Automata and Languages

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Automt nd Lnguges Prof. Mohmed Hmd Softwre Engineering Lb. The University of Aizu Jpn

2 Grmmr Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Regulr Lnguges Context Free Lnguges Context Sensitive Lnguges Lnguges 2

3 Content Regulr Lnguges Euivlence between Regulr Grmmrs nd Regulr Lnguges Pumping Lemm (PL) Exmples 3

4 Regulr Lnguges L is Regulr Lnguge if nd only if there exist finite utomton M = (Q, Σ, δ,, F ) such tht: L = L(M) = { w Σ* : δ (,w) F} 4

5 Euivlence between Regulr Grmmrs nd Regulr Lnguges Theorem If L is regulr lnguge then there is right-liner grmmr G =(V,T,S,P ) such tht L=L(G). Proof. L is regulr implies (by def.) there exist finite utomton M = (Q, Σ, δ,, F ) such tht L(M)=L. Now we construct the euivlent grmmr G s follows: Vribles re the sttes: V = Q Strt symbol is strt stte: S = Sme lphbet of terminls T=Σ A trnsition δ(,)= 2 becomes the rule à 2 Accept sttes F define the λ-productions à λ Accepted pths give rise to terminting derivtions nd vice vers. L(G)=L(M). 5

6 Euivlence between Regulr Grmmrs nd Regulr Lnguges Exmple x y z The DFA bove cn be simulted by the grmmr x à x y y à x z z à x z λ 6

7 Euivlence between Regulr Grmmrs nd Regulr Lnguges Exmple x x à x y y à x z z à x z λ x y z 7

8 Euivlence between Regulr Grmmrs nd Regulr Lnguges Exmple x à x y y à x z z à x z λ x y x y z 8

9 Euivlence between Regulr Grmmrs nd Regulr Lnguges Exmple x à x y y à x z z à x z λ x y x x y z 9

10 Euivlence between Regulr Grmmrs nd Regulr Lnguges Exmple x à x y y à x z z à x z λ x y x x x y z

11 Euivlence between Regulr Grmmrs nd Regulr Lnguges Exmple x à x y y à x z z à x z λ x y z x y x x y

12 Euivlence between Regulr Grmmrs nd Regulr Lnguges Exmple x à x y y à x z z à x z λ x y x x y z x y z 2

13 Euivlence between Regulr Grmmrs nd Regulr Lnguges Exmple x à x y y à x z z à x z λ x y x x y z x y z ACCEPT! 3

14 Euivlence between Regulr Grmmrs nd Regulr Lnguges Theorem 2 If G =(V,T,S,P) is right-liner grmmr then L(G) is regulr lnguge. Proof. : Define FA M = (Q, Σ, δ,, F ) s follows Strt stte correspond to strt symbol S A non-finl stte i corresponds to vrible symbol V i Sme lphbet of terminls Σ = Τ For every rule V i à m V j, define trnsition δ( i, m )= j For every rule V i à m, define trnsition δ( i, m )= f finl stte Terminting derivtions give rise to ccepted pths nd vice vers. So L(M)=L(G). Hence (by def.) L(G) is regulr lnguge. 4

15 Euivlence between Regulr Grmmrs nd Regulr Lnguges Theorem 2 Construct n FA tht is euivlent to the right-liner grmmr: S à A A à bs Aà b Answer: S A f b b 5

16 Euivlence between Regulr Grmmrs nd Regulr Lnguges Comments THEOREM nd THEOREM 2 show tht right-liner grmmrs nd regulr lnguges re euivlent. Similrly we cn show tht left-liner grmmrs nd regulr lnguges re euivlent. Hence we conclude tht Regulr Grmmrs nd Regulr Lnguges re euivlent. 6

17 Q: Regulr Lnguges Cn every CFG be converted into right liner grmmr? A: NO! This would men tht ll context free lnguges re regulr. For exmple: S à λ Sb cnnot be converted becuse { n b n } is not regulr. 7

18 Regulr Lnguges Q: How we cn identify non-regulr lnguges? A: By using techniue clled Pumping Lemm 8

19 Pumping Lemm (PL) Motivtion Consider the lnguge L = * = {,,,, } The string is sid to be pumpble in L becuse cn tke the underlined portion, nd pump it up (i.e. repet) s much s desired while lwys getting elements in L. 9

20 Pumping Lemm (PL) Motivtion Consider the lnguge Q: L = * = {,,,, } Which of the following re pumpble? A:. Pumpble:,,,, etc. 2. Pumpble: 3. not pumpble becuse most of * not in L 2

