Rheology. October 2013

Size: px
Start display at page:

Download "Rheology. October 2013"

Transcription

1 Rheology Georges Cailletaud Centre des Matériaux MINES ParisTech/CNRS October 2013 Georges Cailletaud Rheology 1/44

2 Contents 1 Mechanical tests Structures Representative material elements 2 Rheological models Basic building bricks Plasticity Viscoelasticity Elastoviscoplasticity Georges Cailletaud Rheology 2/44

3 Tests on a civil plane Georges Cailletaud Rheology 3/44

4 Vibration of a wing Georges Cailletaud Rheology 4/44

5 Biological structures (1/2) Georges Cailletaud Rheology 5/44

6 Biological structures (2/2) Georges Cailletaud Rheology 6/44

7 Food industry Georges Cailletaud Rheology 7/44

8 Testing machines Georges Cailletaud Rheology 8/44

9 Tension test on a metallic specimen Georges Cailletaud Rheology 9/44

10 Mechanical tests Basic tests Time independent plasticity Tension test, or hardening test Cyclic load, or fatigue test Time dependent plasticity Other tests Test at constant stress, or creep test Test at constant strain, or relaxation test Multiaxial load Tension torsion Internal pressure Bending tests Crack propagation tests Georges Cailletaud Rheology 10/44

11 Typical result on an aluminum alloy For a stress σ 0.2, it remains 0.2% residual strain after unloading Stress to failure, σ u σ (MPa) Tension curve Elastic slope 0.2% residual strain 0.02 ε(mm/mm) E=78000 MPa, σ 0.2 =430 MPa, σ u =520 MPa Doc. Mines Paris-CDM, Evry Georges Cailletaud Rheology 11/44

12 Typical result on an austenitic steel Material exhibiting an important hardening : the yield stress increases during plastic flow σ (MPa) Tension curve Elastic slope 0.2% residual strain ε(mm/mm) E= MPa, σ 0.2 =180 MPa, σ u =660 MPa Doc. ONERA-DMSE, Châtillon Georges Cailletaud Rheology 12/44

13 Push pull test on an aluminum alloy Test under strain control ± 0.3% Positive residual strain at zero stress Negative stress at zero strain σ (MPa) ε(mm/mm) Doc. Mines Paris-CDM, Evry Georges Cailletaud Rheology 13/44

14 Schematic models for the preceding results σ σ E T σ y σ y E E 0 ε a. Elastic perfectly plastic 0 b. Elastic plastic (linear) ε Elastoplastic modulus, E T = dσ/dε. E T = 0 : elastic-perfectly plastic material E T constant : linear plastic hardening E t strain dependent in the general case Georges Cailletaud Rheology 14/44

15 How does a plasticity model work? σ B A Elastic regime OA, O B Plastic flow AB Residual strain OO 0 0 ε Strain decomposition, ε = ε e + ε p ; Yield domain, defined by a load function f Hardening, defined by means of hardening variables, A I. Georges Cailletaud Rheology 15/44

16 Result of a tension on a steel at high temperature Viscosity effect : Strain rate dependent behaviour 725 C 80 σ(mpa) ε = s 1 ε = s 1 ε = s 1 ε Doc. Ecole des Mines, Nancy Georges Cailletaud Rheology 16/44

17 Creep test on a tin lead wire Mines Paris-CDM, Evry Georges Cailletaud Rheology 17/44

18 Creep on a cast iron ε p σ=25mpa σ=20mpa σ=16mpa σ=12mpa t (s) Doc. Mines Paris-CDM, Evry Georges Cailletaud Rheology 18/44

19 Schematic representation of a creep curve Primary creep, with hardening in the material Secondary creep, steady state creep : ε p is a power function of the applied stress Tertiary creep, when damage mechanisms start p ε III I II t Georges Cailletaud Rheology 19/44

20 Creep on a cast iron (2) T=500 C T=600 C T=700 C T=800 C ε p (s 1 ) 1e-05 1e-06 1e-07 1e σ (MPa) Doc. Mines Paris-CDM, Evry Georges Cailletaud Rheology 20/44

21 Relaxation test Constant strain during the test During the test : ε = 0 = ε p + σ/e dε p = dσ/e The viscoplastic strain increases meanwhile stress decreases The asymptotic stress may be zero (total relaxation) or not (partial relaxation) Partial relaxation if there is an internal stress or a threshold in the material Georges Cailletaud Rheology 21/44

22 Schematic representation of a relaxation curve The current point in stress space is obtained as the sum of a threshold stress σ s and of a viscous stress σ v The threshold stress represents the plastic behaviour that is reached for zero strain rate σ σ σ v E σ s p ε t Georges Cailletaud Rheology 22/44

23 Contents 1 Mechanical tests Structures Representative material elements 2 Rheological models Basic building bricks Plasticity Viscoelasticity Elastoviscoplasticity Georges Cailletaud Rheology 23/44

24 Building bricks for the material models Georges Cailletaud Rheology 24/44

25 Various types of rheologies Time independent plasticity ε = ε e + ε p dε p = f(...)dσ Elasto-viscoplasticity ε = ε e + ε p dε p = f(...)dt Viscoelasticity F(σ, σ,ε, ε) = 0 Georges Cailletaud Rheology 25/44

26 Time independent plasticity Georges Cailletaud Rheology 26/44

27 Elastic perfectly plastic model The elastic/plastic regime is defined by means of a load function f (from stress space into R) f(σ) = σ σ y Elasticity domain Elastic unloading if f < 0 ε = ε e = σ/e Plastic flow if f = 0 and ḟ < 0 if f = 0 and ḟ = 0 ε = ε e = σ/e ε = ε p The condition ḟ = 0 is the consistency condition Georges Cailletaud Rheology 27/44

