Direction and Stability of Hopf Bifurcation in a Delayed Model with Heterogeneous Fundamentalists

Size: px
Start display at page:

Download "Direction and Stability of Hopf Bifurcation in a Delayed Model with Heterogeneous Fundamentalists"

Transcription

1 International Journal of Mathematical Analysis Vol 9, 2015, no 38, HIKARI Ltd, wwwm-hikaricom Direction and Stability of Hopf Bifurcation in a Delayed Model with Heterogeneous Fundamentalists Luca Guerrini Department of Management Polytechnic University of Marche, Italy Copyright c 2015 Luca Guerrini This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited Abstract Using the normal form theory and center manifold argument, we derive explicit formulas determining the stability, direction and other properties of bifurcation periodic solutions of Gori et al [6 model s Mathematics Subject Classification: 34K18, 91B62 Keywords: Time delay; Center manifold; Hopf bifurcation 1 Introduction In recent years we have witnessed an increasing interest in dynamical systems with time delays, especially in applied mathematics and economics (see eg [1-8,[9), where it has been showed that the introduction of time delays allows the capturing of more complex dynamics, thus enriching the description of the whole system In [6 Gori et al have inquired whether complex dynamic phenomena obtained in discrete time models also hold in continuous time models with discrete time delays They considered a continuous time version of the model developed by Naimzada and Ricchiuti [10 augmented with discrete time delays Specifically, their model is described by a delay differential equation P = γ [ (F 1 P d ) (F 2 P d ) 2 + (F 2 P d ) (F 1 P d ) 2 (F 1 P d ) 2 + (F 2 P d ) 2 F (P d ), (1)

2 1870 Luca Guerrini where γ > 0, F 2 > F 1 > 0, and P d indicates the state of the variable P at time t τ, with τ 0 the time delay The analysis conducted by Gori et al [6 confirmed the existence of nonlinear asset price dynamics in a continuous time version (with discrete time delays) of the model proposed by Naimzada and Ricchiuti [10, characterised by the existence of fundamentalists with heterogeneous expectations on the value of a risky asset In particular, it was proved the existence of a value τ 0 > 0 of the time delay τ such that the positive equilibria P = F 1 and P = F 2 of Eq (1) are locally asymptotically stable for τ [0, τ 0 ), and unstable for τ > τ 0 Furthermore, a Hopf bifurcation occurs at P when τ = τ 0 However, in their analysis, Gori et al [6 did not investigate the stability of the periodic solution In this paper, using the normal form theory and center manifold argument due to Hassard et alt [9, we derive explicit formulas determining the stability, direction and other properties of bifurcation periodic solutions 2 Direction and stability of the Hopf bifurcation In this section, we shall derive the explicit formulae for determining the direction, stability and period of these periodic solutions bifurcating from the equilibrium point P at the critical value τ 0, using techniques from normal form and center manifold theory (see Hassard et al [9) For convenience, we rescale the time t t/τ to normalize the delay, and let τ = τ 0 + µ, µ R, so that µ = 0 is the Hopf bifurcation value for Eq (1) in terms of the new bifurcation parameter µ Let u(t) = P (τt) P, and apply Taylor expansion to the right-hand side of Eq (1) at the trivial equilibrium Separating the linear from the non-linear terms, Eq (1) can be written as a functional differential equation in C = C([, 0, R) as u = L µ (u t ) + f(µ, u t ), (2) where u t = u(t + θ), for θ [, 0, and L µ : C R, f : R C R are given by L µ (ϕ) = (τ 0 + µ) γf P d ϕ(), ϕ C, and [ 1 f(µ, ϕ) = (τ 0 + µ) 2 F P d P d ϕ() F P d P d P d ϕ 1 () 3 +, (3) where FP d P d = F Pd P d (P ) and FP d P d P d = F Pd P d P d (P ) By the Riesz representation theorem, there exists a bounded variation function η(θ, µ), θ [, 0, such that L µ ϕ = dη(θ, µ)ϕ(θ), for ϕ C

3 Hopf bifurcation in a delayed model 1871 For ϕ C, define A(µ)(ϕ) = and dϕ(θ), θ [, 0), dθ dη(r, µ)ϕ(r), θ = 0, { 0, θ [, 0), R(µ)(ϕ) = f(µ, ϕ), θ = 0 Then Eq (2) is equivalent to abstract differential equation u t = A(µ)u t + R(µ)u t, where u t = u(t + θ), for θ [, 0 For ψ C, define dψ(r), r (0, 1, A dr ψ(r) = dη(ζ, µ)ψ( ζ), r = 0 For ϕ C and ψ C, define the bilinear form < ψ(r), ϕ(θ) >= ψ(0)ϕ(0) θ= θ ξ=0 ψ(ξ θ)dη(θ)ϕ(ξ)dξ, where η(θ) = η(θ, 0) The A(0) and A are adjoint operators From the discussion in Gori et al [6, we know that if µ = 0, then (1) undergoes a Hopf bifurcation and the associated characteristic equation of Eq (1) has a pair of simple imaginary roots ±iω 0 τ 0 It is immediate that ±iω 0 τ 0 are eigenvalues of A(0), and so they are also eigenvalues of A By direct computation, we can obtain q(θ) = (1, ρ) T e iω 0τ 0 θ, with ρ complex, namely the eigenvector of A(0) corresponding to iω 0 τ 0, and similarly q (r) = D(σ, 1)e iω 0τ 0 r, the eigenvector of A corresponding to iω 0 τ 0, where the value of D is chosen to guarantee < q, q >= 1 As well, one has < q, q >= 0 Define On the center manifold C, z =< q, u t > and W (t, θ) = u t (θ) 2Re {zq(θ)} (4) W (t, θ) = W (z, z, θ) = W 20 (θ) z2 2 + W 11(θ)z z + W 02 (θ) z2 2 +, (5) where z and z are local coordinates for the center manifold in the direction of q and q Noting that W is also real if u t is real, we consider only real solutions For solutions u t C of Eq (1), we have z = iω 0 τ 0 z + q (0)f (0, W (z, z, 0)2Re {zq(0)}) def = iω 0 τ 0 z + q (0)f 0 (z, z)