21 Pumping Lemm (PL) Motivtion Q: Define L 2 by the following utomton: Is pumpble? A: Pumpble:,. Underlined substrings correspond to cycles in the FA! Cycles in the FA cn be repeted rbitrrily often, hence pumpble. 2

22 Pumping Lemm (PL) Motivtion Let L3 = {,,, λ} Q: Which strings re pumpble? A: None! When pumping ny string non-trivilly, lwys result in infinitely mny possible strings. So no pumping cn go on inside finite set. Pumping Lemm give criterion for when strings cn be pumped. 22

23 Pumping Lemm (PL) Motivtion b 2 b,b 3 b We hve: bbbb L(M ) Becuse: b b b b 23

24 b b b b Note, bbb L(M ) So, bb L(M ) b b b b ) ( ) ( ) ( :, M L b bb b j i j i Ν Also, So, We note tht: Pumping Lemm (PL) Motivtion

25 Pumping Lemm (PL) Theorem Given n (infinite) regulr lnguge L, there is number p (clled the pumping number) such tht ny string in L of length p is pumpble within its first p letters. In other words, for ll u L with u p we cn write: u = xyz (x is prefix, z is suffix) y (mid-portion y is non-empty) xy p (pumping occurs in first p letters) xy i z L for ll i (cn pump y-portion) To prove the Pumping Lemm we need to know the Pigeonhole Principle 25

26 Pumping Lemm (PL) Pigeonhole principle This Box hs more thn one object The pigeonhole principle is very simple, yet powerful method for identifying nonregulr lnguges. It sttes tht: given n objects nd m boxes, if n>m then t lest one box must hve more thn one object. n objects: n > m m boxes: 26

27 Pumping Lemm (PL) Pigeonhole principle fundmentl observtion Given sufficiently long string, the sttes of DFA must repet in n ccepting computtion. These cycles cn then be used to predict (generte) infinitely mny other strings in (of) the lnguge. Pigeon-Hole Principle 27

28 Pumping Lemm (PL) Proof Now consider n ccepted string u. By ssumption L is regulr so let M be the FA ccepting it. Let p = Q = no. of sttes in M. Suppose u p. The pth lbeled by u visits p+ sttes in its first p letters. Thus (by pigeonhole principle) u must visit some stte twice. The sub-pth of u connecting the first nd second visit of the vertex is loop, nd gives the climed string y tht cn be pumped within the first p letters. 28

29 Pumping Lemm (PL) Notes: It is necessry condition. Every regulr lnguge stisfies it. If lnguge violtes it, it is not regulr. RL => PL not PL => not RL It is not sufficient condition. Not every non-regulr lnguge violtes it. not RL =>? PL or not PL (no conclusion) 29

30 Notes: Pumping Lemm (PL) For ll sufficiently long strings (u) There exists non-null prefix (xy) nd substring (y) For ll repetitions of the substring (y), we get strings in the lnguge. u L : x,y,z u k : ( xyz = u) ( xy p) ( y ) ( i : i xy i z L) 3

31 Proving non-regulrity Pumping Lemm (PL) If there exists n rbitrrily long string u L, nd for ech decomposition u = xyz, there exists n i such tht xy i z L, then L is non-regulr. Negtion of the necessry condition: u L : x,y,z u p : ( xyz = u) ( xy p) ( y ) ( i : i xy i z L) 3

32 Pumping Lemm (PL) Proving non-regulrity In generl, to prove tht L isn t regulr:. Assume L were regulr 2. Therefore it hs pumping no. p 3. Find string pttern involving the length p in some clever wy, nd which cnnot be pumped. This is the hrd prt. 4. (2)àß(3) <contrdiction> Therefore our ssumption () ws wrong nd conclude tht L is not regulr lnguge 32

33 Pumping Lemm (PL) Exmple Show tht L={ n b n n =,,2, } is not regulr.. Assume L were regulr 2. Therefore it hs pumping no. p, sy p=2 3. But consider the string u= 2 b 2. we hve u =4 > p=2, let x=, y=, nd z=bb è u=xyz, y, nd xy p(=2). PLè xy i z L for ll i Tking i=è xz L è bb L 4. <contrdiction> Therefore our ssumption () ws wrong nd conclude tht L is not regulr lnguge 33

34 Pumping Lemm (PL) Exercise Show tht the following lnguges re not regulr: L p = p { p is prime number} L c = c { c is composite number} L = { ω {, b}* # ' s inω = # b's inω} L pl ={x * x =x R } 34

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

5//6 Grmmr Automt nd Lnguges Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Prof. Mohmed Hmd Softwre Engineering L. The University of Aizu Jpn Regulr Lnguges Context Free Lnguges Context Sensitive