28 Prager model Loading function with two variables, σ and X f(σ,x) = σ X σ y with X = Hε p Plastic flow if both conditions are verified f = 0 and ḟ = 0. f f σ + σ X Ẋ = 0 sign(σ X) σ sign(σ X)Ẋ = 0 thus : σ = Ẋ Plastic strain rate as a function of the stress rate ε p = σ/h Plastic strain rate as a function of the total strain rate (once an elastic strain is added) ε p = E E + H ε Georges Cailletaud Rheology 28/44

29 Equation of onedimensional elastoplasticity Elasticity domain if f(σ,a i ) < 0 ε = σ/e Elastic unloading if f(σ,a i ) = 0 and ḟ(σ,a i ) < 0 ε = σ/e Plastic flow if f(σ,a i ) = 0 and ḟ(σ,a i ) = 0 ε = σ/e + ε p The consistency condition writes : ḟ(σ,a i ) = 0 Georges Cailletaud Rheology 29/44

30 Illustration of the two hardening types Georges Cailletaud Rheology 30/44

31 Isotropic hardening model Loading function with two variables, σ and R f(σ,r) = σ R σ y R depends on p, accumulated plastic strain : ṗ = ε p dr/dp = H thus Ṙ = Hṗ Plastic flow iff f = 0 and ḟ = 0 sign(σ) σ Ṙ = 0 f f σ + σ R Ṙ = 0 thus sign(σ) σ Hṗ Plastic strain rate as a function of the stress rate ṗ = sign(σ) σ/h thus ε p = σ/h Classical models Ramberg-Osgood : σ = σ y + Kp m Exponential rule : σ = σ u + (σ y σ u )exp( bp) Georges Cailletaud Rheology 31/44

32 Viscoelasticity Georges Cailletaud Rheology 32/44

33 Elementary responses in viscoelasticity Serie, Maxwell model : ε = σ/e 0 + σ/η Creep under a stress σ 0 : ε = σ 0 /E 0 + σ 0 t /η Relaxation for a strain ε 0 : σ = E 0 ε 0 exp[ t/τ] Parallel, Voigt model : σ = Hε + η ε or ε = (σ H ε)/η Creep under a stress σ 0 : ε = (σ 0 /H)(1 exp[ t/τ ]) The constants τ = η/e 0 and τ = η/h are in seconds, τ denoting the so called le relaxation time of the Maxwell model Georges Cailletaud Rheology 33/44

34 More complex models (H) (E 1 ) (E 0 ) (η) (E 2 ) (η) a. Kelvin Voigt b. Zener Creep and relaxation responses ( 1 ε(t) = C(t)σ 0 = + 1 ) E 0 H (1 exp[ t/τ f ]) σ 0 ( H σ(t) = E(t)ε 0 = + E ) 0 exp[ t/τ r ] E 0 ε 0 H + E 0 H + E 0 Georges Cailletaud Rheology 34/44

35 Elasto-viscoplasticity Scheme of the model Tensile response X = Hε vp σ v = η ε vp σ p σ y σ = X + σ v + σ p Elasticity domain, whose boundary is σ p = σ y Georges Cailletaud Rheology 35/44

36 Model equations Three regimes (a) ε vp =0 σ p = σ Hε vp σ y (b) ε vp >0 σ p =σ Hε vp η ε vp =σ y (c) ε vp <0 σ p =σ Hε vp η ε vp = σ y (a) interior or boundary of the elasticity domain ( σ p < σ y ) (b),(c) flow ( σ p = σ y and σ p = 0 ) One can summarize the three equations (with < x >= max(x,0)) by or : η ε vp = σ X σ y sign(σ X) ε vp = < f > η sign(σ X), with f(σ,x) = σ X σ y Georges Cailletaud Rheology 36/44

37 Creep with a Bingham model σ - o H ε vp σ y σ σ o X σ y Viscoplastic strain versus time ε vp = σ o σ y H ( t 1 exp Evolution in the plane stress vsicoplastic strain )) ( tτf with : τ f = η/h vp ε Georges Cailletaud Rheology 37/44

38 Relaxation with a Bingham model σ σy -E H vp ε A O D B C H Transitoire : OA = BC Relaxation : AB Effacement vp incomplet : CD ε Fading memory Relaxation ( ( E σ = σ y 1 exp t )) + Eε ( ( o H + E exp t )) E + H τ r E + H τ r with : τ r = η E + H Georges Cailletaud Rheology 38/44

39 Ingredients for classical viscoplastic models Bingham model More generally ε vp = < f > sign(σ X) η ε vp = φ(f) φ(0) = 0 and φ monotonically increasing ε vp is zero if the current point is in the elasticity domain or on the boundary ε vp is non zero if the current point is outside from the elasticity domain There are models with/without threshold, with/without hardening Georges Cailletaud Rheology 39/44

40 Viscoplastic models without hardening Models without threeshold : the elastic domain is reduced to the origin (σ = 0) Norton model Sellars Tegart model Models with a threshold Perzyna model σ ε vp σy = K ( ) σ n ε vp = sign(σ) K ( ) σ ε vp = Ash sign(σ) K n σ n sign(σ), ε vp = ε 0 1 sign(σ) σ y Georges Cailletaud Rheology 40/44

