Overview HC9. Parsing: Top-Down & LL(1) Context-Free Grammars (1) Introduction. CFGs (3) Context-Free Grammars (2) Vertalerbouw HC 9: Ch.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Overview HC9. Parsing: Top-Down & LL(1) Context-Free Grammars (1) Introduction. CFGs (3) Context-Free Grammars (2) Vertalerbouw HC 9: Ch."

Transcription

1 Overview H9 Vertlerouw H 9: Prsing: op-down & LL(1) do 3 mei heo Ruys h. 8 - Prsing 8.1 ontext-free Grmmrs 8.2 op-down Prsing 8.3 LL(1) Grmmrs See lso [ho, Sethi & Ullmn 1986] for more thorough discussion. INF tel donderdg 3 mei 2001 (56) Vertlerouw - H9 1 donderdg 3 mei 2001 (56) Vertlerouw - H9 2 Introduction Prser (= syntx nlyser) checks whether the input progrm is syntcticlly correct usully specified y context-free grmmr regulr expressions fi finite-stte utomton context-free grmmr fi stck utomton is usully ugmented with ctions for context constrints code optimistion nd genertion not only for progrmming lnguges, ut for ll progrms tht process structured dt prsing strtegies: top-down prsing ottom-up prsing donderdg 3 mei 2001 (56) Vertlerouw - H9 3 ontext-free Grmmrs (1) ontext-free Grmmr (FG) G is defined y 4-tuple (N,, P, S) S: strt symol S N tokens tht occur P: production rules : finite set of terminls N: finite set of non-terminls define structure xmple: G = ({,B}, {,,c},, P) where P: fi fi B B fi B fi c regexp: ( c) N β (N ) V N Nottionl conveniences: only prove the production rules use choice opertor: fi B donderdg 3 mei 2001 (56) Vertlerouw - H9 4 ontext-free Grmmrs (2) FG is specifiction of rewrite system. FGs re used to derive strings of terminls. Nottion: α, β, γ, δ (N ) = V string of symols u, v, w string of terminls X, Y, Z (N ) single grmmr symol, B,, D N single non-terminl,, c single terminl 1-step derivtion: αγ αβγ using production rule: fi B donderdg 3 mei 2001 (56) Vertlerouw - H9 5 FGs (3) Derivtion αγ αβγ left-most derivtion if α = w, then wγ l αβγ right-most derivtion if γ = w, then αw r αβw zero or more steps α β one or more steps α β Recursion left-recursive derivtion if α then the FG is left-recursive right-recursive derivtion if α then the FG is right-recursive α, β, γ (N ) u, v, w X, Y, Z (N ), B, N,, c donderdg 3 mei 2001 (56) Vertlerouw - H9 6 1

2 FGs (4) erminology (cont.) if S β then β is sententil form if S w then w is sentence xmple: fi D D fi c α, β, γ (N ) u, v, w X, Y, Z (N ), B, N,, c ontext-free Grmmrs (5) ontext-free Lnguge (FL) FL = the set of ll sentences derived from FG FL(G) = { w S w } Previous exmple ( fi D D fi c): FL = {, c,, c,, c,, c,... } Prse tree: nother representtion of derivtion D sententil forms sentence D corresponds with D donderdg 3 mei 2001 (56) Vertlerouw - H9 7 donderdg 3 mei 2001 (56) Vertlerouw - H9 8 xmple: fi fi fi ontext-free Grmmrs (6) wo wys of deriving sentence in the FL corresponding to G: G is miguous! In this cse, G does not define the reltive priorities of nd oth derivtions re left-derivtions donderdg 3 mei 2001 (56) Vertlerouw - H9 9 ontext-free Grmmrs (7) Unmiguous grmmr: fi fi fi fi () hs priority over () n extr nonterminl is used to solve the priority/miguity prolem donderdg 3 mei 2001 (56) Vertlerouw - H9 10 ontext-free Grmmrs (8) Infmous dngling-else prolem: S fi if then S S fi if then S else S if then if then S else S ontext-free Grmmrs (9) Prolem: verifying tht the lnguge L is generted y grmmr G i.e. to prove tht: L(G) = L fi verify: if S w then w L verify: if w L then S w if S then S if then S else S if S then if S else S then S xmple: L is the lnguge consisting of lnced prntheses. G: S fi ( S ) S Proof sketch: use induction on the numer of derivtion steps nd the length of the sentence donderdg 3 mei 2001 (56) Vertlerouw - H9 11 donderdg 3 mei 2001 (56) Vertlerouw - H9 12 2