1.4 Nonregular Languages

74 1.4 Nonregulr Lnguges The number of forml lnguges over ny lphbet (= decision/recognition problems) is uncountble On the other hnd, the number of regulr expressions (= strings) is countble Hence, ll

Lecture 6 Regular Grammars

Lecture 6 Regulr Grmmrs COT 4420 Theory of Computtion Section 3.3 Grmmr A grmmr G is defined s qudruple G = (V, T, S, P) V is finite set of vribles T is finite set of terminl symbols S V is specil vrible

For convenience, we rewrite m2 s m2 = m m m ; where m is repeted m times. Since xyz = m m m nd jxyj»m, we hve tht the string y is substring of the fir

CSCI 2400 Models of Computtion, Section 3 Solutions to Homework 4 Problem 1. ll the solutions below refer to the Pumping Lemm of Theorem 4.8, pge 119. () L = f n b l k : k n + lg Let's ssume for contrdiction

5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9.

Regulr Expressions, Pumping Lemm, Right Liner Grmmrs Ling 106 Mrch 25, 2002 1 Regulr Expressions A regulr expression descries or genertes lnguge: it is kind of shorthnd for listing the memers of lnguge.

1.3 Regular Expressions

56 1.3 Regulr xpressions These hve n importnt role in describing ptterns in serching for strings in mny pplictions (e.g. wk, grep, Perl,...) All regulr expressions of lphbet re 1.Ønd re regulr expressions,

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

Theory of Computtion Regulr Lnguges (NTU EE) Regulr Lnguges Fll 2017 1 / 38 Schemtic of Finite Automt control 0 0 1 0 1 1 1 0 Figure: Schemtic of Finite Automt A finite utomton hs finite set of control

Theory of Computation Regular Languages

Theory of Computtion Regulr Lnguges Bow-Yw Wng Acdemi Sinic Spring 2012 Bow-Yw Wng (Acdemi Sinic) Regulr Lnguges Spring 2012 1 / 38 Schemtic of Finite Automt control 0 0 1 0 1 1 1 0 Figure: Schemtic of

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51

Non Deterministic Automt Linz: Nondeterministic Finite Accepters, pge 51 1 Nondeterministic Finite Accepter (NFA) Alphbet ={} q 1 q2 q 0 q 3 2 Nondeterministic Finite Accepter (NFA) Alphbet ={} Two choices

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1

Non-Deterministic Finite Automt Fll 2018 Costs Busch - RPI 1 Nondeterministic Finite Automton (NFA) Alphbet ={} q q2 1 q 0 q 3 Fll 2018 Costs Busch - RPI 2 Nondeterministic Finite Automton (NFA) Alphbet

CHAPTER 1 Regular Languages. Contents

Finite Automt (FA or DFA) CHAPTE 1 egulr Lnguges Contents definitions, exmples, designing, regulr opertions Non-deterministic Finite Automt (NFA) definitions, euivlence of NFAs nd DFAs, closure under regulr

Harvard University Computer Science 121 Midterm October 23, 2012

Hrvrd University Computer Science 121 Midterm Octoer 23, 2012 This is closed-ook exmintion. You my use ny result from lecture, Sipser, prolem sets, or section, s long s you quote it clerly. The lphet is

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 4 1. UsetheproceduredescriedinLemm1.55toconverttheregulrexpression(((00) (11)) 01) into n NFA. Answer: 0 0 1 1 00 0 0 11 1 1 01 0 1 (00)

CS 275 Automata and Formal Language Theory

CS 275 Automt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Problem (II) Chpter II.5.: Properties of Context Free Grmmrs (14) Anton Setzer (Bsed on book drft by J. V. Tucker nd K. Stephenson)

Talen en Automaten Test 1, Mon 7 th Dec, h45 17h30

Tlen en Automten Test 1, Mon 7 th Dec, 2015 15h45 17h30 This test consists of four exercises over 5 pges. Explin your pproch, nd write your nswer to ech exercise on seprte pge. You cn score mximum of 100

Deterministic Finite-State Automata

Deterministic Finite-Stte Automt Deepk D Souz Deprtment of Computer Science nd Automtion Indin Institute of Science, Bnglore. 12 August 2013 Outline 1 Introduction 2 Exmple DFA 1 DFA for Odd number of

Regular Language. Nonregular Languages The Pumping Lemma. The pumping lemma. Regular Language. The pumping lemma. Infinitely long words 3/17/15

Regulr Lnguge Nonregulr Lnguges The Pumping Lemm Models of Comput=on Chpter 10 Recll, tht ny lnguge tht cn e descried y regulr expression is clled regulr lnguge In this lecture we will prove tht not ll