41 Viscoplastic models with hardening The concept of additive hardening : The hardening comes from the variables that represent the threshold (X and R) σ X R n ε vp σy = sign(σ X) K X stands for the internal stress (kinematical hardening) R + σ y stands for the friction stress (isotropic hardening) σ v is the viscous stress or drag stress The concept of multiplicative hardening : one plays on viscous stress, for instance : ( ) σ n ( ) σ n ε vp = sign(σ) = sign(σ) K (ε p ) K 0 ε p m strain hardening Georges Cailletaud Rheology 41/44

42 For plasticity and viscoplasticity... Elasticity defined by a loading function f < 0 Isotropic and kinematic variables For plasticity : Plastic flow defined by the consistency condition f = 0,ḟ = 0 Plastic flow : dε p = g(σ,...)dσ For viscoplasticity : Flow defined by the viscosity function if f > 0 Possible hardening on the viscous stress Delayed viscoplastic flow dε vp = g(σ,...)dt Georges Cailletaud Rheology 42/44

43 Identification of the material parameters Norton model on tin lead wires exp sim creep strain stress (MPa) g g 1150 g 997 g 720 g time (s) Creep test time (s) Relaxation ε=20% Curves obtained with a Norton model ( σ ) 2.3 ε p = 800 I try by myself on the site mms2.ensmp.fr O Georges Cailletaud Rheology 43/44

44 Identification of the creep on salt strain time (Ms) exp sim Specimen Three level test (3, 6, 9 MPa) Curves obtained with a Lemaitre model (strain hardening) ( σ ) n ε p = (ε p + v 0 ) m K I try by myself on the site mms2.ensmp.fr O Georges Cailletaud Rheology 44/44

PLASTICITY AND VISCOPLASTICITY UNDER CYCLIC LOADINGS

PLASTICITY AND VISCOPLASTICITY UNDER CYCLIC LOADINGS ATHENS Course MP06 Nonlinear Computational Mechanics March 16 to 20, 2009 PLASTICITY AND VISCOPLASTICITY UNDER CYCLIC LOADINGS Jean-Louis Chaboche ONERA, 29 av. de la Division Leclerc 92320 Châtillon,

More information

F7. Characteristic behavior of solids

F7. Characteristic behavior of solids F7. Characteristic behavior of solids F7a: Deformation and failure phenomena: Elasticity, inelasticity, creep, fatigue. à Choice of constitutive model: Issues to be considered è Relevance? Physical effect

More information

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS 1 MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS Version 2011-01-14 Stress tensor Definition of traction vector (1) Cauchy theorem (2) Equilibrium (3) Invariants (4) (5) (6) or, written in terms of principal

More information

Onedimensional ratchetting Twodimensional ratchetting Response of unified models Response of 2M1C model Response of polycrystalline models

Onedimensional ratchetting Twodimensional ratchetting Response of unified models Response of 2M1C model Response of polycrystalline models Ratchetting Onedimensional ratchetting Twodimensional ratchetting Response of unified models Response of 2M1C model Response of polycrystalline models Still an open problem Ratchetting effects Primary

More information

MHA042 - Material mechanics: Duggafrågor

MHA042 - Material mechanics: Duggafrågor MHA042 - Material mechanics: Duggafrågor 1) For a static uniaxial bar problem at isothermal (Θ const.) conditions, state principle of energy conservation (first law of thermodynamics). On the basis of

More information

Constitutive Model for High Density Polyethylene to Capture Strain Reversal

Constitutive Model for High Density Polyethylene to Capture Strain Reversal Constitutive Model for High Density Polyethylene to Capture Strain Reversal Abdul Ghafar Chehab 1 and Ian D. Moore 2 1 Research Assistant, GeoEngineering Centre at Queen s RMC, Queen s University, Kingston,

More information

Creep. Creep behavior of viscoelastic polymeric materials

Creep. Creep behavior of viscoelastic polymeric materials B1 Version: 2.2_EN Date: 15. March 2018. BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF POLYMER ENGINEERING Creep Creep behavior of viscoelastic polymeric

More information

Volume 2 Fatigue Theory Reference Manual

Volume 2 Fatigue Theory Reference Manual Volume Fatigue Theory Reference Manual Contents 1 Introduction to fatigue 1.1 Introduction... 1-1 1. Description of the applied loading... 1-1.3 Endurance curves... 1-3 1.4 Generalising fatigue data...

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

Linear viscoelastic behavior

Linear viscoelastic behavior Harvard-MIT Division of Health Sciences and Technology HST.523J: Cell-Matrix Mechanics Prof. Ioannis Yannas Linear viscoelastic behavior 1. The constitutive equation depends on load history. 2. Diagnostic

More information

Lecture 5. Rheology. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Lecture 5. Rheology. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm Lecture 5 Rheology Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm WW Norton; unless noted otherwise Rheology is... the study of deformation and flow of

More information

The science of elasticity

The science of elasticity The science of elasticity In 1676 Hooke realized that 1.Every kind of solid changes shape when a mechanical force acts on it. 2.It is this change of shape which enables the solid to supply the reaction

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour Tensile-Test Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress - true strain (flow curve) mechanical properties: - Resilience - Ductility - Toughness - Hardness A standard

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION A - INTRODUCTION INTRODUCTION M.N.Tamin, CSMLab, UTM Course Content: A - INTRODUCTION Mechanical failure modes; Review of load and stress analysis equilibrium equations, complex stresses, stress transformation,

More information

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

STANDARD SAMPLE. Reduced section  Diameter. Diameter. 2 Gauge length. Radius MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen

More information

RHEOLOGY & LINEAR ELASTICITY. B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous isotropic materials

RHEOLOGY & LINEAR ELASTICITY. B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous isotropic materials GG303 Lecture 2 0 9/4/01 1 RHEOLOGY & LINEAR ELASTICITY I II Main Topics A Rheology: Macroscopic deformation behavior B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous

More information

Mechanical Properties of Materials

Mechanical Properties of Materials Mechanical Properties of Materials Strains Material Model Stresses Learning objectives Understand the qualitative and quantitative description of mechanical properties of materials. Learn the logic of

More information

MODELLING OF THE CYCLIC AND VISCOPLASTIC BEHAVIOR OF A COPPER-BASE ALLOY USING CHABOCHE MODEL

MODELLING OF THE CYCLIC AND VISCOPLASTIC BEHAVIOR OF A COPPER-BASE ALLOY USING CHABOCHE MODEL SP2016_3124805 MODELLING OF THE CYCLIC AND VISCOPLASTIC BEHAVIOR OF A COPPER-BASE ALLOY USING CHABOCHE MODEL Wissam BOUAJILA (1), Jörg RICCIUS (1) (1) German Aerospace Centre DLR Lampoldshausen, Langer

More information

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004 Elements of Polymer Structure and Viscoelasticity David M. Parks Mechanics and Materials II 2.002 February 18, 2004 Outline Elements of polymer structure Linear vs. branched; Vinyl polymers and substitutions

More information

Unified Constitutive Model for Engineering- Pavement Materials and Computer Applications. University of Illinois 12 February 2009

Unified Constitutive Model for Engineering- Pavement Materials and Computer Applications. University of Illinois 12 February 2009 Unified Constitutive Model for Engineering- Pavement Materials and Computer Applications Chandrakant S. Desai Kent Distinguished i Lecture University of Illinois 12 February 2009 Participation in Pavements.

More information

An Evaluation of Simplified Methods to Compute the Mechanical Steady State

An Evaluation of Simplified Methods to Compute the Mechanical Steady State An Evaluation of Simplified Methods to Compute the Mechanical Steady State T. Herbland a,b, G. Cailletaud a, S. Quilici a, H. Jaffal b, M. Afzali b a Mines Paris Paris Tech, CNRS UMR 7633, BP 87, 91003

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

Reference material Reference books: Y.C. Fung, "Foundations of Solid Mechanics", Prentice Hall R. Hill, "The mathematical theory of plasticity",

Reference material Reference books: Y.C. Fung, Foundations of Solid Mechanics, Prentice Hall R. Hill, The mathematical theory of plasticity, Reference material Reference books: Y.C. Fung, "Foundations of Solid Mechanics", Prentice Hall R. Hill, "The mathematical theory of plasticity", Oxford University Press, Oxford. J. Lubliner, "Plasticity

More information

Loading σ Stress. Strain

Loading σ Stress. Strain hapter 2 Material Non-linearity In this chapter an overview of material non-linearity with regard to solid mechanics is presented. Initially, a general description of the constitutive relationships associated

More information

Lecture 7 Constitutive Behavior of Asphalt Concrete

Lecture 7 Constitutive Behavior of Asphalt Concrete Lecture 7 Constitutive Behavior of Asphalt Concrete What is a Constitutive Model? A constitutive model or constitutive equation is a relation between two physical quantities that is specific to a material

More information

Damage Mechanics-Based Models for High-Cycle Fatigue Life Prediction of Metals

Damage Mechanics-Based Models for High-Cycle Fatigue Life Prediction of Metals Damage Mechanics-Based Models for High-Cycle Fatigue Life Prediction of Metals H.A.F. Argente dos Santos (Postdoc Fellow) Dipartimento di Meccanica Strutturale Università degli Studi di Pavia Pavia, December

More information

ME 207 Material Science I

ME 207 Material Science I ME 207 Material Science I Chapter 3 Properties in Tension and Compression Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction

More information

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2000. Dr. Coates Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

More information

The Influence of Strain Amplitude, Temperature and Frequency on Complex Shear Moduli of Polymer Materials under Kinematic Harmonic Loading

The Influence of Strain Amplitude, Temperature and Frequency on Complex Shear Moduli of Polymer Materials under Kinematic Harmonic Loading Mechanics and Mechanical Engineering Vol. 21, No. 1 (2017) 157 170 c Lodz University of Technology The Influence of Strain Amplitude, Temperature and Frequency on Complex Shear Moduli of Polymer Materials

More information

Rheology: What is it?

Rheology: What is it? Schedule Rheology basics Viscous, elastic and plastic Creep processes Flow laws Yielding mechanisms Deformation maps Yield strength envelopes Constraints on the rheology from the laboratory, geology, geophysics

More information

Solid Mechanics Chapter 1: Tension, Compression and Shear

Solid Mechanics Chapter 1: Tension, Compression and Shear Solid Mechanics Chapter 1: Tension, Compression and Shear Dr. Imran Latif Department of Civil and Environmental Engineering College of Engineering University of Nizwa (UoN) 1 Why do we study Mechanics

More information

ScienceDirect. Bauschinger effect during unloading of cold-rolled copper alloy sheet and its influence on springback deformation after U-bending

ScienceDirect. Bauschinger effect during unloading of cold-rolled copper alloy sheet and its influence on springback deformation after U-bending Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 81 (2014 ) 969 974 11th International Conference on Technology of Plasticity, ICTP 2014, 19-24 October 2014, Nagoya Congress