3 FGs (10) S fi ( S ) S FGs (11) S fi ( S ) S fi verify tht every generted string is lnced n=1 (one step derivtion) e is lnced n>1 ssume tht ll strings re lnced for <n-step derivtions conser n n-step derivtion, which will e of the form: S (S) S (x) S (x) y x nd y must e lnced (oth re cses of <n derivtions), hence (x)y is lnced. verify tht ll lnced-prenthesis strings cn e generted from S n=0 (length of sentence) e is derivle from S n>0 ssume tht every string of length <2n is derivle conser lnced string of length 2n (for n 1) let (x) e the shortest prefix of the lnced string the lnced string cn e written s (x)y where x nd y re oth lnced, nd re oth <2n in length; therefore they re derivle; Hence, we cn find S (S) S (x) S (x) y donderdg 3 mei 2001 (56) Vertlerouw - H9 13 donderdg 3 mei 2001 (56) Vertlerouw - H9 14 ontext-free Grmmrs (12) Rs vs FGs R cn lwys e expressed s FG. lgorithm: 1. " stte s, crete nonterminl s 2. " trnsition lelled, write s t 3. For ccept sttes s, write s e 4. he strt stte is the egin symol. R: { } NF donderdg 3 mei 2001 (56) Vertlerouw - H FG: > e ontext-free Grmmrs (13) So: RL is lwys context-free. FL is usully not regulr. xmples: L 1 = { n n 1} regulr: L 2 = { n n n 1} not regulr context free: S fi S L 3 = { n n c n n 1} not regulr not context free Ide: RL/FL cn lwys e written in form so tht sustring/stte is repeted. he Pumping Lemms for regulr expressions nd grmmrs should e used to prove tht lnguge L is not RL or FL. (see [ Sudkmp 1991]) finite utomton cnnot keep count grmmr cn count two items, ut not three donderdg 3 mei 2001 (56) Vertlerouw - H9 16 op-down Prsing (1) R Use element construction suset construction to generte DF (= scnner) DF = finite-stte utomton FG n we lso generte prser for FG? S = stck utomton S is NF (or DF) with n extr stck. he stck gives the F the extr power. prser is n lgorithm sed on S tht egins with strt symol of FG nd derives sentence. op-down Prsing (2) Recll recursive-descent prsing (h.1) procedure is ssocited with ech nonterminl N in the grmmr. he ody of the procedure my contin sttements tht mtch terminls; sttements tht cll procedures for ech nonterminl in the right-hnd se of the production of N; semntic ctions. Recursive-descent prsers implicitly use stck, i.e. the cll-stck of the procedures. op-down prsing: uilding the prse tree from the root (i.e. the strt symol). donderdg 3 mei 2001 (56) Vertlerouw - H9 17 donderdg 3 mei 2001 (56) Vertlerouw - H9 18 3

4 op-down Prsing (3) xmple (using n explicit stck): fi B fi e string = B fi stck input $ B $ BB $ BB $ B $ B $ $ - $ donderdg 3 mei 2001 (56) Vertlerouw - H9 19 B B For the nonterminl on top of production rule is executed. erminls on top of the stck get popped, while dvncing the look-hed pointer in the input. e B B BB B ll left-derivtions op-down le-driven D-D lgorithm: ool DD() { Stck s; ool ccept=true; s.init(); s.push(s); D Prsing (4) Note tht in ech itertion symol is popped from the stck while (ccept && (look_hed!=$!s.empty())) { top = s.pop(); if (top ) { if (top!= look_hed) ccept=flse; else look_hed=red_input(); } else if (top N) { // ssume top == Select some production fi X 1... X n s.push(x 1,...,X n); } else ccept=flse; might e nondeterministic... } In the D-D lgorithm, the selection return ccept; of production rule is driven y tle. } donderdg 3 mei 2001 (56) Vertlerouw - H9 20 LL(1) (1) So we my hve choice of production rules fi α hoosing production rule non-predictive: rndomly (requires cktrcking!) predictive: using the look-hed symols in the input LL(k) If y looking hed k symols in the input strem, we cn lwys choose the right production rule, the given grmmr is (strong) LL(k). L: left-to-right scnning through the input strem L: left-derivtion donderdg 3 mei 2001 (56) Vertlerouw - H9 21 LL(1) (2) strong LL(k) vs. (norml) LL(k) strong LL(k): we only conser the look-hed tokens in the input strem when choosing production rule. LL(k): prt from the look-hed symols in the input, we my lso use the input tokens tht hve lredy een red to choose production rule. clss of strong LL(k) grmmrs clss of LL(k) grmmrs xmple: p 1 : fi p 2 : fi LL(1) LL(2) LL(3)... If k=1, we cnnot tell if p 1 or p 2 should e pplied. herefore, the grmmr is not LL(1); it is LL(2). donderdg 3 mei 2001 (56) Vertlerouw - H9 22 LL(1) (3) onser k=1 LL(1) = strong LL(1) LL(1) grmmrs re sufficient to descrie most progrmming constructs Define: prefix(w) = first terminl of w FIRS(α) New definition of LL(1): Given G nd productions fi α nd, then if FIRS(α.FOLLOW()) FIRS(β.FOLLOW()) = then G is LL(1). α nd β might e e = { terminls tht re first in sentence w derived from α } = { α w nd =prefix(w), for some w } FOLLOW() = { terminls tht re in FIRS(γ) in some sententil form βγ } = { S βγ nd FIRS(γ), for some β,γ V } donderdg 3 mei 2001 (56) Vertlerouw - H9 23 xmple: G 1 is defined y p 1 : fi B p 2 : fi e p 3 : B fi p 4 : B fi c LL(1) (4) L(G) = {, c,, c, c, cc,... } donderdg 3 mei 2001 (56) Vertlerouw - H9 24 B LL(1)-test for G 1: p 1 nd p 2 FIRS(B.FOLLOW()) FIRS(e.FOLLOW()) = {} {$} = p 3 nd p 4 FIRS(.FOLLOW(B)) FIRS(c.FOLLOW(B)) = {} {c} = B c B e Hence, G1 is LL(1) 4