4 1872 Luca Guerrini where f 0 (z, z) = f(0, u t ), with f defined as in (3) Set q (0)f 0 (z, z) by g(z, z) Then From (4), g(z, z) = q (0)f 0 (z, z) = g 20 z g 11z z + g 02 z g 21 z 2 z 2 + (6) u t (θ) = W (t, θ) + 2Re {zq(θ)} = W 20 (θ) z2 2 + W 11(θ)z z + W 02 (θ) z zq(θ) + z q(θ), so that substituting it into f(0, u t ) we obtain z 2 f 0 (z, z) = f(0, u t ) = f z f z 2 z zz z + f z f z 2 z z 2 z 2 + (7) Thus, a comparison of the coefficients of (7) with those in (6) yields g 20 = D( σ, 1)f z 2, g 02 = D( σ, 1)f z 2, g 11 = D( σ, 1)f z z, g 21 = D( σ, 1)f z2 z In order to determine g 21, we focus on the computation of W 20 (θ) and W 11 (θ) From (2) and (4), we can get W = u t żq z q { AW 2Re { q (0)f 0 q(θ)}, θ [, 0), = AW 2Re { q (0)f 0 q(0)} + f 0, θ = 0 Let W = AW + H(z, z, θ), (8) where H(z, z, θ) = H 20 (θ) z2 2 + H 11(θ)z z + H 02 (θ) z2 2 + (9) In view of (5), we get AW = AW 20 (θ) z2 2 + AW 11(θ)z z + AW 02 (θ) z2 2 + (10) Differentiating both sides of (5) with respect to t, we have W = W z ż + W z z (11) According to (10) and (11), comparing coefficients, we can obtain [A 2iω 0 τ 0 W 20 (θ) = H 20 (θ), AW 11 (θ) = H 11 (θ), (12)

5 Hopf bifurcation in a delayed model 1873 From (8), we get Thus, we have H(z, z, θ) = q (0)f 0 q(θ) q (0) f 0 q(θ) = gq(θ) ḡ q(θ) H 20 (θ) = g 20 q(θ) ḡ 02 q(θ), H 11 (θ) = g 11 q(θ) ḡ 11 q(θ) (13) Then, together with (12),(13), we can derive that Therefore, one has W 20 (θ) = 2iω 0 τ 0 W 20 (θ) + g 20 q(θ) + ḡ 02 q(θ) W 20 (θ) = g 20 q(0)e iω 0τ 0 θ ḡ02 q(0)e iω 0τ 0 θ + E 1 e 2iω 0τ 0 θ, (14) iω 0 τ 0 3iω 0 τ 0 with E 1 R Similarly, we have W 11 (θ) = g 11 q(0)e iω 0τ 0 θ ḡ11 q(0)e iω 0τ 0 θ + E 2, iω 0 τ 0 iω 0 τ 0 with E 2 R Next, we focus on the computation of E 1 and E 2 From the definition of A and (12), we have dη(θ)w 20 (θ) = 2iω 0 τ 0 W 20 (θ) H 20 (θ) (15) and dη(θ)w 11 (θ) = H 11 (θ) In addition, we note [ [ iω 0 τ 0 e iω 0τ 0 θ dη(θ) q(0) = 0, iω 0 τ 0 e iω 0τ 0 θ dη(θ) q(0) = 0 From (8) and (9), we have H 20 (0) = g 20 q(0) ḡ 02 q(θ) + f z 2, H 11 (0) = g 11 q(0) ḡ 11 q(0) + f z z (16) Then, substituting (14) and (16) into (15) gives [ 2iω 0 τ 0 e 2iω 0τ 0 θ dη(θ) E 1 = f z 2 Similarly, we get [ dη(θ) E 2 = f z z

6 1874 Luca Guerrini In conclusion, each g ij is computed Thus, we can calculate the following values [ c 1 (0) = i g 11 g 20 2 g 11 2 g ω 0 τ g 21 2, µ 2 = Re {c 1(0)} Re {τ 0 λ (τ 0 )}, β 2 = 2Re {c 1 (0)}, T 2 = Im {c 1(0)} + µ 2 Im {λ (τ 0 )} ω 0 τ 0, These formulae give a description of the Hopf bifurcation periodic solutions of (3) at τ = τ 0 on the center manifold Theorem 21 The periodic solution is forward (resp backward) if µ 2 > 0 (resp µ 2 < 0); the bifurcating periodic solutions are orbitally asymptotically stable if β 2 < 0 (unstable β 2 > 0); the periods of the bifurcating periodic solutions increase (resp decrease) if T 2 > 0 (resp T 2 < 0) References [1 LV Ballestra, L Guerrini and G Pacelli, Stability switches and bifurcation analysis of a time delay model for the diffusion of a new technology, International Journal of Bifurcation and Chaos, 24 (2014) [2 C Bianca, M Ferrara and L Guerrini, Hopf bifurcations in a delayed-energy-based model of capital accumulation, Applied Mathematics & Information Sciences, 7 (2013), [3 C L Dalgaard and H Strulik, Energy distribution and economic growth, Resource and Energy Economics, 33 (2011), [4 M Ferrara, L Guerrini and M Sodini, Nonlinear dynamics in a Solow model with delay and non-convex technology, Applied Mathematics and Computation, 228 (2014), [5 L Gori, L Guerrini and M Sodini, Hopf bifurcation in a Cobweb model with discrete time delays, Discrete Dynamics in Nature and Society, 2014 (2014), 1-8

7 Hopf bifurcation in a delayed model 1875 [6 L Gori, L Guerrini and M Sodini, Heterogeneous fundamentalists in a continuous time model with delays, Discrete Dynamics in Nature and Society, 2014 (2014), [7 L Gori, L Guerrini and M Sodini, A continuous time Cournot duopoly with delays, Chaos, Solitons & Fractals, forthcoming [8 L Guerrini and M Sodini, Persistent fluctuations in a dual model with frictions: the role of delays, Applied Mathematics and Computation, 241 (2014), [9 B Hassard, D Kazarino, and Y Wan, Theory and application of Hopf bifurcation, Cambridge University Press, 1981 [10 A K Naimzada and G Ricchiuti, Heterogeneous fundamentalists and imitative processes, Applied Mathematics and Computation, 199 (2008), Received: April 29, 2015; Published: July 14, 2015