More information

BIOEN LECTURE 18: VISCOELASTIC MODELS

BIOEN LECTURE 18: VISCOELASTIC MODELS BIOEN 326 2013 LECTURE 18: VISCOELASTIC MODELS Definition of Viscoelasticity. Until now, we have looked at time-independent behaviors. This assumed that materials were purely elastic in the conditions

More information

Modelling of ductile failure in metal forming

Modelling of ductile failure in metal forming Modelling of ductile failure in metal forming H.H. Wisselink, J. Huetink Materials Innovation Institute (M2i) / University of Twente, Enschede, The Netherlands Summary: Damage and fracture are important

More information

Theoretical Seismology. Astrophysics and Cosmology and Earth and Environmental Physics. Anelasticity. Fabio ROMANELLI

Theoretical Seismology. Astrophysics and Cosmology and Earth and Environmental Physics. Anelasticity. Fabio ROMANELLI Theoretical Seismology Astrophysics and Cosmology and Earth and Environmental Physics Anelasticity Fabio ROMANELLI Department of Mathematics & Geosciences University of Trieste romanel@units.it Intrinsic

More information

CONSTITUTIVE MODELING OF ENGINEERING MATERIALS - THEORY AND COMPUTATION. The Primer

CONSTITUTIVE MODELING OF ENGINEERING MATERIALS - THEORY AND COMPUTATION. The Primer CONSTITUTIVE MODELING OF ENGINEERING MATERIALS - THEORY AND COMPUTATION The Primer by Kenneth Runesson Lecture Notes, Dept. of Applied Mechanics, Chalmers University of Technology, Göteborg Preface There

More information

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland Agricultural Science 1B Principles & Processes in Agriculture Mike Wheatland (m.wheatland@physics.usyd.edu.au) Outline - Lectures weeks 9-12 Chapter 6: Balance in nature - description of energy balance

More information

Multiscale analyses of the behaviour and damage of composite materials

Multiscale analyses of the behaviour and damage of composite materials Multiscale analyses of the behaviour and damage of composite materials Presented by Didier BAPTISTE ENSAM, LIM, UMR CNRS 8006 151 boulevard de l hôpital l 75013 PARIS, France Research works from: K.Derrien,

More information

THERMO-MECHANICAL BEHAVIOR OF A THERMOPLASTIC REINFORCED WITH DISCONTINUOUS GLASS FIBERS

THERMO-MECHANICAL BEHAVIOR OF A THERMOPLASTIC REINFORCED WITH DISCONTINUOUS GLASS FIBERS 21 st International Conference on Composite Materials Xi an, 20-25 th August 2017 THERMO-MECHANICAL BEHAVIOR OF A THERMOPLASTIC REINFORCED WITH DISCONTINUOUS GLASS FIBERS Delphine Lopez 1, Sandrine Thuillier

More information

A Nonlinear Generalized Standard Solid Model for Viscoelastic Materials

A Nonlinear Generalized Standard Solid Model for Viscoelastic Materials A Nonlinear Generalized Standard Solid Model for Viscoelastic Materials A Nonlinear Generalized Standard Solid Model for Viscoelastic Materials Marc Delphin MONSIA From: Département de Physique Université

More information

Tensile stress strain curves for different materials. Shows in figure below

Tensile stress strain curves for different materials. Shows in figure below Tensile stress strain curves for different materials. Shows in figure below Furthermore, the modulus of elasticity of several materials effected by increasing temperature, as is shown in Figure Asst. Lecturer

More information

Elastic-Plastic Fracture Mechanics. Professor S. Suresh

Elastic-Plastic Fracture Mechanics. Professor S. Suresh Elastic-Plastic Fracture Mechanics Professor S. Suresh Elastic Plastic Fracture Previously, we have analyzed problems in which the plastic zone was small compared to the specimen dimensions (small scale

More information

Mechanical Models for Asphalt Behavior and Performance

Mechanical Models for Asphalt Behavior and Performance Mechanical Models for Asphalt Behavior and Performance All Attendees Are Muted Questions and Answers Please type your questions into your webinar control panel We will read your questions out loud, and

More information

Continuum Mechanics and Theory of Materials

Continuum Mechanics and Theory of Materials Peter Haupt Continuum Mechanics and Theory of Materials Translated from German by Joan A. Kurth Second Edition With 91 Figures, Springer Contents Introduction 1 1 Kinematics 7 1. 1 Material Bodies / 7

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

Structural Analysis I Chapter 4 - Torsion TORSION

Structural Analysis I Chapter 4 - Torsion TORSION ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

More information

Engineering Solid Mechanics

Engineering Solid Mechanics }} Engineering Solid Mechanics 1 (2013) 1-8 Contents lists available at GrowingScience Engineering Solid Mechanics homepage: www.growingscience.com/esm Impact damage simulation in elastic and viscoelastic

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS 3 rd Edition Michael S. Mamlouk Arizona State University John P. Zaniewski West Virginia University Solution Manual FOREWORD This solution manual includes

More information

Siping Road 1239, , Shanghai, P.R. China

Siping Road 1239, , Shanghai, P.R. China COMPARISON BETWEEN LINEAR AND NON-LINEAR KINEMATIC HARDENING MODELS TO PREDICT THE MULTIAXIAL BAUSCHINGER EFFECT M.A. Meggiolaro 1), J.T.P. Castro 1), H. Wu 2) 1) Department of Mechanical Engineering,

More information

ABSTRACT. This dissertation presents a uniaxial viscoplastic constitutive model that is capable of

