Resonance In the Solar System


 Maria Lane
 1 years ago
 Views:
Transcription
1 Resonance In the Solar System Steve Bache UNC Wilmington Dept. of Physics and Physical Oceanography Advisor : Dr. Russ Herman Spring 2012
2 Goal numerically investigate the dynamics of the asteroid belt relate old ideas to new methods reproduce known results
3 History The role of science: make sense of the world perceive order out of apparent randomness
4 History The role of science: make sense of the world perceive order out of apparent randomness the sky and heavenly bodies
5 Anaximander ( BC) Greek philosopher, scientist stars, moon, sun 1:2:3 Figure: Anaximander s Model
6 Pythagoras ( BC) Mathematician, philosopher, started a religion all heavenly bodies at whole number ratios Harmony of the spheres Figure: Pythagorean Model
7 Tycho Brahe ( ) Danish astronomer, alchemist accurate astronomical observations, no telescope importance of data collection
8 Johannes Kepler ( ) Brahe s assistant Used detailed data provided by Brahe Observations led to Laws of Planetary Motion
9 Johannes Kepler ( ) Brahe s assistant Used detailed data provided by Brahe Observations led to Laws of Planetary Motion orbits are ellipses equal area in equal time T 2 a 3
10 Kepler s Model Astrologer, Harmonices Mundi Used empirical data to formulate laws Figure: Kepler s Model
11 Isaac Newton ( ) religious, yet desired a physical mechanism to explain Kepler s laws contributions to mathematics and science Principia almost entirety of an undergraduate physics degree Law of Universal Gravitation F 12 = G m 1m 2 r 12 2 ˆr 12.
12 Resonance Transition from ratios/ integer spacing to more physical description, resonance plays a key role in celestial mechanics
13 Resonance Transition from ratios/ integer spacing to more physical description, resonance plays a key role in celestial mechanics Commensurability The property of two orbiting objects, such as planets, satellites, or asteroids, whose orbital periods are in a rational proportion.
14 Resonance Commensurability The property of two orbiting objects, such as planets, satellites, or asteroids, whose orbital periods are in a rational proportion. Resonance Orbital resonances occur when the mean motions of two or more bodies are related by close to an integer ratio of their orbital periods
15 Examples PlutoNeptune 2:3 GanymedeEuropaIo 1:2:4
16 Examples Cassini division in Saturn s rings 1:2 Resonance with Mimas
17 Kirkwood Gaps Daniel Kirkwood (1886)
18 Kirkwood Gaps Commensurability in the orbital periods cause an ejection by Jupiter explanation provided by Kirkwood, using 100 asteroids now thought to exhibit chaotic change in eccentricity
19 My Goal To create a simulation of the interactions of Jupiter, the Sun, and test asteroids Integrate Newton s equations of motion in MATLAB over a large time span ( 1MY )
20 Requirements 1 an idea for what causes orbital resonance 2 an appropriate integrating scheme 3 initial conditions for all bodies being considered
21 Requirements 1 an idea for what causes orbital resonance 2 an appropriate integrating scheme 3 initial conditions for all bodies being considered Start with the Kepler problem
22 Kepler Problem The problem of two bodies interacting only by a central force is known as the Kepler Problem Also known as the 2body problem
23 Kepler Problem m 1 r 1 = G m 1m 2 r 2 12 m 2 r 2 = G m 1m 2 r 2 12 = G m 1m 2 (r 1 r 2 ) r12 3 = G m 1m 2 (r 2 r 1 ) r12 3 Center of Mass is stationary/ moves at constant velocity
24 Classic treatment r 2 r 1 = r r + µ r r 3 = 0 G(m 1 + m 2 ) = µ
25 Classic treatment Considering motion of m 2 with respect to m 1 gives: r r = 0, which, integrating once, gives r ṙ = h This implies that the motion in the twobody problem lies in a plane. Treat this relative motion in polar coordinates (r,θ).
26 Polar form Using, r = rˆr ṙ = rˆr + r θˆθ r = ( r r θ)ˆr + [ ] 1 d r dt (r 2 θ) ˆθ, one finds the solution: r(θ) = p 1 + e cos(θ), where p = h2 µ.