Hopf Bifurcation Analysis of a Dynamical Heart Model with Time Delay

Hopf Bifurcation Analysis of a Dynamical Heart Model with Time Delay Applied Mathematical Sciences, Vol 11, 2017, no 22, 1089-1095 HIKARI Ltd, wwwm-hikaricom https://doiorg/1012988/ams20177271 Hopf Bifurcation Analysis of a Dynamical Heart Model with Time Delay Luca Guerrini

More information

Stability and nonlinear dynamics in a Solow model with pollution

Stability and nonlinear dynamics in a Solow model with pollution Nonlinear Analysis: Modelling and Control, 2014, Vol. 19, No. 4, 565 577 565 http://dx.doi.org/10.15388/na.2014.4.3 Stability and nonlinear dynamics in a Solow model with pollution Massimiliano Ferrara

More information

Research Article Center Manifold Reduction and Perturbation Method in a Delayed Model with a Mound-Shaped Cobb-Douglas Production Function

Research Article Center Manifold Reduction and Perturbation Method in a Delayed Model with a Mound-Shaped Cobb-Douglas Production Function Abstract and Applied Analysis Volume 2013 Article ID 738460 6 pages http://dx.doi.org/10.1155/2013/738460 Research Article Center Manifold Reduction and Perturbation Method in a Delayed Model with a Mound-Shaped

More information

The Cai Model with Time Delay: Existence of Periodic Solutions and Asymptotic Analysis

The Cai Model with Time Delay: Existence of Periodic Solutions and Asymptotic Analysis Appl Math Inf Sci 7, No 1, 21-27 (2013) 21 Applied Mathematics & Information Sciences An International Journal Natural Sciences Publishing Cor The Cai Model with Time Delay: Existence of Periodic Solutions

More information

HOPF BIFURCATION CONTROL WITH PD CONTROLLER

HOPF BIFURCATION CONTROL WITH PD CONTROLLER HOPF BIFURCATION CONTROL WITH PD CONTROLLER M. DARVISHI AND H.M. MOHAMMADINEJAD DEPARTMENT OF MATHEMATICS, FACULTY OF MATHEMATICS AND STATISTICS, UNIVERSITY OF BIRJAND, BIRJAND, IRAN E-MAILS: M.DARVISHI@BIRJAND.AC.IR,

More information

HOPF BIFURCATION ANALYSIS OF A PREDATOR-PREY SYSTEM WITH NON-SELECTIVE HARVESTING AND TIME DELAY

HOPF BIFURCATION ANALYSIS OF A PREDATOR-PREY SYSTEM WITH NON-SELECTIVE HARVESTING AND TIME DELAY Vol. 37 17 No. J. of Math. PRC HOPF BIFURCATION ANALYSIS OF A PREDATOR-PREY SYSTEM WITH NON-SELECTIVE HARVESTING AND TIME DELAY LI Zhen-wei, LI Bi-wen, LIU Wei, WANG Gan School of Mathematics and Statistics,

More information

Dynamical analysis of a delayed predator-prey system with modified Leslie-Gower and Beddington-DeAngelis functional response

Dynamical analysis of a delayed predator-prey system with modified Leslie-Gower and Beddington-DeAngelis functional response Liu Advances in Difference Equations 014, 014:314 R E S E A R C H Open Access Dynamical analysis of a delayed predator-prey system with modified Leslie-Gower and Beddington-DeAngelis functional response

More information

BIFURCATION ANALYSIS ON A DELAYED SIS EPIDEMIC MODEL WITH STAGE STRUCTURE

BIFURCATION ANALYSIS ON A DELAYED SIS EPIDEMIC MODEL WITH STAGE STRUCTURE Electronic Journal of Differential Equations, Vol. 27(27), No. 77, pp. 1 17. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) BIFURCATION

More information

Solving Homogeneous Systems with Sub-matrices

Solving Homogeneous Systems with Sub-matrices Pure Mathematical Sciences, Vol 7, 218, no 1, 11-18 HIKARI Ltd, wwwm-hikaricom https://doiorg/112988/pms218843 Solving Homogeneous Systems with Sub-matrices Massoud Malek Mathematics, California State

More information

Stability and Hopf Bifurcation Analysis of the Delay Logistic Equation

Stability and Hopf Bifurcation Analysis of the Delay Logistic Equation 1 Stability and Hopf Bifurcation Analysis of the Delay Logistic Equation Milind M Rao # and Preetish K L * # Department of Electrical Engineering, IIT Madras, Chennai-600036, India * Department of Mechanical

More information

Chaos Control and Bifurcation Behavior for a Sprott E System with Distributed Delay Feedback

Chaos Control and Bifurcation Behavior for a Sprott E System with Distributed Delay Feedback International Journal of Automation and Computing 12(2, April 215, 182-191 DOI: 1.17/s11633-14-852-z Chaos Control and Bifurcation Behavior for a Sprott E System with Distributed Delay Feedback Chang-Jin

More information

AN AK TIME TO BUILD GROWTH MODEL

AN AK TIME TO BUILD GROWTH MODEL International Journal of Pure and Applied Mathematics Volume 78 No. 7 2012, 1005-1009 ISSN: 1311-8080 (printed version) url: http://www.ijpam.eu PA ijpam.eu AN AK TIME TO BUILD GROWTH MODEL Luca Guerrini

More information

2 The model with Kaldor-Pasinetti saving

2 The model with Kaldor-Pasinetti saving Applied Mathematical Sciences, Vol 6, 2012, no 72, 3569-3573 The Solow-Swan Model with Kaldor-Pasinetti Saving and Time Delay Luca Guerrini Department of Mathematics for Economic and Social Sciences University

More information

Stability and bifurcation analysis of Westwood+ TCP congestion control model in mobile cloud computing networks