5 LL(1) (5) xmple: G 2 is defined y p 1 : fi B L(G) = {, c,, c, p 2 : fi e c, cc,... } p 3 : B fi p 4 : B fi c LL(1)-test for G 2: p 1 nd p 2 FIRS(B.FOLLOW()) FIRS(e.FOLLOW()) = {} {FOLLOW()} = {} {} = {} G2 is not LL(1) LL(1) (6) Nottionl convenience: Insted of using the expression FIRS(α.FOLLOW()) for production rule fi α, we define DIRS( fi α) = FIRS(α), if MPY(α) = FIRS(α) FOLLOW(), otherwise he DIRS set cn e used to compute the prse tle DIRS( fi α) = { 1, 2,... } DIRS() = { 1, 2,... } Now: M(, i) = fi α M(, i) = B fi β In generl: M(,) = fi α, if DIRS( fi α) donderdg 3 mei 2001 (56) Vertlerouw - H9 25 donderdg 3 mei 2001 (56) Vertlerouw - H9 26 LL(1) (7)... we know how to check whether G is LL(1)... Left fctoristion fi αβ fi αγ cnnot e LL(1) ecomes liminte left recursion fi α cnnot e LL(1)... It is not decle, though ecomes When G is not LL(1), cn it e mde LL(1)? fi αb B fi β B fi γ which is LL(1) if FIRS(β) FIRS(γ) = fi B B fi β fi α fi e which is LL(1) if FIRS(α.FOLLOW()) FIRS(e.FOLLOW()) = nswer: sometimes donderdg 3 mei 2001 (56) Vertlerouw - H9 27 LL(1) (8)... it does not lwys work (e.g. left fctoristion) D is not importnt fi B fi It my not directly cler why this G is not LL(1). fi DB fi D fi α fi D fi B fi fi α he nonterminl now ssumes the role of the originl : this method will not terminte! donderdg 3 mei 2001 (56) Vertlerouw - H9 28 oncluding remrks: LL(1) (9) Section of the ook/reder contins n extensive nd forml discussion on the LL(1)-test using the function MPY nd the sets LDING (generlistion of FIRS), RILING, FOLLOW nd DIRS. lgorithms re presented to utomticlly clculte these sets to perform the LL(1)-test; nd if the grmmr is LL(1), the DIRS cn directly e used to construct the prse tle. We will riefly discuss these sets (nd lgorithms) in H10 when presenting FGs. donderdg 3 mei 2001 (56) Vertlerouw - H9 29 5

Closure Properties of Regular Languages

Closure Properties of Regular Languages Closure Properties of Regulr Lnguges Regulr lnguges re closed under mny set opertions. Let L 1 nd L 2 e regulr lnguges. (1) L 1 L 2 (the union) is regulr. (2) L 1 L 2 (the conctention) is regulr. (3) L

More information

CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages C 314 Principles of Progrmming Lnguges Lecture 6: LL(1) Prsing Zheng (Eddy) Zhng Rutgers University Ferury 5, 2018 Clss Informtion Homework 2 due tomorrow. Homework 3 will e posted erly next week. 2 Top

More information

1.4 Nonregular Languages

1.4 Nonregular Languages 74 1.4 Nonregulr Lnguges The number of forml lnguges over ny lphbet (= decision/recognition problems) is uncountble On the other hnd, the number of regulr expressions (= strings) is countble Hence, ll

More information

Formal languages, automata, and theory of computation

Formal languages, automata, and theory of computation Mälrdlen University TEN1 DVA337 2015 School of Innovtion, Design nd Engineering Forml lnguges, utomt, nd theory of computtion Thursdy, Novemer 5, 14:10-18:30 Techer: Dniel Hedin, phone 021-107052 The exm

More information

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER LANGUAGES AND COMPUTATION ANSWERS

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER LANGUAGES AND COMPUTATION ANSWERS The University of Nottinghm SCHOOL OF COMPUTER SCIENCE LEVEL 2 MODULE, SPRING SEMESTER 2016 2017 LNGUGES ND COMPUTTION NSWERS Time llowed TWO hours Cndidtes my complete the front cover of their nswer ook

More information

Convert the NFA into DFA

Convert the NFA into DFA Convert the NF into F For ech NF we cn find F ccepting the sme lnguge. The numer of sttes of the F could e exponentil in the numer of sttes of the NF, ut in prctice this worst cse occurs rrely. lgorithm:

More information

FABER Formal Languages, Automata and Models of Computation

FABER Formal Languages, Automata and Models of Computation DVA337 FABER Forml Lnguges, Automt nd Models of Computtion Lecture 5 chool of Innovtion, Design nd Engineering Mälrdlen University 2015 1 Recp of lecture 4 y definition suset construction DFA NFA stte

More information

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages Deprtment of Computer Science, Austrlin Ntionl University COMP2600 Forml Methods for Softwre Engineering Semester 2, 206 Assignment Automt, Lnguges, nd Computility Smple Solutions Finite Stte Automt nd

More information

The transformation to right derivation is called the canonical reduction sequence. Bottom-up analysis

The transformation to right derivation is called the canonical reduction sequence. Bottom-up analysis Bottom-up nlysis Shift-reduce prsing. Constructs the derivtion tree from ottom to top. Reduces the string to the strt symol. Produces reverse right derivtion. Exmple: G(E): 1. E E + T 2. T 3. T T * F 4.

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 utomt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Prolem (II) Chpter II.5.: Properties of Context Free Grmmrs (14) nton Setzer (Bsed on ook drft y J. V. Tucker nd K. Stephenson)

More information

Parsing and Pattern Recognition

Parsing and Pattern Recognition Topics in IT Prsing nd Pttern Recognition Week Context-Free Prsing College of Informtion Science nd Engineering Ritsumeikn University this week miguity in nturl lnguge in mchine lnguges top-down, redth-first

More information

1.3 Regular Expressions

1.3 Regular Expressions 56 1.3 Regulr xpressions These hve n importnt role in describing ptterns in serching for strings in mny pplictions (e.g. wk, grep, Perl,...) All regulr expressions of lphbet re 1.Ønd re regulr expressions,

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 Automt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Problem (II) Chpter II.6.: Push Down Automt Remrk: This mteril is no longer tught nd not directly exm relevnt Anton Setzer (Bsed

More information

CS 310 (sec 20) - Winter Final Exam (solutions) SOLUTIONS

CS 310 (sec 20) - Winter Final Exam (solutions) SOLUTIONS CS 310 (sec 20) - Winter 2003 - Finl Exm (solutions) SOLUTIONS 1. (Logic) Use truth tles to prove the following logicl equivlences: () p q (p p) (q q) () p q (p q) (p q) () p q p q p p q q (q q) (p p)

More information

Exercises Chapter 1. Exercise 1.1. Let Σ be an alphabet. Prove wv = w + v for all strings w and v.