27 Elliptical Orbit Figure: Axes of an ellipse, Eccentricity = c a
28 Kepler s Laws 1 The motion of m 2 is an ellipse with m 1 at one focus 2 da dt = h 2 = constant Figure: Kepler s 2nd Law
29 Kepler s third law From Kepler s second law, we have da dt = h 2. area of ellipse = A = πab τ = A da dt 3 τ 2 = 4π2 a 3 µ, or τ 2 a 3.
30 NBody Problem no analytical solutions for N > 2 computational methods Euler s method, RungeKutta
31 NBody Problem no analytical solutions for N > 2 computational methods Euler s method, RungeKutta need a better method
32 System N bodies  Sun, Jupiter, asteroids centralized force kinetic and potential energies independent Hamiltonian system
33 Hamiltonian Formulation H(q, p) = T (p) + U(q) q = H p ṗ = H q
34 NBody Hamiltonian Hamiltonian is separable, i.e. H = H(q, p, t) = T (p) + U(q) T = 1 2 n p 2 i m i i=1 U = N i 1 i=2 j=1 Gm i m j q 1 q j
35 NBody Hamiltonian from Hamilton equations: q i = pi H = p i m i ṗ i = qi H = Gm i n j i m j (q i q j ) q i q j 3
36 Numerical Scheme best approach symplectic integrator designed for solutions to Hamiltonian systems preserves volume in phase space
37 Derivation To derive the simplectic integrator to be used, compose Euler method map q i+1 = q i + dt pi H with its adjoint p i+1 = p i dt qi+1 H p i+1 = p i dt qi H q i+1 = q i + dt pi+1 H by introducing a half time step i of size dt 2.
38 Derivation New integrating scheme is now q i+ 1 2 = q i + dt 2 p i H p i+1 = p i dt qi+ 1 2 H q i+1 = q i+ 1 + dt 2 2 p i+1 H.
39 Leapfrog Algorithm additional half timestep transforms Euler s method to symplectic integrator more stable over long integrations angular momentum is preserved explicitly
40 Leapfrog Algorithm additional half timestep transforms Euler s method to symplectic integrator more stable over long integrations angular momentum is preserved explicitly a simple test of the Leapfrog integrator
41 Leapfrog Test Figure: Theoretical Solution
42 Leapfrog Test Figure: Numerical Solution
43 So far... semimajor axis/ orbital period relationship necessary for resonance appropriate integrating scheme Unresolved... Initial conditions for Sun, Jupiter, asteroids
44 Initial Conditions Positions sun at origin Jupiter at aphelion asteroids at perihelion Velocities (from ṙ ṙ) [ 2 v 2 = µ r 1 ] a
45 Model Integrate orbits of the Sun, Jupiter, and five asteroids range of initial semimajor axes, e = 0.15 initial postions Sun at origin Jupiter at aphelion asteroids at perihelion calculate eccentricities and semimajor axis
46 Results Figure: 3:1 Resonance  10K Jupiter Years  t = days
47 Results Figure: 3:1 Resonance  10K Jupiter Years  t = days
48 Results Figure: 3:1 Resonance  100K Jupiter Years  t = days
49 Results Figure: 3:1 Resonance  100K Jupiter Years  t = days
50 Results Figure: 3:1 Resonance  100K 200K Jupiter Years  t = days
51 Results Figure: 3:1 Resonance  100K 200K Jupiter Years  t = days
52 Further Abstraction
53 Conclusion resonances play a key role unite prescientific revolution modern science increased computational power insights into development of solar system
54 References 1 Meteorites may follow a chaotic route to Earth, Wisdom, Nature 315, (27 June 1985) 2 The origin of the Kirkwood gaps  A mapping for asteroidal motion near the 3/1 commensurability, Wisdom, Astronomical Journal, vol 87, Mar Numerical Investigation of Chaotic Motion in the Asteroid Belt, Danya Rose, University of Sydney Honours Thesis, November Motion of Asteroids at the Kirkwood Gaps, Makoto Yoshikawa, Icarus, Vol. 87, The role of chaotic resonances in the Solar System, N. Murray and M. Holman, Nature, vol. 410, 12 April Introduction to Celestial Mechanics, Jean Kovalevsky, D. Reidel, Classical Mechanics, John R. Taylor
Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits. Planetary Motion
Physics Unit 7: Circular Motion, Universal Gravitation, and Satellite Orbits Planetary Motion Geocentric Models Many people prior to the 1500 s viewed the! Earth and the solar system using a! geocentric
More informationObservational Astronomy  Lecture 4 Orbits, Motions, Kepler s and Newton s Laws
Observational Astronomy  Lecture 4 Orbits, Motions, Kepler s and Newton s Laws Craig Lage New York University  Department of Physics craig.lage@nyu.edu February 24, 2014 1 / 21 Tycho Brahe s Equatorial
More informationKEPLER S LAWS OF PLANETARY MOTION
KEPLER S LAWS OF PLANETARY MOTION In the early 1600s, Johannes Kepler culminated his analysis of the extensive data taken by Tycho Brahe and published his three laws of planetary motion, which we know
More informationCelestial Mechanics and Orbital Motions. Kepler s Laws Newton s Laws Tidal Forces
Celestial Mechanics and Orbital Motions Kepler s Laws Newton s Laws Tidal Forces Tycho Brahe (15461601) Foremost astronomer after the death of Copernicus. King Frederick II of Denmark set him up at Uraniborg,
More informationJohannes Kepler ( ) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it!