Stability and bifurcation analysis of Westwood+ TCP congestion control model in mobile cloud computing networks Nonlinear Analysis: Modelling and Control, Vol. 1, No. 4, 477 497 ISSN 139-5113 http://dx.doi.org/1.15388/na.16.4.4 Stability and bifurcation analysis of Westwood+ TCP congestion control model in mobile

More information

Hopf bifurcation analysis for a model of plant virus propagation with two delays

Hopf bifurcation analysis for a model of plant virus propagation with two delays Li et al. Advances in Difference Equations 08 08:59 https://doi.org/0.86/s366-08-74-8 R E S E A R C H Open Access Hopf bifurcation analysis for a model of plant virus propagation with two delays Qinglian

More information

A Note on Open Loop Nash Equilibrium in Linear-State Differential Games

A Note on Open Loop Nash Equilibrium in Linear-State Differential Games Applied Mathematical Sciences, vol. 8, 2014, no. 145, 7239-7248 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49746 A Note on Open Loop Nash Equilibrium in Linear-State Differential

More information

Stability and Hopf Bifurcation for a Discrete Disease Spreading Model in Complex Networks

Stability and Hopf Bifurcation for a Discrete Disease Spreading Model in Complex Networks International Journal of Difference Equations ISSN 0973-5321, Volume 4, Number 1, pp. 155 163 (2009) http://campus.mst.edu/ijde Stability and Hopf Bifurcation for a Discrete Disease Spreading Model in

More information

A Note on the Ramsey Growth Model with the von Bertalanffy Population Law

A Note on the Ramsey Growth Model with the von Bertalanffy Population Law Applied Mathematical Sciences, Vol 4, 2010, no 65, 3233-3238 A Note on the Ramsey Growth Model with the von Bertalanffy Population aw uca Guerrini Department of Mathematics for Economic and Social Sciences

More information

STABILITY AND HOPF BIFURCATION OF A MODIFIED DELAY PREDATOR-PREY MODEL WITH STAGE STRUCTURE

STABILITY AND HOPF BIFURCATION OF A MODIFIED DELAY PREDATOR-PREY MODEL WITH STAGE STRUCTURE Journal of Applied Analysis and Computation Volume 8, Number, April 018, 573 597 Website:http://jaac-online.com/ DOI:10.11948/018.573 STABILITY AND HOPF BIFURCATION OF A MODIFIED DELAY PREDATOR-PREY MODEL

More information

Research Article Hopf Bifurcation Analysis and Anticontrol of Hopf Circles of the Rössler-Like System

Research Article Hopf Bifurcation Analysis and Anticontrol of Hopf Circles of the Rössler-Like System Abstract and Applied Analysis Volume, Article ID 3487, 6 pages doi:.55//3487 Research Article Hopf Bifurcation Analysis and Anticontrol of Hopf Circles of the Rössler-Like System Ranchao Wu and Xiang Li

More information

Research Article Stability and Hopf Bifurcation in a Computer Virus Model with Multistate Antivirus

Research Article Stability and Hopf Bifurcation in a Computer Virus Model with Multistate Antivirus Abstract and Applied Analysis Volume, Article ID 84987, 6 pages doi:.55//84987 Research Article Stability and Hopf Bifurcation in a Computer Virus Model with Multistate Antivirus Tao Dong,, Xiaofeng Liao,

More information

Dynamical System of a Multi-Capital Growth Model

Dynamical System of a Multi-Capital Growth Model Applied Mathematical Sciences, Vol. 9, 2015, no. 83, 4103-4108 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.53274 Dynamical System of a Multi-Capital Growth Model Eva Brestovanská Department

More information

Nonlinear dynamics in a duopoly with price competition and vertical differentiation

Nonlinear dynamics in a duopoly with price competition and vertical differentiation Nonlinear dynamics in a duopoly with price competition and vertical differentiation uciano Fanti, uca Gori and Mauro Sodini Department of Economics and Management, University of Pisa, Via Cosimo Ridolfi,

More information

Research Article Hopf Bifurcation in a Cobweb Model with Discrete Time Delays

Research Article Hopf Bifurcation in a Cobweb Model with Discrete Time Delays Discrete Dynamics in Nature and Society, Article ID 37090, 8 pages http://dx.doi.org/0.55/04/37090 Research Article Hopf Bifurcation in a Cobweb Model with Discrete Time Delays Luca Gori, Luca Guerrini,

More information

THE ANALYSIS OF AN ECONOMIC GROWTH MODEL WITH TAX EVASION AND DELAY

THE ANALYSIS OF AN ECONOMIC GROWTH MODEL WITH TAX EVASION AND DELAY Key words: delayed differential equations, economic growth, tax evasion In this paper we formulate an economic model with tax evasion, corruption and taxes In the first part the static model is considered,

More information

Bifurcation Analysis of a Population Dynamics in a Critical State 1

Bifurcation Analysis of a Population Dynamics in a Critical State 1 Bifurcation Analysis of a Population Dynamics in a Critical State 1 Yong-Hui Xia 1, Valery G. Romanovski,3 1. Department of Mathematics, Zhejiang Normal University, Jinhua, China. Center for Applied Mathematics

More information

Delayed Dynamics in Heterogeneous Competition with Product Differentiation

Delayed Dynamics in Heterogeneous Competition with Product Differentiation Delayed Dynamics in Heterogeneous Competition with Product Differentiation Akio Matsumoto Department of Economics Chuo University Hachioji, Tokyo, 19-0393, Japan akiom@tamacc.chuo-u.ac.jp Ferenc Szidarovszky

More information

Research Article Chaos Control on a Duopoly Game with Homogeneous Strategy

Research Article Chaos Control on a Duopoly Game with Homogeneous Strategy Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 16, Article ID 74185, 7 pages http://dx.doi.org/1.1155/16/74185 Publication Year 16 Research Article Chaos Control on a Duopoly

More information

Method of Generation of Chaos Map in the Centre Manifold

Method of Generation of Chaos Map in the Centre Manifold Advanced Studies in Theoretical Physics Vol. 9, 2015, no. 16, 795-800 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2015.51097 Method of Generation of Chaos Map in the Centre Manifold Evgeny