ABSTRACT. This dissertation presents a uniaxial viscoplastic constitutive model that is capable of ABSTRACT YUN, TAEYOUNG. Development of a Viscoplastic Constitutive Model Using a Rate- Dependent Yield Criterion for HMA in Compression. (Under the direction of Dr. Y. Richard Kim). This dissertation presents

More information

AND JOZEF SUMEC. rheological elements, constitutive equation, large deformations, hysteresis, dissi- pated energy

AND JOZEF SUMEC. rheological elements, constitutive equation, large deformations, hysteresis, dissi- pated energy Proceedings of EQUADIFF 2017 pp. 173 180 VISCO-ELASTO-PLASTIC MODELING JANA KOPFOVÁ, MÁRIA MINÁROVÁ AND JOZEF SUMEC Abstract. In this paper we deal with the mathematical modelling of rheological models

More information

Fatigue Damage Development in a Steel Based MMC

Fatigue Damage Development in a Steel Based MMC Fatigue Damage Development in a Steel Based MMC V. Tvergaard 1,T.O/ rts Pedersen 1 Abstract: The development of fatigue damage in a toolsteel metal matrix discontinuously reinforced with TiC particulates

More information

Deformation of Polymers. Version 2.1. Boban Tanovic, MATTER David Dunning, University of North London

Deformation of Polymers. Version 2.1. Boban Tanovic, MATTER David Dunning, University of North London Deformation of Polymers Version 2.1 Boban Tanovic, MATTER David Dunning, University of North London Assumed Pre-knowledge It is assumed that the user is familiar with the terms elasticity, stress, strain,

More information

CHOICE AND CALIBRATION OF CYCLIC PLASTICITY MODEL WITH REGARD TO SUBSEQUENT FATIGUE ANALYSIS

CHOICE AND CALIBRATION OF CYCLIC PLASTICITY MODEL WITH REGARD TO SUBSEQUENT FATIGUE ANALYSIS Engineering MECHANICS, Vol. 19, 2012, No. 2/3, p. 87 97 87 CHOICE AND CALIBRATION OF CYCLIC PLASTICITY MODEL WITH REGARD TO SUBSEQUENT FATIGUE ANALYSIS Radim Halama*, Michal Šofer*, František Fojtík* Plasticity

More information

Testing Elastomers and Plastics for Marc Material Models

Testing Elastomers and Plastics for Marc Material Models Testing Elastomers and Plastics for Marc Material Models Presented by: Kurt Miller Axel Products, Inc. axelproducts.com We Measure Structural Properties Stress Strain Time-Temperature Test Combinations

More information

On Springback Prediction In Stamping Of AHSS BIW Components Utilizing Advanced Material Models

On Springback Prediction In Stamping Of AHSS BIW Components Utilizing Advanced Material Models On Springback Prediction In Stamping Of AHSS BIW Components Utilizing Advanced Material Models Ming F. Shi and Alex A. Konieczny United States Steel Corporation Introduction Origin of Springback AHSS Springback

More information

APPLICATION OF DAMAGE MODEL FOR NUMERICAL DETERMINATION OF CARRYING CAPACITY OF LARGE ROLLING BEARINGS

APPLICATION OF DAMAGE MODEL FOR NUMERICAL DETERMINATION OF CARRYING CAPACITY OF LARGE ROLLING BEARINGS INTERNATIONAL ESIGN CONFERENCE - ESIGN ubrovnik, May 14-17,. APPLICATION OF AMAGE MOEL FOR NUMERICAL ETERMINATION OF CARRYING CAPACITY OF LARGE ROLLING BEARINGS Robert Kunc, Ivan Prebil, Tomaž Rodic and

More information

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

More information

Fundamentals of Durability. Unrestricted Siemens AG 2013 All rights reserved. Siemens PLM Software

Fundamentals of Durability. Unrestricted Siemens AG 2013 All rights reserved. Siemens PLM Software Fundamentals of Durability Page 1 Your single provider of solutions System simulation solutions 3D simulation solutions Test-based engineering solutions Engineering services - Deployment services Troubleshooting

More information

TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK

TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK vii TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION DEDICATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS LIST OF SYMBOLS ii iii iv v vi vii

More information

Fatigue Problems Solution

Fatigue Problems Solution Fatigue Problems Solution Problem 1. (a) Given the values of σ m (7 MPa) and σ a (1 MPa) we are asked t o compute σ max and σ min. From Equation 1 Or, σ m σ max + σ min 7 MPa σ max + σ min 14 MPa Furthermore,

More information

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Uniaxial Model: Strain-Driven Format of Elastoplasticity

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Uniaxial Model: Strain-Driven Format of Elastoplasticity MODELING OF CONCRETE MATERIALS AND STRUCTURES Kaspar Willam University of Colorado at Boulder Class Meeting #3: Elastoplastic Concrete Models Uniaxial Model: Strain-Driven Format of Elastoplasticity Triaxial

More information

A Comparative Analysis of Linear and Nonlinear Kinematic Hardening Rules in Computational Elastoplasticity

A Comparative Analysis of Linear and Nonlinear Kinematic Hardening Rules in Computational Elastoplasticity TECHNISCHE MECHANIK, 32, 2-5, (212), 164 173 submitted: October 2, 211 A Comparative Analysis of Linear and Nonlinear Kinematic Hardening Rules in Computational Elastoplasticity Fabio De Angelis In this

