Analysis of a lumped model of neocortex to study epileptiform ac

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Analysis of a lumped model of neocortex to study epileptiform ac"

Transcription

1 of a lumped model of neocortex to study epileptiform activity Sid Visser Hil Meijer Stephan van Gils March 21, 2012

2 What is epilepsy? Pathology Neurological disorder, affecting 1% of world population Characterized by increased probability of recurring seizures Seizures The activity of braincells hypersynchronizes Observed as large oscillations

3 What is epilepsy? Pathology Neurological disorder, affecting 1% of world population Characterized by increased probability of recurring seizures Seizures The activity of braincells hypersynchronizes Observed as large oscillations

4 EEG during a seizure

5 Goal of this research Goals Study several models of neural activity in neocortex Identify correspondences between these models Extrapolate results from simpler models to more complex models Results so far A large, detailed model describing activity of individual neurons in both normal and epileptiform states A simple, lumped model that has shown to have some similarity [Visser et al., 2010]

6 Motivation of model Simulation on Youtube

7 Model Introduction Two excitatory populations: ẋ 1 (t) = µ 1 x 1 (t) F 1 (x 1 (t τ i )) + G 1 (x 2 (t τ e )) ẋ 2 (t) = µ 2 x 2 (t) F 2 (x 2 (t τ i )) + G 2 (x 1 (t τ e ))

8 Model Introduction Two excitatory populations: ẋ 1 (t) = µ 1 x 1 (t) F 1 (x 1 (t τ i )) + G 1 (x 2 (t τ e )) ẋ 2 (t) = µ 2 x 2 (t) F 2 (x 2 (t τ i )) + G 2 (x 1 (t τ e ))

9 Model Introduction Two excitatory populations: ẋ 1 (t) = µ 1 x 1 (t) F 1 (x 1 (t τ i )) + G 1 (x 2 (t τ e )) ẋ 2 (t) = µ 2 x 2 (t) F 2 (x 2 (t τ i )) + G 2 (x 1 (t τ e ))

10 Model Introduction Two excitatory populations: ẋ 1 (t) = µ 1 x 1 (t) F 1 (x 1 (t τ i )) + G 1 (x 2 (t τ e )) ẋ 2 (t) = µ 2 x 2 (t) F 2 (x 2 (t τ i )) + G 2 (x 1 (t τ e ))

11 Simplifications Introduction Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Make system symmetric: µ 1 = µ 2 := µ F 1 = F 2 := F G 1 = G 2 := G Choose F(x) and G(x) as rescalings of: S = (tanh(x a) tanh( a)) cosh 2 ( a)

12 Time rescaling Introduction Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Time is rescaled to non-dimensionalize system: ẋ 1 (t) = x 1 (t) α 1 S(β 1 x 1 (t τ 1 )) + α 2 S(β 2 x 2 (t τ 2 )) ẋ 2 (t) = x 2 (t) α 1 S(β 1 x 2 (t τ 1 )) + α 2 S(β 2 x 1 (t τ 2 )) Introduce vector notation: ẋ(t) = f(x t ), with x t C([ h, 0], R 2 ) and h = max(τ 1, τ 2 ). Main parameters of interest: representing connection strengths between populations.

13 Time rescaling Introduction Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Time is rescaled to non-dimensionalize system: ẋ 1 (t) = x 1 (t) α 1 S(β 1 x 1 (t τ 1 )) + α 2 S(β 2 x 2 (t τ 2 )) ẋ 2 (t) = x 2 (t) α 1 S(β 1 x 2 (t τ 1 )) + α 2 S(β 2 x 1 (t τ 2 )) Introduce vector notation: ẋ(t) = f(x t ), with x t C([ h, 0], R 2 ) and h = max(τ 1, τ 2 ). Main parameters of interest: representing connection strengths between populations.

14 Fixed points Introduction Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Corollary The origin is always a fixed point of the DDE. Theorem The DDE only has only symmetric fixed points, i.e. f(x) = 0 = x = (x, x ).

15 Linearization Introduction Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient The DDE is linearized about an equilibrium: in which u 1 (t) = u 1 (t) k 1 u 1 (t τ 1 ) + k 2 u 2 (t τ 2 ), u 2 (t) = u 2 (t) k 1 u 2 (t τ 1 ) + k 2 u 1 (t τ 2 ), k 1 := α 1 β 1 S (β 1 x ) k 2 := α 2 β 2 S (β 2 x ). Note that k 1 and k 2 depend on the equilibrium at which we linearize.

16 Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Characteristic equation and eigenvalues Consider solutions of the form u(t) = e λt c, c R 2. Non-trivial solutions of the system correspond with (λ)c = 0, for: [ λ k1 e (λ) = λτ 1 k 2 e λτ ] 2 k 2 e λτ 2 λ k 1 e λτ 1 Non-trivial solutions exist when det (λ) = 0, or: (λ k 1 e λτ 1 + k 2 e λτ 2 ) (λ k }{{} 1 e λτ 1 k 2 e λτ 2 ) = 0. }{{} := +(λ) := (λ) This characteristic function has an infinite (but countable) number of roots.

17 Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Characteristic equation and eigenvalues Consider solutions of the form u(t) = e λt c, c R 2. Non-trivial solutions of the system correspond with (λ)c = 0, for: [ λ k1 e (λ) = λτ 1 k 2 e λτ ] 2 k 2 e λτ 2 λ k 1 e λτ 1 Non-trivial solutions exist when det (λ) = 0, or: (λ k 1 e λτ 1 + k 2 e λτ 2 ) (λ k }{{} 1 e λτ 1 k 2 e λτ 2 ) = 0. }{{} := +(λ) := (λ) This characteristic function has an infinite (but countable) number of roots.