More information

Convex Sets Strict Separation in Hilbert Spaces

Convex Sets Strict Separation in Hilbert Spaces Applied Mathematical Sciences, Vol. 8, 2014, no. 64, 3155-3160 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.44257 Convex Sets Strict Separation in Hilbert Spaces M. A. M. Ferreira 1

More information

5.2.2 Planar Andronov-Hopf bifurcation

5.2.2 Planar Andronov-Hopf bifurcation 138 CHAPTER 5. LOCAL BIFURCATION THEORY 5.. Planar Andronov-Hopf bifurcation What happens if a planar system has an equilibrium x = x 0 at some parameter value α = α 0 with eigenvalues λ 1, = ±iω 0, ω

More information

Approximation to the Dissipative Klein-Gordon Equation

Approximation to the Dissipative Klein-Gordon Equation International Journal of Mathematical Analysis Vol. 9, 215, no. 22, 159-163 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ijma.215.5236 Approximation to the Dissipative Klein-Gordon Equation Edilber

More information

On a Certain Representation in the Pairs of Normed Spaces

On a Certain Representation in the Pairs of Normed Spaces Applied Mathematical Sciences, Vol. 12, 2018, no. 3, 115-119 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.712362 On a Certain Representation in the Pairs of ormed Spaces Ahiro Hoshida

More information

Hopf Bifurcation Analysis of Pathogen-Immune Interaction Dynamics With Delay Kernel

Hopf Bifurcation Analysis of Pathogen-Immune Interaction Dynamics With Delay Kernel Math. Model. Nat. Phenom. Vol. 2, No. 1, 27, pp. 44-61 Hopf Bifurcation Analysis of Pathogen-Immune Interaction Dynamics With Delay Kernel M. Neamţu a1, L. Buliga b, F.R. Horhat c, D. Opriş b a Department

More information

Local stability and Hopf bifurcation analysis for Compound TCP

Local stability and Hopf bifurcation analysis for Compound TCP This article has been accepted for publication in a future issue of this journal, but has not been fully edited Content may change prior to final publication Citation information: DOI 1119/TCNS17747839,

More information

Discrete-Time Finite-Horizon Optimal ALM Problem with Regime-Switching for DB Pension Plan

Discrete-Time Finite-Horizon Optimal ALM Problem with Regime-Switching for DB Pension Plan Applied Mathematical Sciences, Vol. 10, 2016, no. 33, 1643-1652 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.6383 Discrete-Time Finite-Horizon Optimal ALM Problem with Regime-Switching

More information

Delayed Dynamics in Heterogeneous Competition with Product Differentiation

Delayed Dynamics in Heterogeneous Competition with Product Differentiation Delayed Dynamics in Heterogeneous Competition with Product Differentiation Akio Matsumoto Department of Economics Chuo University Hachioji, Tokyo, 19-0393, Japan akiom@tamacc.chuo-u.ac.jp Ferenc Szidarovszky

More information

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients

Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable Coefficients Contemporary Engineering Sciences, Vol. 11, 2018, no. 16, 779-784 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2018.8262 Exact Solutions for a Fifth-Order Two-Mode KdV Equation with Variable

More information

Chaos Control for the Lorenz System

Chaos Control for the Lorenz System Advanced Studies in Theoretical Physics Vol. 12, 2018, no. 4, 181-188 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2018.8413 Chaos Control for the Lorenz System Pedro Pablo Cárdenas Alzate

More information

Diophantine Equations. Elementary Methods

Diophantine Equations. Elementary Methods International Mathematical Forum, Vol. 12, 2017, no. 9, 429-438 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2017.7223 Diophantine Equations. Elementary Methods Rafael Jakimczuk División Matemática,

More information

DYNAMICS OF A PREY-PREDATOR SYSTEM WITH INFECTION IN PREY

DYNAMICS OF A PREY-PREDATOR SYSTEM WITH INFECTION IN PREY Electronic Journal of Differential Equations, Vol. 7 7), No. 9, pp. 7. IN: 7-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu DNAMIC OF A PRE-PREDATOR TEM WITH INFECTION IN PRE HAHI KANT,

More information

Global Stability Analysis on a Predator-Prey Model with Omnivores

Global Stability Analysis on a Predator-Prey Model with Omnivores Applied Mathematical Sciences, Vol. 9, 215, no. 36, 1771-1782 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.215.512 Global Stability Analysis on a Predator-Prey Model with Omnivores Puji Andayani

More information

A Class of Multi-Scales Nonlinear Difference Equations

A Class of Multi-Scales Nonlinear Difference Equations Applied Mathematical Sciences, Vol. 12, 2018, no. 19, 911-919 HIKARI Ltd, www.m-hiari.com https://doi.org/10.12988/ams.2018.8799 A Class of Multi-Scales Nonlinear Difference Equations Tahia Zerizer Mathematics

More information

Solution of the Hirota Equation Using Lattice-Boltzmann and the Exponential Function Methods

Solution of the Hirota Equation Using Lattice-Boltzmann and the Exponential Function Methods Advanced Studies in Theoretical Physics Vol. 11, 2017, no. 7, 307-315 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2017.7418 Solution of the Hirota Equation Using Lattice-Boltzmann and the

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

On Some Identities and Generating Functions

On Some Identities and Generating Functions Int. Journal of Math. Analysis, Vol. 7, 2013, no. 38, 1877-1884 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.35131 On Some Identities and Generating Functions for k- Pell Numbers Paula

More information

Nonlinear dynamics in the Cournot duopoly game with heterogeneous players

Nonlinear dynamics in the Cournot duopoly game with heterogeneous players arxiv:nlin/0210035v1 [nlin.cd] 16 Oct 2002 Nonlinear dynamics in the Cournot duopoly game with heterogeneous players H. N. Agiza and A. A. Elsadany Department of Mathematics, Faculty of Science Mansoura

More information

NBA Lecture 1. Simplest bifurcations in n-dimensional ODEs. Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011

NBA Lecture 1. Simplest bifurcations in n-dimensional ODEs. Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011 NBA Lecture 1 Simplest bifurcations in n-dimensional ODEs Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011 Contents 1. Solutions and orbits: equilibria cycles connecting orbits other invariant sets