Johannes Kepler (15711630) German Mathematician and Astronomer Passionately convinced of the rightness of the Copernican view. Set out to prove it! Kepler s Life Work Kepler sought a unifying principle
More information18. Kepler as a young man became the assistant to A) Nicolaus Copernicus. B) Ptolemy. C) Tycho Brahe. D) Sir Isaac Newton.
Name: Date: 1. The word planet is derived from a Greek term meaning A) bright nighttime object. B) astrological sign. C) wanderer. D) nontwinkling star. 2. The planets that were known before the telescope
More informationChapter 1 The Copernican Revolution
Chapter 1 The Copernican Revolution The Horse Head nebula in the Orion constellation (Reading assignment: Chapter 1) Learning Outcomes How the geocentric model accounts for the retrograde motion of planets?
More informationSOLAR SYSTEM 2019 SAMPLE EXAM
SOLAR SYSTEM 2019 SAMPLE EXAM Team Name: Team #: No calculators are allowed. All questions are of equal weight unless otherwise noted. Turn in all materials when you have completed the test! Make sure
More informationLecture 13. Gravity in the Solar System
Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws
More informationGravitation and the Waltz of the Planets
Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets
More informationGravitation and the Waltz of the Planets. Chapter Four
Gravitation and the Waltz of the Planets Chapter Four Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets
More informationSection 37 Kepler's Rules
Section 37 Kepler's Rules What is the universe made out of and how do the parts interact? That was our goal in this course While we ve learned that objects do what they do because of forces, energy, linear
More informationL03: Kepler problem & Hamiltonian dynamics
L03: Kepler problem & Hamiltonian dynamics 18.354 Ptolemy circa.85 (Egypt) 165 (Alexandria) Greek geocentric view of the universe Tycho Brahe 1546 (Denmark)  1601 (Prague) "geoheliocentric" system last
More informationGravitation and the Motion of the Planets
Gravitation and the Motion of the Planets 1 Guiding Questions 1. How did ancient astronomers explain the motions of the planets? 2. Why did Copernicus think that the Earth and the other planets go around
More informationcosmogony geocentric heliocentric How the Greeks modeled the heavens
Cosmogony A cosmogony is theory about ones place in the universe. A geocentric cosmogony is a theory that proposes Earth to be at the center of the universe. A heliocentric cosmogony is a theory that proposes
More informationPHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.
PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 13 Lecture RANDALL D. KNIGHT Chapter 13 Newton s Theory of Gravity IN THIS CHAPTER, you will learn to understand the motion of satellites
More informationPhysics 115/242 The Kepler Problem
Physics 115/242 The Kepler Problem Peter Young (Dated: April 21, 23) I. INTRODUCTION We consider motion of a planet around the sun, the Kepler problem, see e.g. Garcia, Numerical Methods for Physics, Sec.
More informationAnnouncements. Topics To Be Covered in this Lecture
Announcements! Tonight s observing session is cancelled (due to clouds)! the next one will be one week from now, weather permitting! The 2 nd LearningCurve activity was due earlier today! Assignment 2
More informationTheory of mean motion resonances.
Theory of mean motion resonances. Mean motion resonances are ubiquitous in space. They can be found between planets and asteroids, planets and rings in gaseous disks or satellites and planetary rings.