Exercises Chapter 1. Exercise 1.1. Let Σ be an alphabet. Prove wv = w + v for all strings w and v. 1 Exercises Chpter 1 Exercise 1.1. Let Σ e n lphet. Prove wv = w + v for ll strings w nd v. Prove # (wv) = # (w)+# (v) for every symol Σ nd every string w,v Σ. Exercise 1.2. Let w 1,w 2,...,w k e k strings,

More information

First Midterm Examination

First Midterm Examination Çnky University Deprtment of Computer Engineering 203-204 Fll Semester First Midterm Exmintion ) Design DFA for ll strings over the lphet Σ = {,, c} in which there is no, no nd no cc. 2) Wht lnguge does

More information

Context-Free Grammars and Languages

Context-Free Grammars and Languages Context-Free Grmmrs nd Lnguges (Bsed on Hopcroft, Motwni nd Ullmn (2007) & Cohen (1997)) Introduction Consider n exmple sentence: A smll ct ets the fish English grmmr hs rules for constructing sentences;

More information

Tutorial Automata and formal Languages

Tutorial Automata and formal Languages Tutoril Automt nd forml Lnguges Notes for to the tutoril in the summer term 2017 Sestin Küpper, Christine Mik 8. August 2017 1 Introduction: Nottions nd sic Definitions At the eginning of the tutoril we

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 Automt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Problem (II) Chpter II.5.: Properties of Context Free Grmmrs (14) Anton Setzer (Bsed on book drft by J. V. Tucker nd K. Stephenson)

More information

CSE : Exam 3-ANSWERS, Spring 2011 Time: 50 minutes

CSE : Exam 3-ANSWERS, Spring 2011 Time: 50 minutes CSE 260-002: Exm 3-ANSWERS, Spring 20 ime: 50 minutes Nme: his exm hs 4 pges nd 0 prolems totling 00 points. his exm is closed ook nd closed notes.. Wrshll s lgorithm for trnsitive closure computtion is

More information

Scanner. Specifying patterns. Specifying patterns. Operations on languages. A scanner must recognize the units of syntax Some parts are easy:

Scanner. Specifying patterns. Specifying patterns. Operations on languages. A scanner must recognize the units of syntax Some parts are easy: Scnner Specifying ptterns source code tokens scnner prser IR A scnner must recognize the units of syntx Some prts re esy: errors mps chrcters into tokens the sic unit of syntx x = x + y; ecomes

More information

Review for the Midterm

Review for the Midterm Review for the Midterm Stephen A. Edwrds Columi University Fll 2018 The Midterm Structure of Compiler Scnning Lnguges nd Regulr Expressions NFAs Trnslting REs into NFAs: Thompson s Construction Building

More information

5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9.

5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9. Regulr Expressions, Pumping Lemm, Right Liner Grmmrs Ling 106 Mrch 25, 2002 1 Regulr Expressions A regulr expression descries or genertes lnguge: it is kind of shorthnd for listing the memers of lnguge.

More information

Chapter 2 Finite Automata

Chapter 2 Finite Automata Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht

More information

CS 311 Homework 3 due 16:30, Thursday, 14 th October 2010

CS 311 Homework 3 due 16:30, Thursday, 14 th October 2010 CS 311 Homework 3 due 16:30, Thursdy, 14 th Octoer 2010 Homework must e sumitted on pper, in clss. Question 1. [15 pts.; 5 pts. ech] Drw stte digrms for NFAs recognizing the following lnguges:. L = {w

More information

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont.

NFA DFA Example 3 CMSC 330: Organization of Programming Languages. Equivalence of DFAs and NFAs. Equivalence of DFAs and NFAs (cont. NFA DFA Exmple 3 CMSC 330: Orgniztion of Progrmming Lnguges NFA {B,D,E {A,E {C,D {E Finite Automt, con't. R = { {A,E, {B,D,E, {C,D, {E 2 Equivlence of DFAs nd NFAs Any string from {A to either {D or {CD

More information

Harvard University Computer Science 121 Midterm October 23, 2012

Harvard University Computer Science 121 Midterm October 23, 2012 Hrvrd University Computer Science 121 Midterm Octoer 23, 2012 This is closed-ook exmintion. You my use ny result from lecture, Sipser, prolem sets, or section, s long s you quote it clerly. The lphet is

More information

First Midterm Examination

First Midterm Examination 24-25 Fll Semester First Midterm Exmintion ) Give the stte digrm of DFA tht recognizes the lnguge A over lphet Σ = {, } where A = {w w contins or } 2) The following DFA recognizes the lnguge B over lphet

More information

Regular expressions, Finite Automata, transition graphs are all the same!!

Regular expressions, Finite Automata, transition graphs are all the same!! CSI 3104 /Winter 2011: Introduction to Forml Lnguges Chpter 7: Kleene s Theorem Chpter 7: Kleene s Theorem Regulr expressions, Finite Automt, trnsition grphs re ll the sme!! Dr. Neji Zgui CSI3104-W11 1

More information

For convenience, we rewrite m2 s m2 = m m m ; where m is repeted m times. Since xyz = m m m nd jxyj»m, we hve tht the string y is substring of the fir

For convenience, we rewrite m2 s m2 = m m m ; where m is repeted m times. Since xyz = m m m nd jxyj»m, we hve tht the string y is substring of the fir CSCI 2400 Models of Computtion, Section 3 Solutions to Homework 4 Problem 1. ll the solutions below refer to the Pumping Lemm of Theorem 4.8, pge 119. () L = f n b l k : k n + lg Let's ssume for contrdiction

More information

Minimal DFA. minimal DFA for L starting from any other

Minimal DFA. minimal DFA for L starting from any other Miniml DFA Among the mny DFAs ccepting the sme regulr lnguge L, there is exctly one (up to renming of sttes) which hs the smllest possile numer of sttes. Moreover, it is possile to otin tht miniml DFA