More information

Diagonalizing Hermitian Matrices of Continuous Functions

Diagonalizing Hermitian Matrices of Continuous Functions Int. J. Contemp. Math. Sciences, Vol. 8, 2013, no. 5, 227-234 HIKARI Ltd, www.m-hikari.com Diagonalizing Hermitian Matrices of Continuous Functions Justin Cyr 1, Jason Ekstrand, Nathan Meyers 2, Crystal

More information

Chaos control and Hopf bifurcation analysis of the Genesio system with distributed delays feedback

Chaos control and Hopf bifurcation analysis of the Genesio system with distributed delays feedback Guan et al. Advances in Difference Equations 212, 212:166 R E S E A R C H Open Access Chaos control and Hopf bifurcation analysis of the Genesio system with distributed delays feedback Junbiao Guan *,

More information

A Delayed HIV Infection Model with Specific Nonlinear Incidence Rate and Cure of Infected Cells in Eclipse Stage

A Delayed HIV Infection Model with Specific Nonlinear Incidence Rate and Cure of Infected Cells in Eclipse Stage Applied Mathematical Sciences, Vol. 1, 216, no. 43, 2121-213 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.216.63128 A Delayed HIV Infection Model with Specific Nonlinear Incidence Rate and

More information

Phase Synchronization

Phase Synchronization Phase Synchronization Lecture by: Zhibin Guo Notes by: Xiang Fan May 10, 2016 1 Introduction For any mode or fluctuation, we always have where S(x, t) is phase. If a mode amplitude satisfies ϕ k = ϕ k

More information

Analysis of Duopoly Output Game With Different Decision-Making Rules

Analysis of Duopoly Output Game With Different Decision-Making Rules Management Science and Engineering Vol. 9, No. 1, 015, pp. 19-4 DOI: 10.3968/6117 ISSN 1913-0341 [Print] ISSN 1913-035X [Online] www.cscanada.net www.cscanada.org Analysis of Duopoly Output Game With Different

More information

Dynamical analysis of a competition and cooperation system with multiple delays

Dynamical analysis of a competition and cooperation system with multiple delays Zhang et al. Boundary Value Problems 2018 2018:111 https://doi.org/10.1186/s13661-018-1032-9 R E S E A R C H Open Access Dynamical analysis of a competition and cooperation system with multiple delays

More information

Existence, Uniqueness Solution of a Modified. Predator-Prey Model

Existence, Uniqueness Solution of a Modified. Predator-Prey Model Nonlinear Analysis and Differential Equations, Vol. 4, 6, no. 4, 669-677 HIKARI Ltd, www.m-hikari.com https://doi.org/.988/nade.6.6974 Existence, Uniqueness Solution of a Modified Predator-Prey Model M.

More information

Advertising and Promotion in a Marketing Channel

Advertising and Promotion in a Marketing Channel Applied Mathematical Sciences, Vol. 13, 2019, no. 9, 405-413 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2019.9240 Advertising and Promotion in a Marketing Channel Alessandra Buratto Dipartimento

More information

Long-wave Instability in Anisotropic Double-Diffusion

Long-wave Instability in Anisotropic Double-Diffusion Long-wave Instability in Anisotropic Double-Diffusion Jean-Luc Thiffeault Institute for Fusion Studies and Department of Physics University of Texas at Austin and Neil J. Balmforth Department of Theoretical

More information

Dynamics of a Delayed Competitive System Affected by Toxic Substances with Imprecise Biological Parameters

Dynamics of a Delayed Competitive System Affected by Toxic Substances with Imprecise Biological Parameters Filomat 31:16 17, 71 93 https://doi.org/1.98/fil171671p Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Dynamics of a Delayed Competitive

More information

Local stability and Hopf bifurcation analysis. for Compound TCP

Local stability and Hopf bifurcation analysis. for Compound TCP Local stability and Hopf bifurcation analysis for Compound TCP Debayani Ghosh, Krishna Jagannathan and Gaurav Raina arxiv:604.05549v [math.ds] 9 Apr 06 Abstract We conduct a local stability and Hopf bifurcation

More information

Chaotic Dynamics and Synchronization of Cournot Duopoly Game with a Logarithmic Demand Function

Chaotic Dynamics and Synchronization of Cournot Duopoly Game with a Logarithmic Demand Function Appl. Math. Inf. Sci. 9, No. 6, 3083-3094 015 3083 Applied Mathematics & Information Sciences An International Journal http://dx.doi.org/10.1785/amis/090638 Chaotic Dynamics and Synchronization of Cournot

More information

Numerical Solution of Heat Equation by Spectral Method

Numerical Solution of Heat Equation by Spectral Method Applied Mathematical Sciences, Vol 8, 2014, no 8, 397-404 HIKARI Ltd, wwwm-hikaricom http://dxdoiorg/1012988/ams201439502 Numerical Solution of Heat Equation by Spectral Method Narayan Thapa Department

More information

Research Article Complexity Analysis of a Cournot-Bertrand Duopoly Game Model with Limited Information

Research Article Complexity Analysis of a Cournot-Bertrand Duopoly Game Model with Limited Information Discrete Dynamics in Nature and Society Volume, Article ID 877, 6 pages http://dx.doi.org/.55//877 Research Article Complexity Analysis of a Cournot-Bertrand Duopoly Game Model with Limited Information

More information

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique

A Study on Linear and Nonlinear Stiff Problems. Using Single-Term Haar Wavelet Series Technique Int. Journal of Math. Analysis, Vol. 7, 3, no. 53, 65-636 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.988/ijma.3.3894 A Study on Linear and Nonlinear Stiff Problems Using Single-Term Haar Wavelet Series

More information

Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type Equation

Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type Equation Contemporary Engineering Sciences Vol. 11 2018 no. 16 785-791 HIKARI Ltd www.m-hikari.com https://doi.org/10.12988/ces.2018.8267 Periodic and Soliton Solutions for a Generalized Two-Mode KdV-Burger s Type

More information

New Generalized Sub Class of Cyclic-Goppa Code

New Generalized Sub Class of Cyclic-Goppa Code International Journal of Contemporary Mathematical Sciences Vol., 206, no. 7, 333-34 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.2988/ijcms.206.6632 New Generalized Sub Class of Cyclic-Goppa Code