More informationPHY2019 Observing the Universe
PHY2019 Observing the Universe 20092010 M 2 F G = GM 1M 2 R 2 M 1 R q 2 F E = q 1q 2 4πɛ 0 R 2 q 1 R two protons : F G F E = 4πɛ 0Gm 2 p e 2 = 8 10 37 Ptolemy (83161 AD) Claudius Ptolemaeus: Roman citizen,
More informationEarth Science, 13e Tarbuck & Lutgens
Earth Science, 13e Tarbuck & Lutgens Origins of Modern Astronomy Earth Science, 13e Chapter 21 Stanley C. Hatfield Southwestern Illinois College Early history of astronomy Ancient Greeks Used philosophical
More informationPlanetary Orbits: Kepler s Laws 1/18/07
Planetary Orbits: Kepler s Laws Announcements The correct link for the course webpage http://www.lpl.arizona.edu/undergrad/classes/spring2007/giacalone_2062 The first homework due Jan 25 (available for
More informationDynamical properties of the Solar System. Second Kepler s Law. Dynamics of planetary orbits. ν: true anomaly
First Kepler s Law The secondary body moves in an elliptical orbit, with the primary body at the focus Valid for bound orbits with E < 0 The conservation of the total energy E yields a constant semimajor
More informationPhysics 12. Unit 5 Circular Motion and Gravitation Part 2
Physics 12 Unit 5 Circular Motion and Gravitation Part 2 1. Newton s law of gravitation We have seen in Physics 11 that the force acting on an object due to gravity is given by a well known formula: F
More informationVISUAL PHYSICS ONLINE
VISUAL PHYSICS ONLINE PRACTICAL ACTIVITY HOW DO THE PANETS MOVE? One of the most important questions historically in Physics was how the planets move. Many historians consider the field of Physics to date
More informationIntroduction To Modern Astronomy I
ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 16) Planets and Moons (chap. 717) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens
More informationAST111 PROBLEM SET 2 SOLUTIONS. RA=02h23m35.65s, DEC=+25d18m42.3s (Epoch J2000).
AST111 PROBLEM SET 2 SOLUTIONS Home work problems 1. Angles on the sky and asteroid motion An asteroid is observed at two different times. The asteroid is located at RA=02h23m35.65s, DEC=+25d18m42.3s (Epoch
More informationGravitation. Luis Anchordoqui
Gravitation Kepler's law and Newton's Synthesis The nighttime sky with its myriad stars and shinning planets has always fascinated people on Earth. Towards the end of the XVI century the astronomer Tycho
More informationChapter. Origin of Modern Astronomy
Chapter Origin of Modern Astronomy 22.1 Early Astronomy Ancient Greeks Astronomy is the science that studies the universe. It includes the observation and interpretation of celestial bodies and phenomena.
More informationChapter 2 The Science of Life in the Universe
In ancient times phenomena in the sky were not understood! Chapter 2 The Science of Life in the Universe The Ancient Greeks The Scientific Method Our ideas must always be consistent with our observations!
More informationClaudius Ptolemaeus Second Century AD. Jan 5 7:37 AM
Claudius Ptolemaeus Second Century AD Jan 5 7:37 AM Copernicus: The Foundation Nicholas Copernicus (Polish, 1473 1543): Proposed the first modern heliocentric model, motivated by inaccuracies of the Ptolemaic
More informationAy 1 Lecture 2. Starting the Exploration
Ay 1 Lecture 2 Starting the Exploration 2.1 Distances and Scales Some Commonly Used Units Distance: Astronomical unit: the distance from the Earth to the Sun, 1 au = 1.496 10 13 cm ~ 1.5 10 13 cm Light
More informationLecture #5: Plan. The Beginnings of Modern Astronomy Kepler s Laws Galileo
Lecture #5: Plan The Beginnings of Modern Astronomy Kepler s Laws Galileo Geocentric ( Ptolemaic ) Model Retrograde Motion: Apparent backward (= EasttoWest) motion of a planet with respect to stars Ptolemy
More informationGravity and the Orbits of Planets
Gravity and the Orbits of Planets 1. Gravity Galileo Newton Earth s Gravity Mass v. Weight Einstein and General Relativity Round and irregular shaped objects 2. Orbits and Kepler s Laws ESO Galileo, Gravity,
More informationTest Bank for Life in the Universe, Third Edition Chapter 2: The Science of Life in the Universe
1. The possibility of extraterrestrial life was first considered A) after the invention of the telescope B) only during the past few decades C) many thousands of years ago during ancient times D) at the
More informationThe Law of Ellipses (Kepler s First Law): all planets orbit the sun in a
Team Number Team Members Present Learning Objectives 1. Practice the Engineering Process a series of steps to follow to design a solution to a problem. 2. Practice the Five Dimensions of Being a Good Team
More informationChapter 14 Satellite Motion
1 Academic Physics Mechanics Chapter 14 Satellite Motion The Mechanical Universe Kepler's Three Laws (Episode 21) The Kepler Problem (Episode 22) Energy and Eccentricity (Episode 23) Navigating in Space
More informationLearning Objectives. one night? Over the course of several nights? How do true motion and retrograde motion differ?