More information

Nondeterminism and Nodeterministic Automata

Nondeterminism and Nodeterministic Automata Nondeterminism nd Nodeterministic Automt 61 Nondeterminism nd Nondeterministic Automt The computtionl mchine models tht we lerned in the clss re deterministic in the sense tht the next move is uniquely

More information

CS 330 Formal Methods and Models

CS 330 Formal Methods and Models CS 330 Forml Methods nd Models Dn Richrds, George Mson University, Spring 2017 Quiz Solutions Quiz 1, Propositionl Logic Dte: Ferury 2 1. Prove ((( p q) q) p) is tutology () (3pts) y truth tle. p q p q

More information

Let's start with an example:

Let's start with an example: Finite Automt Let's strt with n exmple: Here you see leled circles tht re sttes, nd leled rrows tht re trnsitions. One of the sttes is mrked "strt". One of the sttes hs doule circle; this is terminl stte

More information

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University CS415 Compilers Lexicl Anlysis nd These slides re sed on slides copyrighted y Keith Cooper, Ken Kennedy & Lind Torczon t Rice University First Progrmming Project Instruction Scheduling Project hs een posted

More information

Chapter 4 Regular Grammar and Regular Sets. (Solutions / Hints)

Chapter 4 Regular Grammar and Regular Sets. (Solutions / Hints) C K Ngpl Forml Lnguges nd utomt Theory Chpter 4 Regulr Grmmr nd Regulr ets (olutions / Hints) ol. (),,,,,,,,,,,,,,,,,,,,,,,,,, (),, (c) c c, c c, c, c, c c, c, c, c, c, c, c, c c,c, c, c, c, c, c, c, c,

More information

SWEN 224 Formal Foundations of Programming WITH ANSWERS

SWEN 224 Formal Foundations of Programming WITH ANSWERS T E W H A R E W Ā N A N G A O T E Ū P O K O O T E I K A A M Ā U I VUW V I C T O R I A UNIVERSITY OF WELLINGTON Time Allowed: 3 Hours EXAMINATIONS 2011 END-OF-YEAR SWEN 224 Forml Foundtions of Progrmming

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automt Theory nd Forml Lnguges TMV027/DIT321 LP4 2018 Lecture 10 An Bove April 23rd 2018 Recp: Regulr Lnguges We cn convert between FA nd RE; Hence both FA nd RE ccept/generte regulr lnguges; More

More information

CHAPTER 1 Regular Languages. Contents

CHAPTER 1 Regular Languages. Contents Finite Automt (FA or DFA) CHAPTE 1 egulr Lnguges Contents definitions, exmples, designing, regulr opertions Non-deterministic Finite Automt (NFA) definitions, euivlence of NFAs nd DFAs, closure under regulr

More information

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 4 1. UsetheproceduredescriedinLemm1.55toconverttheregulrexpression(((00) (11)) 01) into n NFA. Answer: 0 0 1 1 00 0 0 11 1 1 01 0 1 (00)

More information

Finite Automata-cont d

Finite Automata-cont d Automt Theory nd Forml Lnguges Professor Leslie Lnder Lecture # 6 Finite Automt-cont d The Pumping Lemm WEB SITE: http://ingwe.inghmton.edu/ ~lnder/cs573.html Septemer 18, 2000 Exmple 1 Consider L = {ww

More information

Lecture 6 Regular Grammars

Lecture 6 Regular Grammars Lecture 6 Regulr Grmmrs COT 4420 Theory of Computtion Section 3.3 Grmmr A grmmr G is defined s qudruple G = (V, T, S, P) V is finite set of vribles T is finite set of terminl symbols S V is specil vrible

More information

Parse trees, ambiguity, and Chomsky normal form

Parse trees, ambiguity, and Chomsky normal form Prse trees, miguity, nd Chomsky norml form In this lecture we will discuss few importnt notions connected with contextfree grmmrs, including prse trees, miguity, nd specil form for context-free grmmrs

More information

Normal Forms for Context-free Grammars

Normal Forms for Context-free Grammars Norml Forms for Context-free Grmmrs 1 Linz 6th, Section 6.2 wo Importnt Norml Forms, pges 171--178 2 Chomsky Norml Form All productions hve form: A BC nd A vrile vrile terminl 3 Exmples: S AS S AS S S

More information

Designing finite automata II

Designing finite automata II Designing finite utomt II Prolem: Design DFA A such tht L(A) consists of ll strings of nd which re of length 3n, for n = 0, 1, 2, (1) Determine wht to rememer out the input string Assign stte to ech of

More information

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true. York University CSE 2 Unit 3. DFA Clsses Converting etween DFA, NFA, Regulr Expressions, nd Extended Regulr Expressions Instructor: Jeff Edmonds Don t chet y looking t these nswers premturely.. For ech

More information

CSC 311 Theory of Computation

CSC 311 Theory of Computation CSC 11 Theory of Computtion Tutoril on DFAs, NFAs, regulr expressions, regulr grmmr, closure of regulr lnguges, context-free grmmrs, non-deterministic push-down utomt, Turing mchines,etc. Tutoril 2 Second

More information

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.)

CS 373, Spring Solutions to Mock midterm 1 (Based on first midterm in CS 273, Fall 2008.) CS 373, Spring 29. Solutions to Mock midterm (sed on first midterm in CS 273, Fll 28.) Prolem : Short nswer (8 points) The nswers to these prolems should e short nd not complicted. () If n NF M ccepts

More information

Formal Languages and Automata Theory. D. Goswami and K. V. Krishna

Formal Languages and Automata Theory. D. Goswami and K. V. Krishna Forml Lnguges nd Automt Theory D. Goswmi nd K. V. Krishn Novemer 5, 2010 Contents 1 Mthemticl Preliminries 3 2 Forml Lnguges 4 2.1 Strings............................... 5 2.2 Lnguges.............................