More information

Research Article Dynamics of a Delayed Model for the Transmission of Malicious Objects in Computer Network

Research Article Dynamics of a Delayed Model for the Transmission of Malicious Objects in Computer Network e Scientific World Journal Volume 4, Article ID 944, 4 pages http://dx.doi.org/.55/4/944 Research Article Dynamics of a Delayed Model for the Transmission of Malicious Objects in Computer Network Zizhen

More information

Hopf Bifurcation Analysis and Approximation of Limit Cycle in Coupled Van Der Pol and Duffing Oscillators

Hopf Bifurcation Analysis and Approximation of Limit Cycle in Coupled Van Der Pol and Duffing Oscillators The Open Acoustics Journal 8 9-3 9 Open Access Hopf ifurcation Analysis and Approximation of Limit Cycle in Coupled Van Der Pol and Duffing Oscillators Jianping Cai *a and Jianhe Shen b a Department of

More information

THE most studied topics in theoretical ecology is the

THE most studied topics in theoretical ecology is the Engineering Letters :3 EL 3_5 Stabilit Nonlinear Oscillations Bifurcation in a Dela-Induced Predator-Pre Sstem with Harvesting Debaldev Jana Swapan Charabort Nadulal Bairagi Abstract A harvested predator-pre

More information

Convex Sets Strict Separation. in the Minimax Theorem

Convex Sets Strict Separation. in the Minimax Theorem Applied Mathematical Sciences, Vol. 8, 2014, no. 36, 1781-1787 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4271 Convex Sets Strict Separation in the Minimax Theorem M. A. M. Ferreira

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 4. Bifurcations Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Local bifurcations for vector fields 1.1 The problem 1.2 The extended centre

More information

arxiv: v4 [nlin.cd] 23 Apr 2018

arxiv: v4 [nlin.cd] 23 Apr 2018 Multiple-parameter bifurcation analysis in a Kuramoto model with time delay and distributed shear Ben Niu and Jiaming Zhang, Junjie Wei Department of Mathematics, arxiv:1608.03394v4 [nlin.cd] 3 Apr 018

More information

Modified Neoclassical Growth Models with Delay: A Critical Survey and Perspectives

Modified Neoclassical Growth Models with Delay: A Critical Survey and Perspectives Applied Mathematical Sciences, Vol. 7, 2013, no. 86, 4249-4257 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.36318 Modified Neoclassical Growth Models with Delay: A Critical Survey and

More information

Research Paper 252 July Market Stability Switches in a Continuous-Time Financial Market with Heterogeneous Beliefs

Research Paper 252 July Market Stability Switches in a Continuous-Time Financial Market with Heterogeneous Beliefs QUANTITATIVE FINANCE RESEARCH CENTRE QUANTITATIVE F INANCE RESEARCH CENTRE QUANTITATIVE FINANCE RESEARCH CENTRE Research Paper 252 July 29 Market Stability Switches in a Continuous-Time Financial Market

More information

Alternate Locations of Equilibrium Points and Poles in Complex Rational Differential Equations

Alternate Locations of Equilibrium Points and Poles in Complex Rational Differential Equations International Mathematical Forum, Vol. 9, 2014, no. 35, 1725-1739 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2014.410170 Alternate Locations of Equilibrium Points and Poles in Complex

More information

Qualitative analysis for a delayed epidemic model with latent and breaking-out over the Internet

Qualitative analysis for a delayed epidemic model with latent and breaking-out over the Internet Zhang and Wang Advances in Difference Equations (17) 17:31 DOI 1.1186/s1366-17-174-9 R E S E A R C H Open Access Qualitative analysis for a delayed epidemic model with latent and breaking-out over the

More information

Novel Approach to Calculation of Box Dimension of Fractal Functions

Novel Approach to Calculation of Box Dimension of Fractal Functions Applied Mathematical Sciences, vol. 8, 2014, no. 144, 7175-7181 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49718 Novel Approach to Calculation of Box Dimension of Fractal Functions

More information

On Some Identities of k-fibonacci Sequences Modulo Ring Z 6 and Z 10

On Some Identities of k-fibonacci Sequences Modulo Ring Z 6 and Z 10 Applied Mathematical Sciences, Vol. 12, 2018, no. 9, 441-448 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.8228 On Some Identities of k-fibonacci Sequences Modulo Ring Z 6 and Z 10 Tri

More information

Qualitative Theory of Differential Equations and Dynamics of Quadratic Rational Functions

Qualitative Theory of Differential Equations and Dynamics of Quadratic Rational Functions Nonl. Analysis and Differential Equations, Vol. 2, 2014, no. 1, 45-59 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2014.3819 Qualitative Theory of Differential Equations and Dynamics of

More information

Stability Analysis of Plankton Ecosystem Model. Affected by Oxygen Deficit

Stability Analysis of Plankton Ecosystem Model. Affected by Oxygen Deficit Applied Mathematical Sciences Vol 9 2015 no 81 4043-4052 HIKARI Ltd wwwm-hikaricom http://dxdoiorg/1012988/ams201553255 Stability Analysis of Plankton Ecosystem Model Affected by Oxygen Deficit Yuriska

More information

Stability, convergence and Hopf bifurcation analyses of the classical car-following model

Stability, convergence and Hopf bifurcation analyses of the classical car-following model 1 Stability, convergence and Hopf bifurcation analyses of the classical car-following model Gopal Krishna Kamath, Krishna Jagannathan and Gaurav Raina Department of Electrical Engineering, Indian Institute

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

On Multivalent Functions Associated with Fixed Second Coefficient and the Principle of Subordination

On Multivalent Functions Associated with Fixed Second Coefficient and the Principle of Subordination International Journal of Mathematical Analysis Vol. 9, 015, no. 18, 883-895 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.015.538 On Multivalent Functions Associated with Fixed Second Coefficient

More information

Sums of Tribonacci and Tribonacci-Lucas Numbers

Sums of Tribonacci and Tribonacci-Lucas Numbers International Journal of Mathematical Analysis Vol. 1, 018, no. 1, 19-4 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ijma.018.71153 Sums of Tribonacci Tribonacci-Lucas Numbers Robert Frontczak