Kepler s Laws Learning Objectives! Do the planets move east or west over the course of one night? Over the course of several nights? How do true motion and retrograde motion differ?! What are geocentric
More informationOccam s Razor: William of Occam, 1340(!)
Reading: OpenStax, Chapter 2, Section 2.2 &2.4, Chapter 3, Sections 3.13.3 Chapter 5, Section 5.1 Last time: Scales of the Universe Astro 150 Spring 2018: Lecture 2 page 1 The size of our solar system,
More informationTycho Brahe
Tycho Brahe 15461601 At the time of Shakespeare and Elizabeth I and Champlain Lost part of his nose in a duel over who was the best mathematician At 27 he measured the distance of a supernova and a comet
More informationMonday, October 3, 2011
We do not ask for what useful purpose the birds do sing, for song is their pleasure since they were created for singing. Similarly, we ought not ask why the human mind troubles to fathom the secrets of
More informationMotion of the planets
Our Solar system Motion of the planets Our solar system is made up of the sun and the 9 planets that revolve around the sun Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune & Pluto (maybe?)
More informationTycho Brahe ( )
Tycho Brahe (15461601) Foremost astronomer after the death of Copernicus. King Frederick II of Denmark set him up at Uraniborg, an observatory on the island of Hveen. With new instruments (quadrant),
More informationBasics of Kepler and Newton. Orbits of the planets, moons,
Basics of Kepler and Newton Orbits of the planets, moons, Kepler s Laws, as derived by Newton. Kepler s Laws Universal Law of Gravity Three Laws of Motion Deriving Kepler s Laws Recall: The Copernican
More informationThe History of Astronomy
The History of Astronomy The History of Astronomy Earliest astronomical record: a lunar calendar etched on bone from 6500 B.C. Uganda. Also we find early groups noted the Sun, Moon, Mercury, Venus, Earth,
More informationLesson 9. Luis Anchordoqui. Physics 168. Tuesday, October 24, 17
Lesson 9 Physics 168 1 Static Equilibrium 2 Conditions for Equilibrium An object with forces acting on it but that is not moving is said to be in equilibrium 3 Conditions for Equilibrium (cont d) First
More informationChapter 13. Universal Gravitation
Chapter 13 Universal Gravitation Planetary Motion A large amount of data had been collected by 1687. There was no clear understanding of the forces related to these motions. Isaac Newton provided the answer.
More informationHistory of Astronomy. PHYS 1411 Introduction to Astronomy. Tycho Brahe and Exploding Stars. Tycho Brahe ( ) Chapter 4. Renaissance Period
PHYS 1411 Introduction to Astronomy History of Astronomy Chapter 4 Renaissance Period Copernicus new (and correct) explanation for retrograde motion of the planets Copernicus new (and correct) explanation
More informationGravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler
Gravitation Part I. Ptolemy, Copernicus, Galileo, and Kepler Celestial motions The stars: Uniform daily motion about the celestial poles (rising and setting). The Sun: Daily motion around the celestial
More informationPHYS 160 Astronomy Test #1 Fall 2017 Version B
PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,
More informationCelestial Mechanics I. Introduction Kepler s Laws
Celestial Mechanics I Introduction Kepler s Laws Goals of the Course The student will be able to provide a detailed account of fundamental celestial mechanics The student will learn to perform detailed
More informationCh. 22 Origin of Modern Astronomy Pretest
Ch. 22 Origin of Modern Astronomy Pretest Ch. 22 Origin of Modern Astronomy Pretest 1. True or False: Early Greek astronomers (600 B.C. A.D. 150) used telescopes to observe the stars. Ch. 22 Origin of
More informationA = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc.