Recursively Enumerable and Recursive. Languages

Recursively Enumerble nd Recursive nguges 1 Recll Definition (clss 19.pdf) Definition 10.4, inz, 6 th, pge 279 et S be set of strings. An enumertion procedure for Turing Mchine tht genertes ll strings

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh

Lnguges nd Automt Finite Automt Informtics 2A: Lecture 3 John Longley School of Informtics University of Edinburgh jrl@inf.ed.c.uk 22 September 2017 1 / 30 Lnguges nd Automt 1 Lnguges nd Automt Wht is

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automt Theory nd Forml Lnguges TMV027/DIT321 LP4 2018 Lecture 10 An Bove April 23rd 2018 Recp: Regulr Lnguges We cn convert between FA nd RE; Hence both FA nd RE ccept/generte regulr lnguges; More

5.1 Definitions and Examples 5.2 Deterministic Pushdown Automata

CSC4510 AUTOMATA 5.1 Definitions nd Exmples 5.2 Deterministic Pushdown Automt Definitions nd Exmples A lnguge cn be generted by CFG if nd only if it cn be ccepted by pushdown utomton. A pushdown utomton

CS 275 Automata and Formal Language Theory

CS 275 utomt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Prolem (II) Chpter II.5.: Properties of Context Free Grmmrs (14) nton Setzer (Bsed on ook drft y J. V. Tucker nd K. Stephenson)

CS 275 Automata and Formal Language Theory

CS 275 Automt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Problem (II) Chpter II.6.: Push Down Automt Remrk: This mteril is no longer tught nd not directly exm relevnt Anton Setzer (Bsed

Finite Automt Let's strt with n exmple: Here you see leled circles tht re sttes, nd leled rrows tht re trnsitions. One of the sttes is mrked "strt". One of the sttes hs doule circle; this is terminl stte

I. Theory of Automata II. Theory of Formal Languages III. Theory of Turing Machines

CI 3104 /Winter 2011: Introduction to Forml Lnguges Chter 13: Grmmticl Formt Chter 13: Grmmticl Formt I. Theory of Automt II. Theory of Forml Lnguges III. Theory of Turing Mchines Dr. Neji Zgui CI3104-W11

Non-Deterministic Finite Automata

Non-Deterministic Finite Automt http://users.comlb.ox.c.uk/luke. ong/teching/moc/nf2up.pdf 1 Nondeterministic Finite Automton (NFA) Alphbet ={} q1 q2 2 Alphbet ={} Two choices q1 q2 3 Alphbet ={} Two choices

Non Deterministic Automata. Formal Languages and Automata - Yonsei CS 1

Non Deterministic Automt Forml Lnguges nd Automt - Yonsei CS 1 Nondeterministic Finite Accepter (NFA) We llow set of possible moves insted of A unique move. Alphbet = {} Two choices q 1 q2 Forml Lnguges

Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh

Finite Automt Informtics 2A: Lecture 3 Mry Cryn School of Informtics University of Edinburgh mcryn@inf.ed.c.uk 21 September 2018 1 / 30 Lnguges nd Automt Wht is lnguge? Finite utomt: recp Some forml definitions

First Midterm Examination

Çnky University Deprtment of Computer Engineering 203-204 Fll Semester First Midterm Exmintion ) Design DFA for ll strings over the lphet Σ = {,, c} in which there is no, no nd no cc. 2) Wht lnguge does

11.1 Finite Automata. CS125 Lecture 11 Fall Motivation: TMs without a tape: maybe we can at least fully understand such a simple model?

CS125 Lecture 11 Fll 2016 11.1 Finite Automt Motivtion: TMs without tpe: mybe we cn t lest fully understnd such simple model? Algorithms (e.g. string mtching) Computing with very limited memory Forml verifiction

Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute

Victor Admchik Dnny Sletor Gret Theoreticl Ides In Computer Science CS 5-25 Spring 2 Lecture 2 Mr 3, 2 Crnegie Mellon University Deterministic Finite Automt Finite Automt A mchine so simple tht you cn

Minimal DFA. minimal DFA for L starting from any other

Miniml DFA Among the mny DFAs ccepting the sme regulr lnguge L, there is exctly one (up to renming of sttes) which hs the smllest possile numer of sttes. Moreover, it is possile to otin tht miniml DFA

Assignment 1 Automata, Languages, and Computability. 1 Finite State Automata and Regular Languages

Deprtment of Computer Science, Austrlin Ntionl University COMP2600 Forml Methods for Softwre Engineering Semester 2, 206 Assignment Automt, Lnguges, nd Computility Smple Solutions Finite Stte Automt nd

CSCI 340: Computational Models. Kleene s Theorem. Department of Computer Science

CSCI 340: Computtionl Models Kleene s Theorem Chpter 7 Deprtment of Computer Science Unifiction In 1954, Kleene presented (nd proved) theorem which (in our version) sttes tht if lnguge cn e defined y ny

CS375: Logic and Theory of Computing

CS375: Logic nd Theory of Computing Fuhu (Frnk) Cheng Deprtment of Computer Science University of Kentucky 1 Tle of Contents: Week 1: Preliminries (set lger, reltions, functions) (red Chpters 1-4) Weeks

Regular expressions, Finite Automata, transition graphs are all the same!!