More information

G1RT-CT D. EXAMPLES F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION

G1RT-CT D. EXAMPLES F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION D. EXAMPLES 426 WORKED EXAMPLE I Flat Plate Under Constant Load Introduction and objectives Data Analysis Bibliography/References 427 INTRODUCTION AND OBJECTIVES During a visual inspection of a C-Mn flat

More information

Fatigue Life. The curve may be plotted as semilogarithmic

Fatigue Life. The curve may be plotted as semilogarithmic Fatigue Life The total number of cycles for which a specimen sustains before failure is called fatigue (cyclic) life, denoted by N. The graph by plotting values of S a and N is called S-N curve or Wöhler

More information

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current

Rheology. What is rheology? From the root work rheo- Current: flow. Greek: rhein, to flow (river) Like rheostat flow of current Rheology What is rheology? From the root work rheo- Current: flow Greek: rhein, to flow (river) Like rheostat flow of current Rheology What physical properties control deformation? - Rock type - Temperature

More information

20. Rheology & Linear Elasticity

20. Rheology & Linear Elasticity I Main Topics A Rheology: Macroscopic deformation behavior B Linear elasticity for homogeneous isotropic materials 10/29/18 GG303 1 Viscous (fluid) Behavior http://manoa.hawaii.edu/graduate/content/slide-lava

More information

Constitutive models: Incremental plasticity Drücker s postulate

Constitutive models: Incremental plasticity Drücker s postulate Constitutive models: Incremental plasticity Drücker s postulate if consistency condition associated plastic law, associated plasticity - plastic flow law associated with the limit (loading) surface Prager

More information

Johns Hopkins University What is Engineering? M. Karweit MATERIALS

Johns Hopkins University What is Engineering? M. Karweit MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: MATERIALS A. Composition

More information

HERCULES-2 Project. Deliverable: D4.4. TMF model for new cylinder head. <Final> 28 February March 2018

HERCULES-2 Project. Deliverable: D4.4. TMF model for new cylinder head. <Final> 28 February March 2018 HERCULES-2 Project Fuel Flexible, Near Zero Emissions, Adaptive Performance Marine Engine Deliverable: D4.4 TMF model for new cylinder head Nature of the Deliverable: Due date of the Deliverable:

More information

ONERA Fatigue Model. December 11, 2017

ONERA Fatigue Model. December 11, 2017 December 11, 2017 Plan 1 ONERA Model 2 Manson-Coffin Model 3 Basic Tools Multiaxial stress amplitude (SEH) Multiaxial rainflow 4 Z-post input commands process onera process fatigue_rainflow process manson_coffin

More information

3D-FE Implementation of Evolutionary Cyclic Plasticity Model for Fully Mechanistic (non S-N curve) Fatigue Life Evaluation

3D-FE Implementation of Evolutionary Cyclic Plasticity Model for Fully Mechanistic (non S-N curve) Fatigue Life Evaluation 3D-FE Implementation of Evolutionary Cyclic Plasticity Model for Fully Mechanistic (non S-N curve) Fatigue Life Evaluation Bipul Barua, Subhasish Mohanty 1, Joseph T. Listwan, Saurindranath Majumdar, and

More information

Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics

Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics R. Carbone 1* 1 Dipartimento di Ingegneria dei Materiali e della Produzione sez. Tecnologie

More information

Validation of Damage Parameter Based Finite Element Fatigue Life Analysis Results to Combustion Chamber Type TMF Panel Test Results

Validation of Damage Parameter Based Finite Element Fatigue Life Analysis Results to Combustion Chamber Type TMF Panel Test Results Validation of Damage Parameter Based Finite Element Fatigue Life Analysis Results to Combustion Chamber Type TMF Panel Test Results R. G. Thiede and J. R. Riccius DLR Lampoldshausen, Hardthausen, Germany,

More information

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations W. Van Paepegem *, I. De Baere and J. Degrieck Ghent

More information

Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models

Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models I. Rhee, K.J. Willam, B.P. Shing, University of Colorado at Boulder ABSTRACT: This paper examines the global

More information

Mechanical Models for Asphalt Behavior and Performance

Mechanical Models for Asphalt Behavior and Performance Mechanical Models for Asphalt Behavior and Performance Introduction and Review of Linear Viscoelastic Behaviors About the webinar series Past, current, and future plan for webinar series Introduction to

More information

The influence of strain hardening of polymers on the piling-up phenomenon in scratch tests: Experiments and numerical modelling

The influence of strain hardening of polymers on the piling-up phenomenon in scratch tests: Experiments and numerical modelling Wear 260 (2006) 803 814 The influence of strain hardening of polymers on the piling-up phenomenon in scratch tests: Experiments and numerical modelling J.L. Bucaille a, C. Gauthier b,, E. Felder a, R.

More information

NUMERICAL SIMULATIONS OF CORNERS IN RC FRAMES USING STRUT-AND-TIE METHOD AND CDP MODEL

NUMERICAL SIMULATIONS OF CORNERS IN RC FRAMES USING STRUT-AND-TIE METHOD AND CDP MODEL Numerical simulations of corners in RC frames using Strut-and-Tie Method and CDP model XIII International Conference on Computational Plasticity. Fundamentals and Applications COMPLAS XIII E. Oñate, D.R.J.