18 Symmetries of solutions Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Theorem Roots of correspond to symmetric solutions, whereas roots of + relate to asymetric solutions. Proof. Let Z 2 act on C 2 so that 1 Z 2 acts as ξ(x, y) : (x, y) (y, x), then: { (λ)v = 0 (λ) = 0 ξv = v { (λ)v = 0 + (λ) = 0 ξv = v

19 Symmetries of solutions Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Theorem Roots of correspond to symmetric solutions, whereas roots of + relate to asymetric solutions. Proof. Let Z 2 act on C 2 so that 1 Z 2 acts as ξ(x, y) : (x, y) (y, x), then: { (λ)v = 0 (λ) = 0 ξv = v { (λ)v = 0 + (λ) = 0 ξv = v

20 Roots of (λ) Introduction Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Theorem For λ C 0 e λh and λ > C, with C C 0, (λ) > 0. Hence, (λ) has a zero free right half-plane [Bellman and Cooke, 1963].

21 Minimal Stability Region Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Theorem For k 1 + k 2 < 1 the system has no eigenvalues with positive real part.

22 Bifurcations Introduction Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Note: As in ODEs, an equilibrium of a DDE loses its stablity when either a single real eigenvalue passes through zero (fold/transcritical), or a pair of complex eigenvalues passes through the imaginary axis (Hopf).

23 Fold/transcritical bifurcation Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Theorem Equilibria undergo a fold or transcritical bifurcation on the lines 1 + k 1 ± k 2 = 0 in (k 1, k 2 )-space.

24 Hopf bifurcations Introduction Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Theorem Two curves, h + (ω) and h (ω), exist along which the linearized system has a pair of complex eigenvalues λ = ±iω. Proof. For now, we consider only + (iω) = 0; (iω) is similar. iω k 1 e iωτ 1 + k 2 e iωτ 2 = 0 [ ] [ ] [ ] cos(ωτ1 ) cos(ωτ 2 ) k1 1 = sin(ωτ 1 ) sin(ωτ 2 ) ω k 2

25 Hopf bifurcations Introduction Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Proof cntd. The matrix is invertible if det = sin(ω(τ 2 τ 1 )) 0, yielding: [ ] [ ] [ ] k1 1 sin(ωτ2 ) cos(ωτ = h + (ω) := 2 ) 1. sin(ω(τ 2 τ 1 )) sin(ωτ 1 ) cos(ωτ 1 ) ω k 2

26 Bifurcations in (k 1, k 2 )-space Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Very sensitive, complex branch structure Intersections correspond with codim-2 bifurcations. k 2 k 1 (τ 1 = 11.6, τ 2 = 20.3)

27 Returning branches Introduction Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Theorem For a given ω 0 > 0, (λ) has no roots λ = ±iω, ω > ω 0 inside the square k 1 + k 2 < 1 + ω0 2. Proof. First, assume iω is a root of + (a similar argument holds for ): 0 = 1 + iω + k 1 e iωτ 1 + k 2 e iωτ 2, 1 + iω k 1 k 2. Then, this root lies outside the designated square for ω > ω 0.

28 Revised stability region Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Conjecture For the considered parameters τ 1 and τ 2 the full stability region is bounded, connected and contains the origin.

29 The first Lyapunov coefficient Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Stability region partly bounded by curve of Hopfs The first Lyapunov coefficient is determined along the boundary Normal given by [Diekmann et al, 1995]: c 1 = 1 2 qt D 3 f(0)(φ, φ, φ) + q T D 2 f(0)(e 0 (0) 1 D 2 f(0)(φ, φ), φ) qt D 2 f(0)(e 2iω (2iω) 1 D 2 f(0)(φ, φ), φ).

30 The first Lyapunov coefficient Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Stability region partly bounded by curve of Hopfs The first Lyapunov coefficient is determined along the boundary Normal given by [Diekmann et al, 1995]: c 1 = 1 2 qt D 3 f(0)(φ, φ, φ) + q T D 2 f(0)(e 0 (0) 1 D 2 f(0)(φ, φ), φ) qt D 2 f(0)(e 2iω (2iω) 1 D 2 f(0)(φ, φ), φ).

31 Codim 2 bifurcations Introduction Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Generalized Hopf Lypunov coefficient passes through zero, Generalized Hopf bifurcation at boundary

32 Summary Introduction Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Equilibria Only symmetric equilibria Stability region identified Bifurcations of stability region Fold and transcritical bifurcations Hopf-bifurcations, both sub- and supercritical Zero-Hopf and Hopf-Hopf

33 Summary Introduction Fixed points and eigenvalues Linear stability Bifurcations First Lyapunov coefficient Equilibria Only symmetric equilibria Stability region identified Bifurcations of stability region Fold and transcritical bifurcations Hopf-bifurcations, both sub- and supercritical Zero-Hopf and Hopf-Hopf

34 Numerical bifurcation analysis Overview One parameter Two parameters One parameter Identify stable and unstable manifolds of non-trivial equilibrium and periodic solutions for varying α 2. Two parameters Continue boundaries of stable solutions in α 1 and α 2. Software DDE-BIFTOOL [Engelborghs et al., 2002] PDDE-CONT/Knut [Roose and Szalai, 2007]

35 Numerical bifurcation analysis Overview One parameter Two parameters One parameter Identify stable and unstable manifolds of non-trivial equilibrium and periodic solutions for varying α 2. Two parameters Continue boundaries of stable solutions in α 1 and α 2. Software DDE-BIFTOOL [Engelborghs et al., 2002] PDDE-CONT/Knut [Roose and Szalai, 2007]

36 Overview One parameter Two parameters Bifurcations in α A 2 B C D

37 Overview One parameter Two parameters Bifurcations in α 2 3 Bifurcation diagram II 2.5 I Maximal value 2 III 1.5 IV PD1 0 H1 B α 2 Detail I Detail II LPC4