CSI 3104 /Winter 2011: Introduction to Forml Lnguges Chpter 7: Kleene s Theorem Chpter 7: Kleene s Theorem Regulr expressions, Finite Automt, trnsition grphs re ll the sme!! Dr. Neji Zgui CSI3104-W11 1

Finite Automata-cont d

Automt Theory nd Forml Lnguges Professor Leslie Lnder Lecture # 6 Finite Automt-cont d The Pumping Lemm WEB SITE: http://ingwe.inghmton.edu/ ~lnder/cs573.html Septemer 18, 2000 Exmple 1 Consider L = {ww

1 Nondeterministic Finite Automata

1 Nondeterministic Finite Automt Suppose in life, whenever you hd choice, you could try oth possiilities nd live your life. At the end, you would go ck nd choose the one tht worked out the est. Then you

Today s Topics Automata and Languages

Tody s Topics Automt nd Lnguges Prof. Mohmed Hmd Softwre Engineering L. The University of Aizu Jpn DFA to Regulr Expression GFNA DFAèGNFA GNFA è RE DFA è RE Exmples 2 DFA è RE NFA DFA -NFA REX GNFA 3 Definition

Automata and Languages

Automt nd Lnguges Prof. Mohmed Hmd Softwre Engineering L. The University of Aizu Jpn Tody s Topics DFA to Regulr Expression GFNA DFAèGNFA GNFA è RE DFA è RE Exmples 2 DFA è RE NFA DFA -NFA REX GNFA 3 Definition

CSCI 340: Computational Models. Transition Graphs. Department of Computer Science

CSCI 340: Computtionl Models Trnsition Grphs Chpter 6 Deprtment of Computer Science Relxing Restrints on Inputs We cn uild n FA tht ccepts only the word! 5 sttes ecuse n FA cn only process one letter t

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton

25. Finite Automt AUTOMATA AND LANGUAGES A system of computtion tht only hs finite numer of possile sttes cn e modeled using finite utomton A finite utomton is often illustrted s stte digrm d d d. d q

CSCI FOUNDATIONS OF COMPUTER SCIENCE

1 CSCI- 2200 FOUNDATIONS OF COMPUTER SCIENCE Spring 2015 My 7, 2015 2 Announcements Homework 9 is due now. Some finl exm review problems will be posted on the web site tody. These re prcqce problems not

First Midterm Examination

24-25 Fll Semester First Midterm Exmintion ) Give the stte digrm of DFA tht recognizes the lnguge A over lphet Σ = {, } where A = {w w contins or } 2) The following DFA recognizes the lnguge B over lphet

CS375: Logic and Theory of Computing

CS375: Logic nd Theory of Computing Fuhu (Frnk) Cheng Deprtment of Computer Science University of Kentucky 1 Tble of Contents: Week 1: Preliminries (set lgebr, reltions, functions) (red Chpters 1-4) Weeks

Closure Properties of Regular Languages

Closure Properties of Regulr Lnguges Regulr lnguges re closed under mny set opertions. Let L 1 nd L 2 e regulr lnguges. (1) L 1 L 2 (the union) is regulr. (2) L 1 L 2 (the conctention) is regulr. (3) L

Homework Solution - Set 5 Due: Friday 10/03/08

CE 96 Introduction to the Theory of Computtion ll 2008 Homework olution - et 5 Due: ridy 10/0/08 1. Textook, Pge 86, Exercise 1.21. () 1 2 Add new strt stte nd finl stte. Mke originl finl stte non-finl.