Q13.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2
More informationPlanetary Rings (cont.) Rings / Galilean Satellites 4/10/07
Planetary Rings (cont.) + Galilean Satellites Announcements Reading Assignment Finish Chapter 15 5 th homework due Thursday. Reminder about term paper due April 17. A sample planet fact sheet has been
More informationThe Law of Ellipses (Kepler s First Law): all planets orbit the sun in a
Team Number Team Members Present Learning Objectives 1. Practice the Engineering Process a series of steps to follow to design a solution to a problem. 2. Practice the Five Dimensions of Being a Good Team
More informationPlanetary Mechanics:
Planetary Mechanics: Satellites A satellite is an object or a body that revolves around another body due to the gravitational attraction to the greater mass. Ex: The planets are natural satellites of the
More informationEarth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy
2006 Pearson Prentice Hall Lecture Outlines PowerPoint Chapter 21 Earth Science 11e Tarbuck/Lutgens This work is protected by United States copyright laws and is provided solely for the use of instructors
More information1 Structure of the Solar System
1 Structure of the Solar System There s not the smallest orb which thou behold st But in his motion like an angel sings, Still quiring to the youngeyed cherubins; Such harmony is in immortal souls; William
More informationUnit 1 Astronomy: Kepler s Laws Of Planetary Motion Assessed Activity (66 marks total)
Name: Solutions & Marking Scheme 2009 TG: PF Unit 1 Astronomy: Kepler s Laws Of Planetary Motion Assessed Activity (66 marks total) Aim: To investigate Kepler s three laws planetary motion. Apparatus:
More informationMotion in the Heavens
Motion in the Heavens Most ancient cultures believed that the earth was the centre of the universe. Most felt that the planets, stars, moon and sun revolved around the earth. This is known as a geocentric
More informationCelestial Orbits. Adrienne Carter Ottopaskal Rice May 18, 2001
Celestial Orbits Adrienne Carter sillyajc@yahoo.com Ottopaskal Rice ottomanbuski@hotmail.com May 18, 2001 1. Tycho Brache, a Danish astronomer of the late 1500s, had collected large amounts of raw data
More informationJanuary 19, notes.notebook. Claudius Ptolemaeus Second Century AD. Jan 5 7:37 AM
8.1 notes.notebook Claudius Ptolemaeus Second Century AD Jan 5 7:7 AM Copernicus: The Foundation Nicholas Copernicus (Polish, 147 154): Proposed the first modern heliocentric model, motivated by inaccuracies
More informationDays of the week:  named after 7 Power (moving) objects in the sky (Sun, Moon, 5 planets) Models of the Universe:
Motions of the Planets ( Wanderers ) Planets move on celestial sphere  change RA, Dec each night  five are visible to naked eye Mercury, Venus, Mars, Jupiter, Saturn Days of the week:  named after 7
More informationIntroduction To Modern Astronomy II
ASTR 111 003 Fall 2006 Lecture 03 Sep. 18, 2006 Introduction To Modern Astronomy II Introducing Astronomy (chap. 16) Planets and Moons (chap. 717) Ch1: Astronomy and the Universe Ch2: Knowing the Heavens
More informationASTRONOMY QUIZ NUMBER 1
ASTRONOMY QUIZ NUMBER. You read in an astronomy atlas that an object has a negative right ascension. You immediately conclude that A) the object is located in the Southern Sky. B) the object is located
More informationEarly Theories. Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle
Planetary Motion Early Theories Early astronomers believed that the sun, planets and stars orbited Earth (geocentric model) Developed by Aristotle Stars appear to move around Earth Observations showed
More informationChapter 4 Thrills and Chills +Math +Depth Acceleration of the Moon +Concepts The Moon is 60 times further away from the center of Earth than objects on the surface of Earth, and moves about Earth in an