More information

NFAs continued, Closure Properties of Regular Languages

NFAs continued, Closure Properties of Regular Languages lgorithms & Models of omputtion S/EE 374, Spring 209 NFs continued, losure Properties of Regulr Lnguges Lecture 5 Tuesdy, Jnury 29, 209 Regulr Lnguges, DFs, NFs Lnguges ccepted y DFs, NFs, nd regulr expressions

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 CMSC 330 1 Types of Finite Automt Deterministic Finite Automt (DFA) Exctly one sequence of steps for ech string All exmples so fr Nondeterministic

More information

Formal Languages Simplifications of CFGs

Formal Languages Simplifications of CFGs Forml Lnguges implifictions of CFGs ubstitution Rule Equivlent grmmr b bc ubstitute b bc bbc b 2 ubstitution Rule b bc bbc ubstitute b bc bbc bc Equivlent grmmr 3 In generl: xz y 1 ubstitute y 1 xz xy1z

More information

Talen en Automaten Test 1, Mon 7 th Dec, h45 17h30

Talen en Automaten Test 1, Mon 7 th Dec, h45 17h30 Tlen en Automten Test 1, Mon 7 th Dec, 2015 15h45 17h30 This test consists of four exercises over 5 pges. Explin your pproch, nd write your nswer to ech exercise on seprte pge. You cn score mximum of 100

More information

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb.

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. NFA for (a b)*abb. CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 Types of Finite Automt Deterministic Finite Automt () Exctly one sequence of steps for ech string All exmples so fr Nondeterministic Finite Automt

More information

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2

Types of Finite Automata. CMSC 330: Organization of Programming Languages. Comparing DFAs and NFAs. Comparing DFAs and NFAs (cont.) Finite Automata 2 CMSC 330: Orgniztion of Progrmming Lnguges Finite Automt 2 Types of Finite Automt Deterministic Finite Automt () Exctly one sequence of steps for ech string All exmples so fr Nondeterministic Finite Automt

More information

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014 CMPSCI 250: Introduction to Computtion Lecture #31: Wht DFA s Cn nd Cn t Do Dvid Mix Brrington 9 April 2014 Wht DFA s Cn nd Cn t Do Deterministic Finite Automt Forml Definition of DFA s Exmples of DFA

More information

Automata Theory 101. Introduction. Outline. Introduction Finite Automata Regular Expressions ω-automata. Ralf Huuck.

Automata Theory 101. Introduction. Outline. Introduction Finite Automata Regular Expressions ω-automata. Ralf Huuck. Outline Automt Theory 101 Rlf Huuck Introduction Finite Automt Regulr Expressions ω-automt Session 1 2006 Rlf Huuck 1 Session 1 2006 Rlf Huuck 2 Acknowledgement Some slides re sed on Wolfgng Thoms excellent

More information

CSC 473 Automata, Grammars & Languages 11/9/10

CSC 473 Automata, Grammars & Languages 11/9/10 CSC 473 utomt, Grmmrs & Lnguges 11/9/10 utomt, Grmmrs nd Lnguges Discourse 06 Decidbility nd Undecidbility Decidble Problems for Regulr Lnguges Theorem 4.1: (embership/cceptnce Prob. for DFs) = {, w is

More information

Lexical Analysis Finite Automate

Lexical Analysis Finite Automate Lexicl Anlysis Finite Automte CMPSC 470 Lecture 04 Topics: Deterministic Finite Automt (DFA) Nondeterministic Finite Automt (NFA) Regulr Expression NFA DFA A. Finite Automt (FA) FA re grph, like trnsition

More information

Greedy regular expression matching

Greedy regular expression matching Alin Frisch INRIA Luc Crdelli MSRC 2004-05-15 ICALP The mtching prolem The prolem Project the structure of regulr expression on flt sequence. R = ( ) w = 1 2 1 2 3 v = [1 : [ 1 ; 2 ]; 2 : 1 ; 2 : 2 ; 1

More information

Lexical Analysis Part III

Lexical Analysis Part III Lexicl Anlysis Prt III Chpter 3: Finite Automt Slides dpted from : Roert vn Engelen, Florid Stte University Alex Aiken, Stnford University Design of Lexicl Anlyzer Genertor Trnslte regulr expressions to

More information

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages 5//6 Grmmr Automt nd Lnguges Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Prof. Mohmed Hmd Softwre Engineering L. The University of Aizu Jpn Regulr Lnguges Context Free Lnguges Context Sensitive

More information

CS375: Logic and Theory of Computing

CS375: Logic and Theory of Computing CS375: Logic nd Theory of Computing Fuhu (Frnk) Cheng Deprtment of Computer Science University of Kentucky 1 Tle of Contents: Week 1: Preliminries (set lger, reltions, functions) (red Chpters 1-4) Weeks

More information

CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata

CS103B Handout 18 Winter 2007 February 28, 2007 Finite Automata CS103B ndout 18 Winter 2007 Ferury 28, 2007 Finite Automt Initil text y Mggie Johnson. Introduction Severl childrens gmes fit the following description: Pieces re set up on plying ord; dice re thrown or

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

I. Theory of Automata II. Theory of Formal Languages III. Theory of Turing Machines

I. Theory of Automata II. Theory of Formal Languages III. Theory of Turing Machines CI 3104 /Winter 2011: Introduction to Forml Lnguges Chter 13: Grmmticl Formt Chter 13: Grmmticl Formt I. Theory of Automt II. Theory of Forml Lnguges III. Theory of Turing Mchines Dr. Neji Zgui CI3104-W11

More information

CISC 4090 Theory of Computation

CISC 4090 Theory of Computation 9/6/28 Stereotypicl computer CISC 49 Theory of Computtion Finite stte mchines & Regulr lnguges Professor Dniel Leeds dleeds@fordhm.edu JMH 332 Centrl processing unit (CPU) performs ll the instructions