Lecture 08: Feb. 08, 2019

4CS4-6:Theory of Computtion(Closure on Reg. Lngs., regex to NDFA, DFA to regex) Prof. K.R. Chowdhry Lecture 08: Fe. 08, 2019 : Professor of CS Disclimer: These notes hve not een sujected to the usul scrutiny

Chapter 4 Regular Grammar and Regular Sets. (Solutions / Hints)

C K Ngpl Forml Lnguges nd utomt Theory Chpter 4 Regulr Grmmr nd Regulr ets (olutions / Hints) ol. (),,,,,,,,,,,,,,,,,,,,,,,,,, (),, (c) c c, c c, c, c, c c, c, c, c, c, c, c, c c,c, c, c, c, c, c, c, c,

CSC 473 Automata, Grammars & Languages 11/9/10

CSC 473 utomt, Grmmrs & Lnguges 11/9/10 utomt, Grmmrs nd Lnguges Discourse 06 Decidbility nd Undecidbility Decidble Problems for Regulr Lnguges Theorem 4.1: (embership/cceptnce Prob. for DFs) = {, w is

CS 330 Formal Methods and Models

CS 330 Forml Methods nd Models Dn Richrds, section 003, George Mson University, Fll 2017 Quiz Solutions Quiz 1, Propositionl Logic Dte: Septemer 7 1. Prove (p q) (p q), () (5pts) using truth tles. p q

CS 330 Formal Methods and Models

CS 330 Forml Methods nd Models Dn Richrds, George Mson University, Spring 2017 Quiz Solutions Quiz 1, Propositionl Logic Dte: Ferury 2 1. Prove ((( p q) q) p) is tutology () (3pts) y truth tle. p q p q

Nondeterminism. Nondeterministic Finite Automata. Example: Moves on a Chessboard. Nondeterminism (2) Example: Chessboard (2) Formal NFA

Nondeterminism Nondeterministic Finite Automt Nondeterminism Subset Construction A nondeterministic finite utomton hs the bility to be in severl sttes t once. Trnsitions from stte on n input symbol cn

CMPSCI 250: Introduction to Computation. Lecture #31: What DFA s Can and Can t Do David Mix Barrington 9 April 2014

CMPSCI 250: Introduction to Computtion Lecture #31: Wht DFA s Cn nd Cn t Do Dvid Mix Brrington 9 April 2014 Wht DFA s Cn nd Cn t Do Deterministic Finite Automt Forml Definition of DFA s Exmples of DFA

CMSC 330: Organization of Programming Languages. DFAs, and NFAs, and Regexps (Oh my!)

CMSC 330: Orgniztion of Progrmming Lnguges DFAs, nd NFAs, nd Regexps (Oh my!) CMSC330 Spring 2018 Types of Finite Automt Deterministic Finite Automt (DFA) Exctly one sequence of steps for ech string All

Nondeterminism and Nodeterministic Automata

Nondeterminism nd Nodeterministic Automt 61 Nondeterminism nd Nondeterministic Automt The computtionl mchine models tht we lerned in the clss re deterministic in the sense tht the next move is uniquely

THEOTY OF COMPUTATION

Pushdown utomt nd Prsing lgorithms: Pushdown utomt nd context-free lnguges; Deterministic PDNondeterministic PD- Equivlence of PD nd CFG-closure properties of CFL. PUSHDOWN UTOMT ppliction: Regulr lnguges

Formal languages, automata, and theory of computation

Mälrdlen University TEN1 DVA337 2015 School of Innovtion, Design nd Engineering Forml lnguges, utomt, nd theory of computtion Thursdy, Novemer 5, 14:10-18:30 Techer: Dniel Hedin, phone 021-107052 The exm

Regular Languages and Applications

Regulr Lnguges nd Applictions Yo-Su Hn Deprtment of Computer Science Yonsei University 1-1 SNU 4/14 Regulr Lnguges An old nd well-known topic in CS Kleene Theorem in 1959 FA (finite-stte utomton) constructions:

Fundamentals of Computer Science

Fundmentls of Computer Science Chpter 3: NFA nd DFA equivlence Regulr expressions Henrik Björklund Umeå University Jnury 23, 2014 NFA nd DFA equivlence As we shll see, it turns out tht NFA nd DFA re equivlent,

More on automata. Michael George. March 24 April 7, 2014

More on utomt Michel George Mrch 24 April 7, 2014 1 Automt constructions Now tht we hve forml model of mchine, it is useful to mke some generl constructions. 1.1 DFA Union / Product construction Suppose

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

Intermedite Mth Circles Wednesdy, Novemer 14, 2018 Finite Automt II Nickols Rollick nrollick@uwterloo.c Regulr Lnguges Lst time, we were introduced to the ide of DFA (deterministic finite utomton), one

Lexical Analysis Finite Automate

Lexicl Anlysis Finite Automte CMPSC 470 Lecture 04 Topics: Deterministic Finite Automt (DFA) Nondeterministic Finite Automt (NFA) Regulr Expression NFA DFA A. Finite Automt (FA) FA re grph, like trnsition

CS:4330 Theory of Computation Spring Regular Languages. Equivalences between Finite automata and REs. Haniel Barbosa