More informationLecture 23: Jupiter. Solar System. Jupiter s Orbit. The semimajor axis of Jupiter s orbit is a = 5.2 AU
Lecture 23: Jupiter Solar System Jupiter s Orbit The semimajor axis of Jupiter s orbit is a = 5.2 AU Jupiter Sun a Kepler s third law relates the semimajor axis to the orbital period 1 Jupiter s Orbit
More informationAn Introduction to Celestial Mechanics
An Introduction to Celestial Mechanics This accessible text on classical celestial mechanics the principles governing the motions of bodies in the solar system provides a clear and concise treatment of
More informationEarly Models of the Universe. How we explained those big shiny lights in the sky
Early Models of the Universe How we explained those big shiny lights in the sky The Greek philosopher Aristotle (384 322 BCE) believed that the Earth was the center of our universe, and everything rotated
More informationtowards the modern view
Brief review of last time: Og through Tycho Brahe Early Science 1 Reading: Chap. 2, Sect.2.4, Ch. 3, Sect. 3.1 Homework 3: Due Tomorrow and Mon. Homework 4: Now available, due next recitation cycle, or
More informationUniversal Gravitation
Universal Gravitation Johannes Kepler Johannes Kepler was a German mathematician, astronomer and astrologer, and key figure in the 17th century Scientific revolution. He is best known for his laws of planetary
More informationEquation of orbital velocity: v 2 =GM(2/r 1/a) where: G is the gravitational constant (G=6.67x10 11 N/m 3 kg), M is the mass of the sun (or central
Everything in Orbit Orbital Velocity Orbital velocity is the speed at which a planetary body moves in its orbit around another body. If orbits were circular, this velocity would be constant. However, from
More informationEdmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006
Edmonds Community College ASTRONOMY 100 Sample Test #2 Fall Quarter 2006 Instructor: L. M. Khandro 10/19/06 Please Note: the following test derives from a course and text that covers the entire topic of
More information2.4 The Birth of Modern Astronomy
2.4 The Birth of Modern Astronomy Telescope invented around 1600 Galileo built his own, made observations: Moon has mountains and valleys Sun has sunspots, and rotates Jupiter has moons (shown): Venus
More informationChapter 4. The Origin Of Modern Astronomy. Is okay to change your phone? From ios to Android From Android to ios
Chapter 4 The Origin Of Modern Astronomy Slide 14 Slide 15 14 15 Is Change Good or Bad? Do you like Homer to look like Homer or with hair? Does it bother you when your schedule is changed? Is it okay to
More informationThe Watershed : Tycho & Kepler
The Watershed : Tycho & Kepler Key Ideas: Tycho Brahe Amassed 20 years of precise planetary data. Johannes Kepler Brilliant theorist who analyzed Tycho s data Kepler s Three Laws of Planetary Motion: 1st
More informationF = ma. G mm r 2. S center
In the early 17 th century, Kepler discovered the following three laws of planetary motion: 1. The planets orbit around the sun in an ellipse with the sun at one focus. 2. As the planets orbit around the
More informationOrigin of Modern Astronomy Chapter 21
Origin of Modern Astronomy Chapter 21 Early history of astronomy Ancient Greeks Used philosophical arguments to explain natural phenomena Also used some observa:onal data (looking at the night sky) Ancient
More informationD. A system of assumptions and principles applicable to a wide range of phenomena that has been repeatedly verified
ASTRONOMY 1 EXAM 1 Name Identify Terms  Matching (20 @ 1 point each = 20 pts.) 1 Solar System G 7. aphelion N 14. eccentricity M 2. Planet E 8. apparent visual magnitude R 15. empirical Q 3. Star P 9.
