecture 4: Diagonalization, Modal Analysis, Intro to Feedback Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 13, 2017 E. Frazzoli (ETH)

More information

Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

More information

DESIGN OF OBSERVERS FOR SYSTEMS WITH SLOW AND FAST MODES

DESIGN OF OBSERVERS FOR SYSTEMS WITH SLOW AND FAST MODES DESIGN OF OBSERVERS FOR SYSTEMS WITH SLOW AND FAST MODES by HEONJONG YOO A thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the

More information

Fast Frequency Response Analysis using Model Order Reduction

Fast Frequency Response Analysis using Model Order Reduction Fast Frequency Response Analysis using Model Order Reduction Peter Benner EU MORNET Exploratory Workshop Applications of Model Order Reduction Methods in Industrial Research and Development Luxembourg,

More information

System Identification by Nuclear Norm Minimization

System Identification by Nuclear Norm Minimization Dept. of Information Engineering University of Pisa (Italy) System Identification by Nuclear Norm Minimization eng. Sergio Grammatico grammatico.sergio@gmail.com Class of Identification of Uncertain Systems

More information

BALANCING AS A MOMENT MATCHING PROBLEM

BALANCING AS A MOMENT MATCHING PROBLEM BALANCING AS A MOMENT MATCHING PROBLEM T.C. IONESCU, J.M.A. SCHERPEN, O.V. IFTIME, AND A. ASTOLFI Abstract. In this paper, we treat a time-domain moment matching problem associated to balanced truncation.

More information

Krylov Subspace Methods for Nonlinear Model Reduction

Krylov Subspace Methods for Nonlinear Model Reduction MAX PLANCK INSTITUT Conference in honour of Nancy Nichols 70th birthday Reading, 2 3 July 2012 Krylov Subspace Methods for Nonlinear Model Reduction Peter Benner and Tobias Breiten Max Planck Institute

More information

Module 4 : Laplace and Z Transform Problem Set 4

Module 4 : Laplace and Z Transform Problem Set 4 Module 4 : Laplace and Z Transform Problem Set 4 Problem 1 The input x(t) and output y(t) of a causal LTI system are related to the block diagram representation shown in the figure. (a) Determine a differential

More information

Realization-independent H 2 -approximation

Realization-independent H 2 -approximation Realization-independent H -approximation Christopher Beattie and Serkan Gugercin Abstract Iterative Rational Krylov Algorithm () of [] is an effective tool for tackling the H -optimal model reduction problem.

More information

6 Optimal Model Order Reduction in the Hankel Norm

6 Optimal Model Order Reduction in the Hankel Norm 6 Optimal Model Order Reduction in the Hankel Norm In this lecture, we discuss optimal model reduction in the Hankel norm. There is no known solution to the optimal model reduction problem in the H -norm.

More information

Model Order Reduction of Continuous LTI Large Descriptor System Using LRCF-ADI and Square Root Balanced Truncation

Model Order Reduction of Continuous LTI Large Descriptor System Using LRCF-ADI and Square Root Balanced Truncation , July 1-3, 15, London, U.K. Model Order Reduction of Continuous LI Large Descriptor System Using LRCF-ADI and Square Root Balanced runcation Mehrab Hossain Likhon, Shamsil Arifeen, and Mohammad Sahadet

More information