38 Overview One parameter Two parameters Bifurcations in α 2 l k h Maximal value j g c i d f e α 2 a b

39 Fixed points in (k 1, k 2 )-space Overview One parameter Two parameters F1 B1 k H2 H3 H4 H1 Non-trivial Trivial k 1

40 Overview One parameter Two parameters Bifurcations of stable solutions in α 1 and α GH ZH2 ZH1 HH

41 Overview One parameter Two parameters Bifurcations of stable solutions in α 1 and α CP1 0.3 GH1 0.2 FF ZH2 ZH1 HH

42 Overview One parameter Two parameters Bifurcations of stable solutions in α 1 and α CP1 0.3 GH1 0.2 FF1 CP3 0.1 R1_1 0 ZH2 ZH1 HH

43 Complex bifurcation structure Overview One parameter Two parameters α 1 R2_1 FF2 R2_2 FF3 CP4 CP2 α 2

44 Comparison Introduction The bifurcation analysis is compared with a survey on the detailed model:

45 Introduction Comparison The bifurcation analysis is compared with a survey on the detailed model:

46 Summary and conclusions Summary We studied a simple, lumped model for neural activity Parameter regions of steady states and periodic solutions are identified The behavior of both models varies similarly for changes of parameters Regions of multistability are of interest for studying epilepsy

47 Future work Introduction Details Study the model s codim-2 bifurcations Proofs rather than conjectures Next steps Expand model (e.g. break symmetry) Parameter estimation

The Journal of Mathematical Neuroscience 2012, 2:8

The Journal of Mathematical Neuroscience 2012, 2:8 The Journal of Mathematical Neuroscience This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. Analysis

More information

Description of the extension ddebiftool_nmfm

Description of the extension ddebiftool_nmfm Description of the extension ddebiftool_nmfm Maikel Bosschaert, Bram Wage and Yuri Kuznetsov 16 September 2015 This addendum describes the normal form extension to DDE-BifTool, a bifurcation analysis toolbox

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

NBA Lecture 1. Simplest bifurcations in n-dimensional ODEs. Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011

NBA Lecture 1. Simplest bifurcations in n-dimensional ODEs. Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011 NBA Lecture 1 Simplest bifurcations in n-dimensional ODEs Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011 Contents 1. Solutions and orbits: equilibria cycles connecting orbits other invariant sets

More information

7 Two-dimensional bifurcations

7 Two-dimensional bifurcations 7 Two-dimensional bifurcations As in one-dimensional systems: fixed points may be created, destroyed, or change stability as parameters are varied (change of topological equivalence ). In addition closed

More information

HOPF BIFURCATION CALCULATIONS IN DELAYED SYSTEMS

HOPF BIFURCATION CALCULATIONS IN DELAYED SYSTEMS PERIODICA POLYTECHNICA SER. MECH. ENG. VOL. 48, NO. 2, PP. 89 200 2004 HOPF BIFURCATION CALCULATIONS IN DELAYED SYSTEMS Gábor OROSZ Bristol Centre for Applied Nonlinear Mathematics Department of Engineering

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 4. Bifurcations Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Local bifurcations for vector fields 1.1 The problem 1.2 The extended centre

More information

STABILITY ANALYSIS OF DELAY DIFFERENTIAL EQUATIONS WITH TWO DISCRETE DELAYS

STABILITY ANALYSIS OF DELAY DIFFERENTIAL EQUATIONS WITH TWO DISCRETE DELAYS CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 20, Number 4, Winter 2012 STABILITY ANALYSIS OF DELAY DIFFERENTIAL EQUATIONS WITH TWO DISCRETE DELAYS XIHUI LIN AND HAO WANG ABSTRACT. We use an algebraic

More information

as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback

as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback Lucas Illing and Daniel J. Gauthier Department of Physics Center for Nonlinear and Complex Systems Duke University, North Carolina

More information

Activity types in a neural mass model

Activity types in a neural mass model Master thesis Activity types in a neural mass model Jurgen Hebbink September 19, 214 Exam committee: Prof. Dr. S.A. van Gils (UT) Dr. H.G.E. Meijer (UT) Dr. G.J.M. Huiskamp (UMC Utrecht) Contents 1 Introduction

More information

Numerical techniques: Deterministic Dynamical Systems

Numerical techniques: Deterministic Dynamical Systems Numerical techniques: Deterministic Dynamical Systems Henk Dijkstra Institute for Marine and Atmospheric research Utrecht, Department of Physics and Astronomy, Utrecht, The Netherlands Transition behavior

More information

Numerical Continuation of Bifurcations - An Introduction, Part I

Numerical Continuation of Bifurcations - An Introduction, Part I Numerical Continuation of Bifurcations - An Introduction, Part I given at the London Dynamical Systems Group Graduate School 2005 Thomas Wagenknecht, Jan Sieber Bristol Centre for Applied Nonlinear Mathematics

More information

5.2.2 Planar Andronov-Hopf bifurcation

5.2.2 Planar Andronov-Hopf bifurcation 138 CHAPTER 5. LOCAL BIFURCATION THEORY 5.. Planar Andronov-Hopf bifurcation What happens if a planar system has an equilibrium x = x 0 at some parameter value α = α 0 with eigenvalues λ 1, = ±iω 0, ω

More information

One Dimensional Dynamical Systems

One Dimensional Dynamical Systems 16 CHAPTER 2 One Dimensional Dynamical Systems We begin by analyzing some dynamical systems with one-dimensional phase spaces, and in particular their bifurcations. All equations in this Chapter are scalar

More information

Time Delays in Neural Systems

Time Delays in Neural Systems Time Delays in Neural Systems Sue Ann Campbell 1 Department of Applied Mathematics, University of Waterloo, Waterloo ON N2l 3G1 Canada sacampbell@uwaterloo.ca Centre for Nonlinear Dynamics in Physiology

More information

Andronov Hopf and Bautin bifurcation in a tritrophic food chain model with Holling functional response types IV and II