More informationPHYS 155 Introductory Astronomy
PHYS 155 Introductory Astronomy  observing sessions: Sunday Thursday, 9pm, weather permitting http://www.phys.uconn.edu/observatory  Exam  Tuesday March 20,  Review Monday 6:309pm, PB 38 Marek Krasnansky
More informationEXAM #2. ANSWERS ASTR , Spring 2008
EXAM #2. ANSWERS ASTR 1101001, Spring 2008 1. In Copernicus s heliocentric model of the universe, which of the following astronomical objects was placed in an orbit around the Earth? The Moon 2. In his
More informationToday. Planetary Motion. Tycho Brahe s Observations. Kepler s Laws Laws of Motion. Laws of Motion
Today Planetary Motion Tycho Brahe s Observations Kepler s Laws Laws of Motion Laws of Motion In 1633 the Catholic Church ordered Galileo to recant his claim that Earth orbits the Sun. His book on the
More informationThe Jovian Planets. Why do we expect planets like this in the outer reaches of the solar system?(lc)
The Jovian Planets Beyond Mars and the Asteroid belt are the Jovian or Gas Giant Planets that are totally different than the terrestrial planets: They are composed almost entirely of gas They do not have
More informationSatellites and Kepler's Laws: An Argument for Simplicity
OpenStaxCNX module: m444 Satellites and Kepler's Laws: An Argument for Simplicity OpenStax College This work is produced by OpenStaxCNX and licensed under the Creative Commons Attribution License.0 Abstract
More informationHistory. Geocentric model (Ptolemy) Heliocentric model (Aristarchus of Samos)
Orbital Mechanics History Geocentric model (Ptolemy) Heliocentric model (Aristarchus of Samos) Nicholas Copernicus (14731543) In De Revolutionibus Orbium Coelestium ("On the Revolutions of the Celestial
More information1. thought the earth was at the center of the solar system and the planets move on small circles that move on bigger circles
Earth Science Chapter 20: Observing the Solar System Match the observations or discoveries with the correct scientist. Answers may be used more than once. Answers that cannot be read will be counted as
More informationKepler, Newton, and laws of motion
Kepler, Newton, and laws of motion First: A Little History Geocentric vs. heliocentric model for solar system (sec. 2.22.4)! The only history in this course is this progression: Aristotle (~350 BC) Ptolemy
More informationKepler s Laws of Orbital Motion. Lecture 5 January 24, 2013
Kepler s Laws of Orbital Motion Lecture 5 January 24, 2013 Team Extra Credit Two teams: Io & Genius Every class (that is not an exam/exam review) will have a question asked to a random member of each team
More informationDeAnza College Winter First Midterm Exam MAKE ALL MARKS DARK AND COMPLETE.
FAMILY NAME : (Please PRINT!) GIVEN NAME : (Please PRINT!) Signature: ASTRONOMY 4 DeAnza College Winter 2018 First Midterm Exam MAKE ALL MARKS DARK AND COMPLETE. Instructions: 1. On your Parscore sheet
More informationAP PhysicsB Universal Gravitation Introduction: Kepler s Laws of Planetary Motion: Newton s Law of Universal Gravitation: Performance Objectives:
AP PhysicsB Universal Gravitation Introduction: Astronomy is the oldest science. Practical needs and imagination acted together to give astronomy an early importance. For thousands of years, the motions
More informationOverview of Astronautics and Space Missions
Overview of Astronautics and Space Missions Prof. Richard Wirz Slide 1 Astronautics Definition: The science and technology of space flight Includes: Orbital Mechanics Often considered a subset of Celestial
More informationCopernican Revolution. ~1500 to ~1700
~1500 to ~1700 Copernicus (~1500) Brahe (~1570) Kepler (~1600) Galileo (~1600) Newton (~1670) The Issue: Geocentric or Heliocentric Which model explains observations the best? Copernicus (~1500) Resurrected
More informationGravity. Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields
Gravity Newton s Law of Gravitation Kepler s Laws of Planetary Motion Gravitational Fields Simulation Synchronous Rotation https://www.youtube.com/watch?v=ozib_l eg75q SunEarthMoon System https://vimeo.com/16015937
More informationASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy
Chariho Regional School District  Science Curriculum September, 2016 ASTRONOMY CURRICULUM Unit 1: Introduction to Astronomy OVERVIEW Summary Students will be introduced to the overarching concept of astronomy.
More informationLecture 4: Kepler and Galileo. Astronomy 111 Wednesday September 6, 2017
Lecture 4: Kepler and Galileo Astronomy 111 Wednesday September 6, 2017 Reminders Online homework #2 due Monday at 3pm Johannes Kepler (15711630): German Was Tycho s assistant Used Tycho s data to discover
More informationA STUDY OF CLOSE ENCOUNTERS BETWEEN MARS AND ASTEROIDS FROM THE 3:1 RESONANCE. Érica C. Nogueira, Othon C. Winter
A STUDY OF CLOSE ENCOUNTERS BETWEEN MARS AND ASTEROIDS FROM THE 3: RESONANCE Érica C. Nogueira, Othon C. Winter Grupo de Dinâmica Orbital e Planetologia UNESP  Guaratinguetá  Brazil Antonio F.B. de
More information