More information

NFAs continued, Closure Properties of Regular Languages

NFAs continued, Closure Properties of Regular Languages Algorithms & Models of Computtion CS/ECE 374, Fll 2017 NFAs continued, Closure Properties of Regulr Lnguges Lecture 5 Tuesdy, Septemer 12, 2017 Sriel Hr-Peled (UIUC) CS374 1 Fll 2017 1 / 31 Regulr Lnguges,

More information

Regular Languages and Applications

Regular Languages and Applications Regulr Lnguges nd Applictions Yo-Su Hn Deprtment of Computer Science Yonsei University 1-1 SNU 4/14 Regulr Lnguges An old nd well-known topic in CS Kleene Theorem in 1959 FA (finite-stte utomton) constructions:

More information

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1 Non-Deterministic Finite Automt Fll 2018 Costs Busch - RPI 1 Nondeterministic Finite Automton (NFA) Alphbet ={} q q2 1 q 0 q 3 Fll 2018 Costs Busch - RPI 2 Nondeterministic Finite Automton (NFA) Alphbet

More information

Formal Languages and Automata

Formal Languages and Automata Moile Computing nd Softwre Engineering p. 1/5 Forml Lnguges nd Automt Chpter 2 Finite Automt Chun-Ming Liu cmliu@csie.ntut.edu.tw Deprtment of Computer Science nd Informtion Engineering Ntionl Tipei University

More information

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4 Intermedite Mth Circles Wednesdy, Novemer 14, 2018 Finite Automt II Nickols Rollick nrollick@uwterloo.c Regulr Lnguges Lst time, we were introduced to the ide of DFA (deterministic finite utomton), one

More information

Automata and Languages

Automata and Languages Automt nd Lnguges Prof. Mohmed Hmd Softwre Engineering Lb. The University of Aizu Jpn Grmmr Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Regulr Lnguges Context Free Lnguges Context Sensitive

More information

NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun:

NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun: CMPU 240 Lnguge Theory nd Computtion Spring 2019 NFAs nd Regulr Expressions Lst clss: Introduced nondeterministic finite utomt with -trnsitions Tody: Prove n NFA- is no more powerful thn n NFA Introduce

More information

Lecture 09: Myhill-Nerode Theorem

Lecture 09: Myhill-Nerode Theorem CS 373: Theory of Computtion Mdhusudn Prthsrthy Lecture 09: Myhill-Nerode Theorem 16 Ferury 2010 In this lecture, we will see tht every lnguge hs unique miniml DFA We will see this fct from two perspectives

More information

Name Ima Sample ASU ID

Name Ima Sample ASU ID Nme Im Smple ASU ID 2468024680 CSE 355 Test 1, Fll 2016 30 Septemer 2016, 8:35-9:25.m., LSA 191 Regrding of Midterms If you elieve tht your grde hs not een dded up correctly, return the entire pper to

More information

CMSC 330: Organization of Programming Languages. DFAs, and NFAs, and Regexps (Oh my!)

CMSC 330: Organization of Programming Languages. DFAs, and NFAs, and Regexps (Oh my!) CMSC 330: Orgniztion of Progrmming Lnguges DFAs, nd NFAs, nd Regexps (Oh my!) CMSC330 Spring 2018 Types of Finite Automt Deterministic Finite Automt (DFA) Exctly one sequence of steps for ech string All

More information

3 Regular expressions

3 Regular expressions 3 Regulr expressions Given n lphet Σ lnguge is set of words L Σ. So fr we were le to descrie lnguges either y using set theory (i.e. enumertion or comprehension) or y n utomton. In this section we shll

More information

More on automata. Michael George. March 24 April 7, 2014

More on automata. Michael George. March 24 April 7, 2014 More on utomt Michel George Mrch 24 April 7, 2014 1 Automt constructions Now tht we hve forml model of mchine, it is useful to mke some generl constructions. 1.1 DFA Union / Product construction Suppose

More information

General idea LR(0) SLR LR(1) LALR To best exploit JavaCUP, should understand the theoretical basis (LR parsing);

General idea LR(0) SLR LR(1) LALR To best exploit JavaCUP, should understand the theoretical basis (LR parsing); Bottom up prsing Generl ide LR(0) SLR LR(1) LLR To best exploit JvCUP, should understnd the theoreticl bsis (LR prsing); 1 Top-down vs Bottom-up Bottom-up more powerful thn top-down; Cn process more powerful

More information

The University of Nottingham

The University of Nottingham The University of Nottinghm SCHOOL OF COMPUTR SCINC AND INFORMATION TCHNOLOGY A LVL 1 MODUL, SPRING SMSTR 2004-2005 MACHINS AND THIR LANGUAGS Time llowed TWO hours Cndidtes must NOT strt writing their

More information

Finite-State Automata: Recap

Finite-State Automata: Recap Finite-Stte Automt: Recp Deepk D Souz Deprtment of Computer Science nd Automtion Indin Institute of Science, Bnglore. 09 August 2016 Outline 1 Introduction 2 Forml Definitions nd Nottion 3 Closure under

More information

Regular Language. Nonregular Languages The Pumping Lemma. The pumping lemma. Regular Language. The pumping lemma. Infinitely long words 3/17/15

Regular Language. Nonregular Languages The Pumping Lemma. The pumping lemma. Regular Language. The pumping lemma. Infinitely long words 3/17/15 Regulr Lnguge Nonregulr Lnguges The Pumping Lemm Models of Comput=on Chpter 10 Recll, tht ny lnguge tht cn e descried y regulr expression is clled regulr lnguge In this lecture we will prove tht not ll

More information

2. Lexical Analysis. Oscar Nierstrasz

2. Lexical Analysis. Oscar Nierstrasz 2. Lexicl Anlysis Oscr Nierstrsz Thnks to Jens Plserg nd Tony Hosking for their kind permission to reuse nd dpt the CS132 nd CS502 lecture notes. http://www.cs.ucl.edu/~plserg/ http://www.cs.purdue.edu/homes/hosking/