Andronov Hopf and Bautin bifurcation in a tritrophic food chain model with Holling functional response types IV and II Electronic Journal of Qualitative Theory of Differential Equations 018 No 78 1 7; https://doiorg/10143/ejqtde018178 wwwmathu-szegedhu/ejqtde/ Andronov Hopf and Bautin bifurcation in a tritrophic food chain

More information

Lecture 3 : Bifurcation Analysis

Lecture 3 : Bifurcation Analysis Lecture 3 : Bifurcation Analysis D. Sumpter & S.C. Nicolis October - December 2008 D. Sumpter & S.C. Nicolis General settings 4 basic bifurcations (as long as there is only one unstable mode!) steady state

More information

Mathematical Modeling I

Mathematical Modeling I Mathematical Modeling I Dr. Zachariah Sinkala Department of Mathematical Sciences Middle Tennessee State University Murfreesboro Tennessee 37132, USA November 5, 2011 1d systems To understand more complex

More information

Stability and bifurcation of a simple neural network with multiple time delays.

Stability and bifurcation of a simple neural network with multiple time delays. Fields Institute Communications Volume, 999 Stability and bifurcation of a simple neural network with multiple time delays. Sue Ann Campbell Department of Applied Mathematics University of Waterloo Waterloo

More information

Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method

Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method Zhen Wu Wim Michiels Report TW 596, May 2011 Katholieke Universiteit Leuven

More information

2 Lecture 2: Amplitude equations and Hopf bifurcations

2 Lecture 2: Amplitude equations and Hopf bifurcations Lecture : Amplitude equations and Hopf bifurcations This lecture completes the brief discussion of steady-state bifurcations by discussing vector fields that describe the dynamics near a bifurcation. From

More information

Chapter 24 BIFURCATIONS

Chapter 24 BIFURCATIONS Chapter 24 BIFURCATIONS Abstract Keywords: Phase Portrait Fixed Point Saddle-Node Bifurcation Diagram Codimension-1 Hysteresis Hopf Bifurcation SNIC Page 1 24.1 Introduction In linear systems, responses

More information

Bifurcations in Delayed Lotka-Volterra Intraguild Predation Model

Bifurcations in Delayed Lotka-Volterra Intraguild Predation Model MATIMYÁS MATEMATIKA Journal of the Mathematical Society of the Philippines ISSN 5-696 Vol. 37 Nos. - (4) pp. - Bifurcations in Delayed Lotka-Volterra Intraguild Predation Model Juancho A. Collera Department

More information

On low speed travelling waves of the Kuramoto-Sivashinsky equation.

On low speed travelling waves of the Kuramoto-Sivashinsky equation. On low speed travelling waves of the Kuramoto-Sivashinsky equation. Jeroen S.W. Lamb Joint with Jürgen Knobloch (Ilmenau, Germany) Marco-Antonio Teixeira (Campinas, Brazil) Kevin Webster (Imperial College

More information

Computational Neuroscience. Session 4-2

Computational Neuroscience. Session 4-2 Computational Neuroscience. Session 4-2 Dr. Marco A Roque Sol 06/21/2018 Two-Dimensional Two-Dimensional System In this section we will introduce methods of phase plane analysis of two-dimensional systems.

More information

Lecture 5. Numerical continuation of connecting orbits of iterated maps and ODEs. Yu.A. Kuznetsov (Utrecht University, NL)

Lecture 5. Numerical continuation of connecting orbits of iterated maps and ODEs. Yu.A. Kuznetsov (Utrecht University, NL) Lecture 5 Numerical continuation of connecting orbits of iterated maps and ODEs Yu.A. Kuznetsov (Utrecht University, NL) May 26, 2009 1 Contents 1. Point-to-point connections. 2. Continuation of homoclinic

More information

2 Discrete growth models, logistic map (Murray, Chapter 2)

2 Discrete growth models, logistic map (Murray, Chapter 2) 2 Discrete growth models, logistic map (Murray, Chapter 2) As argued in Lecture 1 the population of non-overlapping generations can be modelled as a discrete dynamical system. This is an example of an

More information

Numerical bifurcation analysis of delay differential equations

Numerical bifurcation analysis of delay differential equations Numerical bifurcation analysis of delay differential equations Dirk Roose Dept. of Computer Science K.U.Leuven Dirk.Roose@cs.kuleuven.be Acknowledgements Many thanks to Koen Engelborghs Tatyana Luzyanina

More information

Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback

Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback Neural Excitability in a Subcritical Hopf Oscillator with a Nonlinear Feedback Gautam C Sethia and Abhijit Sen Institute for Plasma Research, Bhat, Gandhinagar 382 428, INDIA Motivation Neural Excitability

More information

Clearly the passage of an eigenvalue through to the positive real half plane leads to a qualitative change in the phase portrait, i.e.

Clearly the passage of an eigenvalue through to the positive real half plane leads to a qualitative change in the phase portrait, i.e. Bifurcations We have already seen how the loss of stiffness in a linear oscillator leads to instability. In a practical situation the stiffness may not degrade in a linear fashion, and instability may

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: August 22, 2018, at 08 30 12 30 Johanneberg Jan Meibohm,

More information

Models Involving Interactions between Predator and Prey Populations

Models Involving Interactions between Predator and Prey Populations Models Involving Interactions between Predator and Prey Populations Matthew Mitchell Georgia College and State University December 30, 2015 Abstract Predator-prey models are used to show the intricate

More information

Stability Analysis of Uzawa-Lucas Endogenous Growth Model

Stability Analysis of Uzawa-Lucas Endogenous Growth Model Abstract: Stability Analysis of Uzawa-Lucas Endogenous Growth Model William A. Barnett* University of Kansas, Lawrence and Center for Financial Stability, NY City and Taniya Ghosh Indira Gandhi Institute

More information

Reaction-Diffusion Models and Bifurcation Theory Lecture 11: Bifurcation in delay differential equations