CS:4330 Theory of Computtion Spring 208 Regulr Lnguges Equivlences between Finite utomt nd REs Hniel Brbos Redings for this lecture Chpter of [Sipser 996], 3rd edition. Section.3. Finite utomt nd regulr

A Finite Automton A Pushdown Automton 0000 000 red unred b b pop red unred push 2 An Exmple A Pushdown Automton Recll tht 0 n n not regulr. cn push symbols onto the stck cn pop them (red them bck) lter

Chapter 2 Finite Automata

Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht

Finite-State Automata: Recap

Finite-Stte Automt: Recp Deepk D Souz Deprtment of Computer Science nd Automtion Indin Institute of Science, Bnglore. 09 August 2016 Outline 1 Introduction 2 Forml Definitions nd Nottion 3 Closure under

a,b a 1 a 2 a 3 a,b 1 a,b a,b 2 3 a,b a,b a 2 a,b CS Determinisitic Finite Automata 1

CS4 45- Determinisitic Finite Automt -: Genertors vs. Checkers Regulr expressions re one wy to specify forml lnguge String Genertor Genertes strings in the lnguge Deterministic Finite Automt (DFA) re nother

Myhill-Nerode Theorem

Overview Myhill-Nerode Theorem Correspondence etween DA s nd MN reltions Cnonicl DA for L Computing cnonicl DFA Myhill-Nerode Theorem Deepk D Souz Deprtment of Computer Science nd Automtion Indin Institute

CHAPTER 1 Regular Languages. Contents. definitions, examples, designing, regular operations. Non-deterministic Finite Automata (NFA)

Finite Automt (FA or DFA) CHAPTER Regulr Lnguges Contents definitions, exmples, designing, regulr opertions Non-deterministic Finite Automt (NFA) definitions, equivlence of NFAs DFAs, closure under regulr

Worked out examples Finite Automata

Worked out exmples Finite Automt Exmple Design Finite Stte Automton which reds inry string nd ccepts only those tht end with. Since we re in the topic of Non Deterministic Finite Automt (NFA), we will

Normal Forms for Context-free Grammars

Norml Forms for Context-free Grmmrs 1 Linz 6th, Section 6.2 wo Importnt Norml Forms, pges 171--178 2 Chomsky Norml Form All productions hve form: A BC nd A vrile vrile terminl 3 Exmples: S AS S AS S S

Free groups, Lecture 2, part 1

Free groups, Lecture 2, prt 1 Olg Khrlmpovich NYC, Sep. 2 1 / 22 Theorem Every sugroup H F of free group F is free. Given finite numer of genertors of H we cn compute its sis. 2 / 22 Schreir s grph The

Converting Regular Expressions to Discrete Finite Automata: A Tutorial

Converting Regulr Expressions to Discrete Finite Automt: A Tutoril Dvid Christinsen 2013-01-03 This is tutoril on how to convert regulr expressions to nondeterministic finite utomt (NFA) nd how to convert

Java II Finite Automata I

Jv II Finite Automt I Bernd Kiefer Bernd.Kiefer@dfki.de Deutsches Forschungszentrum für künstliche Intelligenz Finite Automt I p.1/13 Processing Regulr Expressions We lredy lerned out Jv s regulr expression

NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun:

CMPU 240 Lnguge Theory nd Computtion Spring 2019 NFAs nd Regulr Expressions Lst clss: Introduced nondeterministic finite utomt with -trnsitions Tody: Prove n NFA- is no more powerful thn n NFA Introduce

E 1 (n) = E 0 (n-1) E 0 (n) = E 0 (n-1)+e 0 (n-2) T(n -1)=2E 0 (n-2) + E 0 (n-3)

cs3102: Theory of Computtion Clss 5: Non-Regulr PS1, Prolem 8 Menu Non-regulr lnguges Spring 2010 University of Virgini Dvid Evns PS1 Generl Comments Proofs re for mking convincing rguments, not for ofusction.

Formal Languages and Automata

Moile Computing nd Softwre Engineering p. 1/5 Forml Lnguges nd Automt Chpter 2 Finite Automt Chun-Ming Liu cmliu@csie.ntut.edu.tw Deprtment of Computer Science nd Informtion Engineering Ntionl Tipei University

1 Structural induction, finite automata, regular expressions

Discrete Structures Prelim 2 smple uestions s CS2800 Questions selected for spring 2017 1 Structurl induction, finite utomt, regulr expressions 1. We define set S of functions from Z to Z inductively s

Homework 3 Solutions

CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

State Minimization for DFAs

Stte Minimiztion for DFAs Red K & S 2.7 Do Homework 10. Consider: Stte Minimiztion 4 5 Is this miniml mchine? Step (1): Get rid of unrechle sttes. Stte Minimiztion 6, Stte is unrechle. Step (2): Get rid

Non-deterministic Finite Automata

Non-deterministic Finite Automt Eliminting non-determinism Rdoud University Nijmegen Non-deterministic Finite Automt H. Geuvers nd T. vn Lrhoven Institute for Computing nd Informtion Sciences Intelligent

Exercises Chapter 1. Exercise 1.1. Let Σ be an alphabet. Prove wv = w + v for all strings w and v.