More information

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38 Theory of Computtion Regulr Lnguges (NTU EE) Regulr Lnguges Fll 2017 1 / 38 Schemtic of Finite Automt control 0 0 1 0 1 1 1 0 Figure: Schemtic of Finite Automt A finite utomton hs finite set of control

More information

CS 301. Lecture 04 Regular Expressions. Stephen Checkoway. January 29, 2018

CS 301. Lecture 04 Regular Expressions. Stephen Checkoway. January 29, 2018 CS 301 Lecture 04 Regulr Expressions Stephen Checkowy Jnury 29, 2018 1 / 35 Review from lst time NFA N = (Q, Σ, δ, q 0, F ) where δ Q Σ P (Q) mps stte nd n lphet symol (or ) to set of sttes We run n NFA

More information

Bottom-Up Parsing. Canonical Collection of LR(0) items. Part II

Bottom-Up Parsing. Canonical Collection of LR(0) items. Part II 2 ottom-up Prsing Prt II 1 Cnonil Colletion of LR(0) items CC_LR(0)_I items(g :ugmented_grmmr){ C = {CLOURE({ })} ; repet{ foreh(i C) foreh(grmmr symol X) if(goto(i,x) && GOTO(I,X) C) C = C {GOTO(I,X)};

More information

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS

The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER MACHINES AND THEIR LANGUAGES ANSWERS The University of ottinghm SCHOOL OF COMPUTR SCIC A LVL 2 MODUL, SPRIG SMSTR 2015 2016 MACHIS AD THIR LAGUAGS ASWRS Time llowed TWO hours Cndidtes my omplete the front over of their nswer ook nd sign their

More information

1 From NFA to regular expression

1 From NFA to regular expression Note 1: How to convert DFA/NFA to regulr expression Version: 1.0 S/EE 374, Fll 2017 Septemer 11, 2017 In this note, we show tht ny DFA cn e converted into regulr expression. Our construction would work

More information

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science CSCI 340: Computtionl Models Kleene s Theorem Chpter 7 Deprtment of Computer Science Unifiction In 1954, Kleene presented (nd proved) theorem which (in our version) sttes tht if lnguge cn e defined y ny

More information

State Minimization for DFAs

State Minimization for DFAs Stte Minimiztion for DFAs Red K & S 2.7 Do Homework 10. Consider: Stte Minimiztion 4 5 Is this miniml mchine? Step (1): Get rid of unrechle sttes. Stte Minimiztion 6, Stte is unrechle. Step (2): Get rid

More information

Lecture 08: Feb. 08, 2019

Lecture 08: Feb. 08, 2019 4CS4-6:Theory of Computtion(Closure on Reg. Lngs., regex to NDFA, DFA to regex) Prof. K.R. Chowdhry Lecture 08: Fe. 08, 2019 : Professor of CS Disclimer: These notes hve not een sujected to the usul scrutiny

More information

Theory of Computation Regular Languages

Theory of Computation Regular Languages Theory of Computtion Regulr Lnguges Bow-Yw Wng Acdemi Sinic Spring 2012 Bow-Yw Wng (Acdemi Sinic) Regulr Lnguges Spring 2012 1 / 38 Schemtic of Finite Automt control 0 0 1 0 1 1 1 0 Figure: Schemtic of

More information

CS 330 Formal Methods and Models

CS 330 Formal Methods and Models CS 0 Forml Methods nd Models Dn Richrds, George Mson University, Fll 2016 Quiz Solutions Quiz 1, Propositionl Logic Dte: Septemer 8 1. Prove q (q p) p q p () (4pts) with truth tle. p q p q p (q p) p q

More information

Table of contents: Lecture N Summary... 3 What does automata mean?... 3 Introduction to languages... 3 Alphabets... 3 Strings...

Table of contents: Lecture N Summary... 3 What does automata mean?... 3 Introduction to languages... 3 Alphabets... 3 Strings... Tle of contents: Lecture N0.... 3 ummry... 3 Wht does utomt men?... 3 Introduction to lnguges... 3 Alphets... 3 trings... 3 Defining Lnguges... 4 Lecture N0. 2... 7 ummry... 7 Kleene tr Closure... 7 Recursive

More information

Compiler Design. Fall Lexical Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compiler Design. Fall Lexical Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz University of Southern Cliforni Computer Science Deprtment Compiler Design Fll Lexicl Anlysis Smple Exercises nd Solutions Prof. Pedro C. Diniz USC / Informtion Sciences Institute 4676 Admirlty Wy, Suite

More information

Closure Properties of Regular Languages

Closure Properties of Regular Languages of Regulr Lnguges Dr. Neil T. Dntm CSCI-561, Colordo School of Mines Fll 2018 Dntm (Mines CSCI-561) Closure Properties of Regulr Lnguges Fll 2018 1 / 50 Outline Introduction Closure Properties Stte Minimiztion

More information

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton 25. Finite Automt AUTOMATA AND LANGUAGES A system of computtion tht only hs finite numer of possile sttes cn e modeled using finite utomton A finite utomton is often illustrted s stte digrm d d d. d q

More information

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1 Chpter Five: Nondeterministic Finite Automt Forml Lnguge, chpter 5, slide 1 1 A DFA hs exctly one trnsition from every stte on every symol in the lphet. By relxing this requirement we get relted ut more

More information

Thoery of Automata CS402

Thoery of Automata CS402 Thoery of Automt C402 Theory of Automt Tle of contents: Lecture N0. 1... 4 ummry... 4 Wht does utomt men?... 4 Introduction to lnguges... 4 Alphets... 4 trings... 4 Defining Lnguges... 5 Lecture N0. 2...

More information