Reaction-Diffusion Models and Bifurcation Theory Lecture 11: Bifurcation in delay differential equations Reaction-Diffusion Models and Bifurcation Theory Lecture 11: Bifurcation in delay differential equations Junping Shi College of William and Mary, USA Collaborators/Support Shanshan Chen (PhD, 2012; Harbin

More information

Continuous Threshold Policy Harvesting in Predator-Prey Models

Continuous Threshold Policy Harvesting in Predator-Prey Models Continuous Threshold Policy Harvesting in Predator-Prey Models Jon Bohn and Kaitlin Speer Department of Mathematics, University of Wisconsin - Madison Department of Mathematics, Baylor University July

More information

Application demonstration. BifTools. Maple Package for Bifurcation Analysis in Dynamical Systems

Application demonstration. BifTools. Maple Package for Bifurcation Analysis in Dynamical Systems Application demonstration BifTools Maple Package for Bifurcation Analysis in Dynamical Systems Introduction Milen Borisov, Neli Dimitrova Department of Biomathematics Institute of Mathematics and Informatics

More information

WIDELY SEPARATED FREQUENCIES IN COUPLED OSCILLATORS WITH ENERGY-PRESERVING QUADRATIC NONLINEARITY

WIDELY SEPARATED FREQUENCIES IN COUPLED OSCILLATORS WITH ENERGY-PRESERVING QUADRATIC NONLINEARITY WIDELY SEPARATED FREQUENCIES IN COUPLED OSCILLATORS WITH ENERGY-PRESERVING QUADRATIC NONLINEARITY J.M. TUWANKOTTA Abstract. In this paper we present an analysis of a system of coupled oscillators suggested

More information

Solution to Homework #4 Roy Malka

Solution to Homework #4 Roy Malka 1. Show that the map: Solution to Homework #4 Roy Malka F µ : x n+1 = x n + µ x 2 n x n R (1) undergoes a saddle-node bifurcation at (x, µ) = (0, 0); show that for µ < 0 it has no fixed points whereas

More information

1. (i) Determine how many periodic orbits and equilibria can be born at the bifurcations of the zero equilibrium of the following system:

1. (i) Determine how many periodic orbits and equilibria can be born at the bifurcations of the zero equilibrium of the following system: 1. (i) Determine how many periodic orbits and equilibria can be born at the bifurcations of the zero equilibrium of the following system: ẋ = y x 2, ẏ = z + xy, ż = y z + x 2 xy + y 2 + z 2 x 4. (ii) Determine

More information

arxiv: v2 [physics.optics] 15 Dec 2016

arxiv: v2 [physics.optics] 15 Dec 2016 Bifurcation analysis of the Yamada model for a pulsing semiconductor laser with saturable absorber and delayed optical feedback Abstract Soizic Terrien 1, Bernd Krauskopf 1, Neil G.R. Broderick 2 arxiv:1610.06794v2

More information

STABILITY. Phase portraits and local stability

STABILITY. Phase portraits and local stability MAS271 Methods for differential equations Dr. R. Jain STABILITY Phase portraits and local stability We are interested in system of ordinary differential equations of the form ẋ = f(x, y), ẏ = g(x, y),

More information

Existence of permanent oscillations for a ring of coupled van der Pol oscillators with time delays

Existence of permanent oscillations for a ring of coupled van der Pol oscillators with time delays Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 14, Number 1 (2018), pp. 139 152 Research India Publications http://www.ripublication.com/gjpam.htm Existence of permanent oscillations

More information

Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations

Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations Jan Sieber arxiv:1010.2391v8 [math.ds] 26 Feb 2015 July 6, 2017 In this paper we prove that periodic

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

ONE DIMENSIONAL FLOWS. Lecture 3: Bifurcations

ONE DIMENSIONAL FLOWS. Lecture 3: Bifurcations ONE DIMENSIONAL FLOWS Lecture 3: Bifurcations 3. Bifurcations Here we show that, although the dynamics of one-dimensional systems is very limited [all solutions either settle down to a steady equilibrium

More information

2 Lyapunov Stability. x(0) x 0 < δ x(t) x 0 < ɛ

2 Lyapunov Stability. x(0) x 0 < δ x(t) x 0 < ɛ 1 2 Lyapunov Stability Whereas I/O stability is concerned with the effect of inputs on outputs, Lyapunov stability deals with unforced systems: ẋ = f(x, t) (1) where x R n, t R +, and f : R n R + R n.

More information

University of Bristol - Explore Bristol Research. Early version, also known as pre-print

University of Bristol - Explore Bristol Research. Early version, also known as pre-print Orosz, G., & Stepan, G. (4). Hopf bifurcation calculations in delayed systems with translational symmetry. https://doi.org/1.17/s33-4- 65-4 Early version, also known as pre-print Link to published version

More information

computer session iv: Two-parameter bifurcation analysis of equilibria and limit cycles with matcont

computer session iv: Two-parameter bifurcation analysis of equilibria and limit cycles with matcont computer session iv: Two-parameter bifurcation analysis of equilibria and limit cycles with matcont Yu.A. Kuznetsov Department of Mathematics Utrecht University Budapestlaan 6 3508 TA, Utrecht May 16,

More information

STABILITY AND HOPF BIFURCATION ON A TWO-NEURON SYSTEM WITH TIME DELAY IN THE FREQUENCY DOMAIN *

STABILITY AND HOPF BIFURCATION ON A TWO-NEURON SYSTEM WITH TIME DELAY IN THE FREQUENCY DOMAIN * International Journal of Bifurcation and Chaos, Vol. 7, No. 4 (27) 355 366 c World Scientific Publishing Company STABILITY AND HOPF BIFURCATION ON A TWO-NEURON SYSTEM WITH TIME DELAY IN THE FREQUENCY DOMAIN