More information

Restrained Weakly Connected Independent Domination in the Corona and Composition of Graphs

Restrained Weakly Connected Independent Domination in the Corona and Composition of Graphs Applied Mathematical Sciences, Vol. 9, 2015, no. 20, 973-978 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.4121046 Restrained Weakly Connected Independent Domination in the Corona and

More information

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10)

Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10) Solutions for B8b (Nonlinear Systems) Fake Past Exam (TT 10) Mason A. Porter 15/05/2010 1 Question 1 i. (6 points) Define a saddle-node bifurcation and show that the first order system dx dt = r x e x

More information

The Expansion of the Confluent Hypergeometric Function on the Positive Real Axis

The Expansion of the Confluent Hypergeometric Function on the Positive Real Axis Applied Mathematical Sciences, Vol. 12, 2018, no. 1, 19-26 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.712351 The Expansion of the Confluent Hypergeometric Function on the Positive Real

More information

Second Hankel Determinant Problem for a Certain Subclass of Univalent Functions

Second Hankel Determinant Problem for a Certain Subclass of Univalent Functions International Journal of Mathematical Analysis Vol. 9, 05, no. 0, 493-498 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ijma.05.55 Second Hankel Determinant Problem for a Certain Subclass of Univalent

More information

Some Properties of a Semi Dynamical System. Generated by von Forester-Losata Type. Partial Equations

Some Properties of a Semi Dynamical System. Generated by von Forester-Losata Type. Partial Equations Int. Journal of Math. Analysis, Vol. 7, 2013, no. 38, 1863-1868 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.3481 Some Properties of a Semi Dynamical System Generated by von Forester-Losata

More information

On Nonlinear Methods for Stiff and Singular First Order Initial Value Problems

On Nonlinear Methods for Stiff and Singular First Order Initial Value Problems Nonlinear Analysis and Differential Equations, Vol. 6, 08, no., 5-64 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/nade.08.8 On Nonlinear Methods for Stiff and Singular First Order Initial Value Problems

More information

Dynamical Study of a Cylindrical Bar

Dynamical Study of a Cylindrical Bar Applied Mathematical Sciences, Vol. 11, 017, no. 3, 1133-1141 HIKARI Ltd, www.m-hikari.com https://doi.org/10.1988/ams.017.73104 Dynamical Study of a Cylindrical Bar Fatima Zahra Nqi LMN Laboratory National

More information

Predictor-Corrector Finite-Difference Lattice Boltzmann Schemes

Predictor-Corrector Finite-Difference Lattice Boltzmann Schemes Applied Mathematical Sciences, Vol. 9, 2015, no. 84, 4191-4199 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.5138 Predictor-Corrector Finite-Difference Lattice Boltzmann Schemes G. V.

More information

Laplace Type Problem with Non-uniform Distribution

Laplace Type Problem with Non-uniform Distribution Applied Mathematical Sciences, Vol. 1, 16, no. 3, 1595-16 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.1988/ams.16.66 Laplace Type Problem with Non-uniform Distribution Giuseppe Caristi Department

More information

Remark on the Sensitivity of Simulated Solutions of the Nonlinear Dynamical System to the Used Numerical Method

Remark on the Sensitivity of Simulated Solutions of the Nonlinear Dynamical System to the Used Numerical Method International Journal of Mathematical Analysis Vol. 9, 2015, no. 55, 2749-2754 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.59236 Remark on the Sensitivity of Simulated Solutions of

More information

Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations

Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations Sreelakshmi Manjunath Department of Electrical Engineering Indian Institute of Technology Madras (IITM), India JTG Summer

More information

Stable cycles in a Cournot duopoly model of Kopel

Stable cycles in a Cournot duopoly model of Kopel Journal of Computational and Applied Mathematics 18 (008 47 58 www.elsevier.com/locate/cam Stable cycles in a Cournot duopoly model of Kopel W. Govaerts a,, R. Khoshsiar Ghaziani a,b a Department of Applied

More information

BOUNDED WEAK SOLUTION FOR THE HAMILTONIAN SYSTEM. Q-Heung Choi and Tacksun Jung

BOUNDED WEAK SOLUTION FOR THE HAMILTONIAN SYSTEM. Q-Heung Choi and Tacksun Jung Korean J. Math. 2 (23), No., pp. 8 9 http://dx.doi.org/.568/kjm.23.2..8 BOUNDED WEAK SOLUTION FOR THE HAMILTONIAN SYSTEM Q-Heung Choi and Tacksun Jung Abstract. We investigate the bounded weak solutions

More information

Research Article A Hamilton-Poisson Model of the Chen-Lee System

Research Article A Hamilton-Poisson Model of the Chen-Lee System Applied Mathematics Volume 1, Article ID 4848, 11 pages doi:1.1155/1/4848 Research Article A Hamilton-Poisson Model of the Chen-Lee System Camelia Pop Arieşanu Department of Mathematics, Politehnica University

More information

Mixed 0-1 Linear Programming for an Absolute. Value Linear Fractional Programming with Interval. Coefficients in the Objective Function

Mixed 0-1 Linear Programming for an Absolute. Value Linear Fractional Programming with Interval. Coefficients in the Objective Function Applied Mathematical Sciences, Vol. 7, 2013, no. 73, 3641-3653 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2013.33196 Mixed 0-1 Linear Programming for an Absolute Value Linear Fractional

More information

Hopf bifurcation analysis of Chen circuit with direct time delay feedback

Hopf bifurcation analysis of Chen circuit with direct time delay feedback Chin. Phys. B Vol. 19, No. 3 21) 3511 Hopf bifurcation analysis of Chen circuit with direct time delay feedback Ren Hai-Peng 任海鹏 ), Li Wen-Chao 李文超 ), and Liu Ding 刘丁 ) School of Automation and Information

More information

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces

The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive Mappings in Hilbert Spaces Applied Mathematical Sciences, Vol. 11, 2017, no. 12, 549-560 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2017.718 The Generalized Viscosity Implicit Rules of Asymptotically Nonexpansive

More information