1 Exercises Chpter 1 Exercise 1.1. Let Σ e n lphet. Prove wv = w + v for ll strings w nd v. Prove # (wv) = # (w)+# (v) for every symol Σ nd every string w,v Σ. Exercise 1.2. Let w 1,w 2,...,w k e k strings,

1 Structural induction

Discrete Structures Prelim 2 smple questions Solutions CS2800 Questions selected for Spring 2018 1 Structurl induction 1. We define set S of functions from Z to Z inductively s follows: Rule 1. For ny

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

CS 330 Formal Methods and Models Dana Richards, George Mason University, Spring 2016 Quiz Solutions

CS 330 Forml Methods nd Models Dn Richrds, George Mson University, Spring 2016 Quiz Solutions Quiz 1, Propositionl Logic Dte: Ferury 9 1. (4pts) ((p q) (q r)) (p r), prove tutology using truth tles. p

This lecture covers Chapter 8 of HMU: Properties of CFLs

This lecture covers Chpter 8 of HMU: Properties of CFLs Turing Mchine Extensions of Turing Mchines Restrictions of Turing Mchines Additionl Reding: Chpter 8 of HMU. Turing Mchine: Informl Definition B

Decidability. Models of Computation 1

Decidbility We investigte the power of lgorithms to solve problems. We demonstrte tht certin problems cn be solved lgorithmiclly nd others cnnot. Our objective is to explore the limits of lgorithmic solvbility.

Convert the NFA into DFA

Convert the NF into F For ech NF we cn find F ccepting the sme lnguge. The numer of sttes of the F could e exponentil in the numer of sttes of the NF, ut in prctice this worst cse occurs rrely. lgorithm:

Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Regular Expressions (RE) Kleene-*

Regulr Expressions (RE) Regulr Expressions (RE) Empty set F A RE denotes the empty set Opertion Nottion Lnguge UNIX Empty string A RE denotes the set {} Alterntion R +r L(r ) L(r ) r r Symol Alterntion

Math 4310 Solutions to homework 1 Due 9/1/16

Mth 4310 Solutions to homework 1 Due 9/1/16 1. Use the Eucliden lgorithm to find the following gretest common divisors. () gcd(252, 180) = 36 (b) gcd(513, 187) = 1 (c) gcd(7684, 4148) = 68 252 = 180 1

Formal Languages Simplifications of CFGs

Forml Lnguges implifictions of CFGs ubstitution Rule Equivlent grmmr b bc ubstitute b bc bbc b 2 ubstitution Rule b bc bbc ubstitute b bc bbc bc Equivlent grmmr 3 In generl: xz y 1 ubstitute y 1 xz xy1z

FABER Formal Languages, Automata and Models of Computation

DVA337 FABER Forml Lnguges, Automt nd Models of Computtion Lecture 5 chool of Innovtion, Design nd Engineering Mälrdlen University 2015 1 Recp of lecture 4 y definition suset construction DFA NFA stte

Deterministic Finite Automata

Finite Automt Deterministic Finite Automt H. Geuvers nd J. Rot Institute for Computing nd Informtion Sciences Version: fll 2016 J. Rot Version: fll 2016 Tlen en Automten 1 / 21 Outline Finite Automt Finite

CISC 4090 Theory of Computation

9/6/28 Stereotypicl computer CISC 49 Theory of Computtion Finite stte mchines & Regulr lnguges Professor Dniel Leeds dleeds@fordhm.edu JMH 332 Centrl processing unit (CPU) performs ll the instructions

Strong Bisimulation. Overview. References. Actions Labeled transition system Transition semantics Simulation Bisimulation

Strong Bisimultion Overview Actions Lbeled trnsition system Trnsition semntics Simultion Bisimultion References Robin Milner, Communiction nd Concurrency Robin Milner, Communicting nd Mobil Systems 32

Chapter Five: Nondeterministic Finite Automata. Formal Language, chapter 5, slide 1

Chpter Five: Nondeterministic Finite Automt Forml Lnguge, chpter 5, slide 1 1 A DFA hs exctly one trnsition from every stte on every symol in the lphet. By relxing this requirement we get relted ut more