More information

BIFURCATIONS AND STRANGE ATTRACTORS IN A CLIMATE RELATED SYSTEM

BIFURCATIONS AND STRANGE ATTRACTORS IN A CLIMATE RELATED SYSTEM dx dt DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES N 1, 25 Electronic Journal, reg. N P23275 at 7.3.97 http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru Ordinary differential equations BIFURCATIONS

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: January 14, 2019, at 08 30 12 30 Johanneberg Kristian

More information

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN Weierstraß-Institut für Angewandte Analysis und Stochastik Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN 0946 8633 On the stability of periodic orbits in delay equations with large delay

More information

= F ( x; µ) (1) where x is a 2-dimensional vector, µ is a parameter, and F :

= F ( x; µ) (1) where x is a 2-dimensional vector, µ is a parameter, and F : 1 Bifurcations Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 A bifurcation is a qualitative change

More information

Example of a Blue Sky Catastrophe

Example of a Blue Sky Catastrophe PUB:[SXG.TEMP]TRANS2913EL.PS 16-OCT-2001 11:08:53.21 SXG Page: 99 (1) Amer. Math. Soc. Transl. (2) Vol. 200, 2000 Example of a Blue Sky Catastrophe Nikolaĭ Gavrilov and Andrey Shilnikov To the memory of

More information

HOPF BIFURCATION CONTROL WITH PD CONTROLLER

HOPF BIFURCATION CONTROL WITH PD CONTROLLER HOPF BIFURCATION CONTROL WITH PD CONTROLLER M. DARVISHI AND H.M. MOHAMMADINEJAD DEPARTMENT OF MATHEMATICS, FACULTY OF MATHEMATICS AND STATISTICS, UNIVERSITY OF BIRJAND, BIRJAND, IRAN E-MAILS: M.DARVISHI@BIRJAND.AC.IR,

More information

(8.51) ẋ = A(λ)x + F(x, λ), where λ lr, the matrix A(λ) and function F(x, λ) are C k -functions with k 1,

(8.51) ẋ = A(λ)x + F(x, λ), where λ lr, the matrix A(λ) and function F(x, λ) are C k -functions with k 1, 2.8.7. Poincaré-Andronov-Hopf Bifurcation. In the previous section, we have given a rather detailed method for determining the periodic orbits of a two dimensional system which is the perturbation of a

More information

Lotka Volterra Predator-Prey Model with a Predating Scavenger

Lotka Volterra Predator-Prey Model with a Predating Scavenger Lotka Volterra Predator-Prey Model with a Predating Scavenger Monica Pescitelli Georgia College December 13, 2013 Abstract The classic Lotka Volterra equations are used to model the population dynamics

More information

Dynamic Feedback and the Design of Closed-loop Drug Delivery Systems

Dynamic Feedback and the Design of Closed-loop Drug Delivery Systems Dynamic Feedback and the Design of Closed-loop Drug Delivery Systems John Milton 1,2, Sue Ann Campbell 2,3,4 and Jacques Bélair 2,4,5 1) Department of Neurology, The University of Chicago Hospitals, MC

More information

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II.

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland Winter 2009/2010 Filip

More information

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4. Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

More information

Complex Behavior in Coupled Nonlinear Waveguides. Roy Goodman, New Jersey Institute of Technology

Complex Behavior in Coupled Nonlinear Waveguides. Roy Goodman, New Jersey Institute of Technology Complex Behavior in Coupled Nonlinear Waveguides Roy Goodman, New Jersey Institute of Technology Nonlinear Schrödinger/Gross-Pitaevskii Equation i t = r + V (r) ± Two contexts for today: Propagation of

More information

/639 Final Solutions, Part a) Equating the electrochemical potentials of H + and X on outside and inside: = RT ln H in

/639 Final Solutions, Part a) Equating the electrochemical potentials of H + and X on outside and inside: = RT ln H in 580.439/639 Final Solutions, 2014 Question 1 Part a) Equating the electrochemical potentials of H + and X on outside and inside: RT ln H out + zf 0 + RT ln X out = RT ln H in F 60 + RT ln X in 60 mv =

More information

Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations

Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations Sreelakshmi Manjunath Department of Electrical Engineering Indian Institute of Technology Madras (IITM), India JTG Summer

More information

BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs

BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs Yuri A. Kuznetsov August, 2010 Contents 1. Solutions and orbits. 2. Equilibria. 3. Periodic orbits and limit cycles. 4. Homoclinic orbits.

More information

AN AK TIME TO BUILD GROWTH MODEL

AN AK TIME TO BUILD GROWTH MODEL International Journal of Pure and Applied Mathematics Volume 78 No. 7 2012, 1005-1009 ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu PA ijpam.eu AN AK TIME TO BUILD GROWTH MODEL Luca Guerrini

More information

tutorial ii: One-parameter bifurcation analysis of equilibria with matcont

tutorial ii: One-parameter bifurcation analysis of equilibria with matcont tutorial ii: One-parameter bifurcation analysis of equilibria with matcont Yu.A. Kuznetsov Department of Mathematics Utrecht University Budapestlaan 6 3508 TA, Utrecht February 13, 2018 1 This session

More information

Analytical estimations of limit cycle amplitude for delay-differential equations

Analytical estimations of limit cycle amplitude for delay-differential equations Electronic Journal of Qualitative Theory of Differential Equations 2016, No. 77, 1 10; doi: 10.14232/ejqtde.2016.1.77 http://www.math.u-szeged.hu/ejqtde/ Analytical estimations of limit cycle amplitude

More information

Direction and Stability of Hopf Bifurcation in a Delayed Model with Heterogeneous Fundamentalists

Direction and Stability of Hopf Bifurcation in a Delayed Model with Heterogeneous Fundamentalists International Journal of Mathematical Analysis Vol 9, 2015, no 38, 1869-1875 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ijma201554135 Direction and Stability of Hopf Bifurcation in a Delayed Model