More information

EXPERIMENTAL DETERMINATION OF MATERIAL PARAMETERS USING STABILIZED CYCLE TESTS TO PREDICT THERMAL RATCHETTING

EXPERIMENTAL DETERMINATION OF MATERIAL PARAMETERS USING STABILIZED CYCLE TESTS TO PREDICT THERMAL RATCHETTING U..B. Sci. Bull., Series D, Vol. 78, Iss. 2, 2016 ISSN 1454-2358 EXERIMENTAL DETERMINATION OF MATERIAL ARAMETERS USING STABILIZED CYCLE TESTS TO REDICT THERMAL RATCHETTING Mohammad ZEHSAZ 1, Farid Vakili

More information

Contents. Preface XIII. 1 General Introduction 1 References 6

Contents. Preface XIII. 1 General Introduction 1 References 6 VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 Hard-Sphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction

More information

The Finite Element Method II

The Finite Element Method II [ 1 The Finite Element Method II Non-Linear finite element Use of Constitutive Relations Xinghong LIU Phd student 02.11.2007 [ 2 Finite element equilibrium equations: kinematic variables Displacement Strain-displacement

More information

A fatigue limit diagram for plastic rail clips

A fatigue limit diagram for plastic rail clips Computers in Railways XIV 839 A fatigue limit diagram for plastic rail clips S. Tamagawa, H. Kataoka & T. Deshimaru Department of Track Structures and Components, Railway Technical Research Institute,

More information

Rheological Properties and Fatigue Resistance of Crumb Rubber Modified Bitumen

Rheological Properties and Fatigue Resistance of Crumb Rubber Modified Bitumen Rheological Properties and Fatigue Resistance of Crumb Rubber Modified Bitumen F. Khodary Department of Civil Engineering, Institute of traffic and transport, section of road and pavement engineering,

More information

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

More information

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing

More information

DIGITAL SIMULATIVE TEST OF ASPHALT MIXTURES USING FINITE ELEMENT METHOD AND X-RAY TOMOGRAPHY IMAGES

DIGITAL SIMULATIVE TEST OF ASPHALT MIXTURES USING FINITE ELEMENT METHOD AND X-RAY TOMOGRAPHY IMAGES DIGITAL SIMULATIVE TEST OF ASPHALT MIXTURES USING FINITE ELEMENT METHOD AND X-RAY TOMOGRAPHY IMAGES Wang, Yongping Dissertation submitted to the faculty of Virginia Polytechnic Institute and State University

More information

PART II: The legacy of isotropic ice

PART II: The legacy of isotropic ice PART II: The legacy of isotropic ice 1. A flow law for ice: experimental evidence 2. A flow law for ice: continuum mechanical modeling 3. Microscale processes beyond secondary 1. A flow law for ice: experimental

More information

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises Non-linear and time-dependent material models in Mentat & MARC Tutorial with Background and Exercises Eindhoven University of Technology Department of Mechanical Engineering Piet Schreurs July 7, 2009

More information

CREEP BEHAVIOUR OF KEVLAR 49 INOKUCHI MATHEMATIC ANALYSE

CREEP BEHAVIOUR OF KEVLAR 49 INOKUCHI MATHEMATIC ANALYSE CREEP BEHAVIOUR OF KEVLAR 49 INOKUCHI MATHEMATIC ANALYSE S. KACI 1, Z. TOUTOU 1, P. MORLIER 2 1 Institut de Génie-Civil, Université Mouloud MAMMERI de Tizi-Ouzou Tizi-Ouzou, 15000, Algérie 2 Laboratoire

More information

Measurement Engineering Group, Paderborn University, Warburger Straße 100, Paderborn, Germany

Measurement Engineering Group, Paderborn University, Warburger Straße 100, Paderborn, Germany Nadine Feldmann 1, Fabian Bause 1, Bernd Henning 1 1 Measurement Engineering Group, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany feldmann@emt.uni-paderborn.de Abstract The present

More information

numerical implementation and application for life prediction of rocket combustors Tel: +49 (0)

numerical implementation and application for life prediction of rocket combustors Tel: +49 (0) 2nd Workshop on Structural Analsysis of Lightweight Structures. 30 th May 2012, Natters, Austria Continuum damage mechanics with ANSYS USERMAT: numerical implementation and application for life prediction

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

Fatigue and Fracture

Fatigue and Fracture Fatigue and Fracture Multiaxial Fatigue Professor Darrell F. Socie Mechanical Science and Engineering University of Illinois 2004-2013 Darrell Socie, All Rights Reserved When is Multiaxial Fatigue Important?

More information

Exam paper: Biomechanics

Exam paper: Biomechanics Exam paper: Biomechanics Tuesday August 10th 2010; 9.00-12.00 AM Code: 8W020 Biomedical Engineering Department, Eindhoven University of Technology The exam comprises 10 problems. Every problem has a maximum

More information

A PROCEDURE TO OBTAIN THE PROBABILISTIC KITAGAWA-TAKAHASHI DIAGRAM

A PROCEDURE TO OBTAIN THE PROBABILISTIC KITAGAWA-TAKAHASHI DIAGRAM U.P.B. Sci. Bull., Series D, Vol. 78, Iss. 1, 2016 ISSN 1454-2358 A PROCEDURE TO OBTAIN THE PROBABILISTIC KITAGAWA-TAKAHASHI DIAGRAM José A.F.O. CORREIA 1, Abílio M.P. De JESUS 2, Alfonso Fernández- CANTELI

More information

A hierarchy of higher order and higher grade continua Application to the plasticity and fracture of metallic foams

A hierarchy of higher order and higher grade continua Application to the plasticity and fracture of metallic foams A hierarchy of higher order and higher grade continua Application to the plasticity and fracture of metallic foams Samuel Forest Centre des Matériaux/UMR 7633 Mines Paris ParisTech /CNRS BP 87, 91003 Evry,

More information