More information

ON A NORMALIZATION TECHNIQUE FOR CODIMENSION TWO BIFURCATIONS OF EQUILIBRIA OF DELAY DIFFERENTIAL EQUATIONS

ON A NORMALIZATION TECHNIQUE FOR CODIMENSION TWO BIFURCATIONS OF EQUILIBRIA OF DELAY DIFFERENTIAL EQUATIONS ON A NORMALIZATION TECHNIQUE FOR CODIMENSION TWO BIFURCATIONS OF EQUILIBRIA OF DELAY DIFFERENTIAL EQUATIONS.5.4.3.2.1 x 2.1.2.3.4.5.5.4.3.2.1.1.2.3.4.5 x 1 SEBASTIAAN G. JANSSENS Master Thesis Under supervision

More information

STABILITY AND BIFURCATION ANALYSIS ON DELAY DIFFERENTIAL EQUATIONS. Xihui Lin. Master of Science. Applied Mathematics

STABILITY AND BIFURCATION ANALYSIS ON DELAY DIFFERENTIAL EQUATIONS. Xihui Lin. Master of Science. Applied Mathematics University of Alberta STABILITY AND BIFURCATION ANALYSIS ON DELAY DIFFERENTIAL EQUATIONS by Xihui Lin A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements

More information

Homoclinic saddle to saddle-focus transitions in 4D systems

Homoclinic saddle to saddle-focus transitions in 4D systems Faculty of Electrical Engineering, Mathematics & Computer Science Homoclinic saddle to saddle-focus transitions in 4D systems Manu Kalia M.Sc. Thesis July 2017 Assessment committee: Prof. Dr. S. A. van

More information

x R d, λ R, f smooth enough. Goal: compute ( follow ) equilibrium solutions as λ varies, i.e. compute solutions (x, λ) to 0 = f(x, λ).

x R d, λ R, f smooth enough. Goal: compute ( follow ) equilibrium solutions as λ varies, i.e. compute solutions (x, λ) to 0 = f(x, λ). Continuation of equilibria Problem Parameter-dependent ODE ẋ = f(x, λ), x R d, λ R, f smooth enough. Goal: compute ( follow ) equilibrium solutions as λ varies, i.e. compute solutions (x, λ) to 0 = f(x,

More information

7 Planar systems of linear ODE

7 Planar systems of linear ODE 7 Planar systems of linear ODE Here I restrict my attention to a very special class of autonomous ODE: linear ODE with constant coefficients This is arguably the only class of ODE for which explicit solution

More information

FROM EQUILIBRIUM TO CHAOS

FROM EQUILIBRIUM TO CHAOS FROM EQUILIBRIUM TO CHAOS Practica! Bifurcation and Stability Analysis RÜDIGER SEYDEL Institut für Angewandte Mathematik und Statistik University of Würzburg Würzburg, Federal Republic of Germany ELSEVIER

More information

Lyapunov Stability Theory

Lyapunov Stability Theory Lyapunov Stability Theory Peter Al Hokayem and Eduardo Gallestey March 16, 2015 1 Introduction In this lecture we consider the stability of equilibrium points of autonomous nonlinear systems, both in continuous

More information

6 Linear Equation. 6.1 Equation with constant coefficients

6 Linear Equation. 6.1 Equation with constant coefficients 6 Linear Equation 6.1 Equation with constant coefficients Consider the equation ẋ = Ax, x R n. This equating has n independent solutions. If the eigenvalues are distinct then the solutions are c k e λ

More information

An Introduction to Numerical Continuation Methods. with Application to some Problems from Physics. Eusebius Doedel. Cuzco, Peru, May 2013

An Introduction to Numerical Continuation Methods. with Application to some Problems from Physics. Eusebius Doedel. Cuzco, Peru, May 2013 An Introduction to Numerical Continuation Methods with Application to some Problems from Physics Eusebius Doedel Cuzco, Peru, May 2013 Persistence of Solutions Newton s method for solving a nonlinear equation

More information

B.1 Numerical Continuation

B.1 Numerical Continuation APPENDIX B NUMERICAL CONTINUATION USING DDE-BIFTOOL In the several figures, results from the delay-differential equation continuation software DDE-BIFTOOL are displayed. This appendix serves as a simple

More information

THREE PROBLEMS OF RESONANCE IN COUPLED OR DRIVEN OSCILLATOR SYSTEMS

THREE PROBLEMS OF RESONANCE IN COUPLED OR DRIVEN OSCILLATOR SYSTEMS THREE PROBLEMS OF RESONANCE IN COUPLED OR DRIVEN OSCILLATOR SYSTEMS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the

More information

Homoclinic Orbits of Planar Maps: Asymptotics and Mel nikov Functions

Homoclinic Orbits of Planar Maps: Asymptotics and Mel nikov Functions Department of Mathematics Mathematical Sciences Homoclinic Orbits of Planar Maps: Asymptotics and Mel nikov Functions A thesis submitted for the degree of Master of Science Author: Dirk van Kekem Project

More information

Continuation and bifurcation analysis of delay differential equations

Continuation and bifurcation analysis of delay differential equations Continuation and bifurcation analysis of delay differential equations Dirk Roose 1 and Robert Szalai 2 1 Department of Computer Science, Katholieke Universiteit Leuven, Belgium 2 Department of Engineering

More information

Balancing of the skateboard with reflex delay

Balancing of the skateboard with reflex delay ENOC 214, July 6-11, 214, Vienna, Austria Balancing of the skateboard with reflex delay Balazs Varszegi, Denes Takacs, Gabor Stepan and S. John Hogan Department of Applied Mechanics, Budapest University

More information

11 Chaos in Continuous Dynamical Systems.

11 Chaos in Continuous Dynamical Systems. 11 CHAOS IN CONTINUOUS DYNAMICAL SYSTEMS. 47 11 Chaos in Continuous Dynamical Systems. Let s consider a system of differential equations given by where x(t) : R R and f : R R. ẋ = f(x), The linearization

More information

Hopf Bifurcations in Problems with O(2) Symmetry: Canonical Coordinates Transformation

Hopf Bifurcations in Problems with O(2) Symmetry: Canonical Coordinates Transformation Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part 1, 65 71 Hopf Bifurcations in Problems with O(2) Symmetry: Canonical Coordinates Transformation Faridon AMDJADI Department

More information

2182. Hopf bifurcation analysis and control of three-dimensional Prescott neuron model

2182. Hopf bifurcation analysis and control of three-dimensional Prescott neuron model 2182. Hopf bifurcation analysis and control of three-dimensional Prescott neuron model Chunhua Yuan 1, Jiang Wang 2 School of Electrical Engineering and Automation, Tianjin University, Tianjin, China 2

More information

On the analysis of the double Hopf bifurcation in machining processes via center manifold reduction

On the analysis of the double Hopf bifurcation in machining processes via center manifold reduction rspa.royalsocietypublishing.org Research Article submitted to journal On the analysis of the double Hopf bifurcation in machining processes via center manifold reduction T. G. Molnar, Z. Dombovari, T.

More information

A Time Since Recovery Model with Varying Rates of Loss of Immunity

A Time Since Recovery Model with Varying Rates of Loss of Immunity Bull Math Biol (212) 74:281 2819 DOI 1.17/s11538-12-978-7 ORIGINAL ARTICLE A Time Since Recovery Model with Varying Rates of Loss of Immunity Subhra Bhattacharya Frederick R. Adler Received: 7 May 212

More information

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Alberto Bressan ) and Khai T. Nguyen ) *) Department of Mathematics, Penn State University **) Department of Mathematics,

More information

Master Thesis. Equivariant Pyragas control. Isabelle Schneider Freie Universität Berlin Fachbereich Mathematik und Informatik Berlin

Master Thesis. Equivariant Pyragas control. Isabelle Schneider Freie Universität Berlin Fachbereich Mathematik und Informatik Berlin Master Thesis Equivariant Pyragas control Isabelle Schneider Freie Universität Berlin Fachbereich Mathematik und Informatik 14195 Berlin February 3, 2014 Abstract In this thesis we show how the concept

More information

Bifurcation of Fixed Points

Bifurcation of Fixed Points Bifurcation of Fixed Points CDS140B Lecturer: Wang Sang Koon Winter, 2005 1 Introduction ẏ = g(y, λ). where y R n, λ R p. Suppose it has a fixed point at (y 0, λ 0 ), i.e., g(y 0, λ 0 ) = 0. Two Questions:

More information

CDS 101 Precourse Phase Plane Analysis and Stability

CDS 101 Precourse Phase Plane Analysis and Stability CDS 101 Precourse Phase Plane Analysis and Stability Melvin Leok Control and Dynamical Systems California Institute of Technology Pasadena, CA, 26 September, 2002. mleok@cds.caltech.edu http://www.cds.caltech.edu/

More information

Development of novel deep brain stimulation techniques: Coordinated reset and Nonlinear delayed feedback

Development of novel deep brain stimulation techniques: Coordinated reset and Nonlinear delayed feedback Development of novel deep brain stimulation techniques: Coordinated reset and Nonlinear delayed feedback Oleksandr Popovych 1, Christian Hauptmann 1, Peter A. Tass 1,2 1 Institute of Medicine and Virtual

More information

from delay differential equations to ordinary differential equations (through partial differential equations)

from delay differential equations to ordinary differential equations (through partial differential equations) from delay differential equations to ordinary differential equations (through partial differential equations) dynamical systems and applications @ BCAM - Bilbao Dimitri Breda Department of Mathematics

More information

UNIVERSITY of LIMERICK

UNIVERSITY of LIMERICK UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Faculty of Science and Engineering Department of Mathematics & Statistics END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MS08 SEMESTER: Spring 0 MODULE TITLE: Dynamical

More information

Complex Dynamic Systems: Qualitative vs Quantitative analysis

Complex Dynamic Systems: Qualitative vs Quantitative analysis Complex Dynamic Systems: Qualitative vs Quantitative analysis Complex Dynamic Systems Chiara Mocenni Department of Information Engineering and Mathematics University of Siena (mocenni@diism.unisi.it) Dynamic

More information

Handout 2: Invariant Sets and Stability

Handout 2: Invariant Sets and Stability Engineering Tripos Part IIB Nonlinear Systems and Control Module 4F2 1 Invariant Sets Handout 2: Invariant Sets and Stability Consider again the autonomous dynamical system ẋ = f(x), x() = x (1) with state

More information

Journal of Differential Equations

Journal of Differential Equations J. Differential Equations 248 (2010 2841 2888 Contents lists available at ScienceDirect Journal of Differential Equations www.elsevier.com/locate/jde Local analysis near a folded saddle-node singularity

More information

Asynchronous oscillations due to antigenic variation in Malaria Pf

Asynchronous oscillations due to antigenic variation in Malaria Pf Asynchronous oscillations due to antigenic variation in Malaria Pf Jonathan L. Mitchell and Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX SIAM LS, Pittsburgh, 21 Outline

More information

Chapter 2 First-Order Time-Delayed Chaotic Systems: Design and Experiment

Chapter 2 First-Order Time-Delayed Chaotic Systems: Design and Experiment Chapter 2 First-Order Time-Delayed Chaotic Systems: Design and Experiment In this chapter, we discuss the design principle of chaotic time-delayed systems with (i) a bimodal nonlinearity and (ii) an unimodal

More information

Dynamical systems tutorial. Gregor Schöner, INI, RUB

Dynamical systems tutorial. Gregor Schöner, INI, RUB Dynamical systems tutorial Gregor Schöner, INI, RUB Dynamical systems: Tutorial the word dynamics time-varying measures range of a quantity forces causing/accounting for movement => dynamical systems dynamical

More information