Fatigue Life. The curve may be plotted as semilogarithmic

Size: px
Start display at page:

Download "Fatigue Life. The curve may be plotted as semilogarithmic"

Transcription

1 Fatigue Life The total number of cycles for which a specimen sustains before failure is called fatigue (cyclic) life, denoted by N. The graph by plotting values of S a and N is called S-N curve or Wöhler diagram. The curve may be plotted as semilogarithmic or logarithmic. Vertical axis is stress amplitude (S a ) while horizontal axis is fatigue life (N). For S, linear scale is preferred, but sometimes log scale is also used. A log scale is always used for N. Fig. 11 shows S-N curves in log-log and semi-log scales for superalloy S/SAV. S-N curve is a straight line in log-log plot. However, in semilog plot, a smooth curve is fitted. Figure 11 log-log plot semi-log plot

2 Fatigue Life Fig. 12 shows schematic S-N curves for ferrous alloys & titanium (Curve A) and nonferrous alloys (except titanium) & nonmetallic materials (Curve B). For ferrous alloys & titanium, the curve becomes asymptotic to horizontal line (the specimen will not fail for an infinite number of cycles). The stress level at such point is called endurance (fatigue) limit, denoted by S e. It is not observed for nonferrous alloys and nonmetallic materials. Their fatigue strength is determined for a specified number of cycles. When a specimen does not fail even if the specified cycle is reached, test is stopped and the corresponding stress value is marked on the curve as runout (given by an arrow as in Curve B). The fatigue limit in such case is assumed as 5 * 10 8 Curve A: ferrous alloys & titanium Curve B: nonferrous alloys cycles for design purposes. Figure 12

3 Construction of S-N Curve S-N curve is obtained by conducting several rotating bending fatigue tests. In each test, the specimen is loaded to create a certain level of stress (S) and rotated until it fractures. When the specimen fractures, level of stress applied (S) and the number of cycles (N) to fracture are noted. The results of tests are represented by a point on the curve. Tests at different stress levels(from ultimate strength down to very low stress values) with corresponding cycles to fracture create multiples of test points for construction of curve. The stress level where the curve becomes asymptotic to horizontal line is determined as endurance strength (S e ) of material. 3

4 Regions on the idealized S-N curve (log-log scale) for steel are as follows: 1. Finite life (N < 10 6~7 ) a. Low cycle fatigue (10 0 < N < 10 3 ) b. High cycle fatigue (N 10 3 ) Mathematical Representation of S-N Curve S ut 0.8 S ut S e Low Cycle Finite Life High Cycle Infinite Life 2. Infinite life (N > 10 6~7 ) In general, fatigue is considered as high cycle when the peak stresses in material are held within the elastic range while low cycle fatigue occurs when stresses are above the elastic limit. This arbitrary division may vary from material-to-materialto depending upon tensile properties. From design viewpoint, the main interest in engineering is for the high cycle region of S-N curve. However, low cycle fatigue data can be advantageous when only a short service life is required. 4

5 Mathematical Representation of S-N Curve Cycle of 10 0 refers to Finite Life ultimate tensile strength S ut (S ut ) while endurance strength (S e 0.5 S ut ) is obtained at 10 6 cycles. The stress amplitude is about 0.8 S ut by which high cycle fatigue starts 0.8 S ut S e Low Cycle High Cycle Infinite Life (10 3 cycles) The correlation between S & N in high cycle region (10 3 N 10 6 ) can be obtained based on equation of the line (i.e. y = b x + c): log S = b log N + c S = 10 c N b or N = - / 1/ 10 c b S b where b & c are: b 1 0.8S ut = log 3 Se and c ( 0.8 ) 2 S ut = log Se 5

6 Example: Fatigue with Constant Amplitude and Frequency Stresses Q. A round steel shaft (having S ut = 90 kg/mm 2 and S e = 25 kg/mm 2 ) is carrying a static tensile stress of 10 kg/mm 2. The shaft is also subjected to a variable stress of ±40 kg/mm 2. a) Determine the stress components. b) Draw stress-time diagram, and specify the type of stress state. c) Calculate the fatigue life of this shaft. a) Stress components are as follows: b) This is fluctuating stress state (S m 0): S S m = S a max = 10 kg/mm 40 kg/mm 2 2 = = 50 kg/mm 2 S min = 10 + ( 40) = 30 kg/mm 2 S (kg/mm 2 ) time c) Fatigue life refers to the number of cycles to fracture, and calculated as: ( ) ( S S ) b = 1 3 log 0.8 = ( ) 2 ut e c = log 0.8Sut S e = N = S a = - c/ b 1/ b cycles

7 Cumulative Fatigue Damage Until now, stresses with constant amplitude and frequency were considered. However, in actual case, machine elements are subjected to fatigue under varying stress amplitudes. When such stress steps are above the fatigue limit of material, it is necessary to consider the fatigue damage accumulated ateachstep. The total damage is known as cumulativefatiguedamage. Palmgren-Minerlineardamagerule PalmgrenMinerlineardamagerule is the most widely used concept due to its simplicity. According to this rule, the damage obtained at a specified stress level is a linear function of the number of cycles: d i = (n i / N i ) * D t the failure occurs when: d i = D t simplification gives: (n i / N i ) = 1 n ati th i : cycles i stress level during service d i : the damage at i th stress level N i : cycles at i th stress level on S-N curve D t : the total damage required for failure 7

8 Example: Cumulative Fatigue Damage (using S-N curve) Q. Based on given S-N curve, calculate the remaining life of a part at the stress amplitude of 50 kg/mm 2 after subjected to the following alternating stresses: 66 kg/mm 2 45 kg/mm 2 for 2.5 * 10 4 cycles for 1.5 * 10 5 cycles 72 kg/mm 2 for 10 4 cycles A. For the given stress amplitudes, the corresponding number of cycles (N) are determined from curve: No. S (given) n (given) N (from curve) n i / N i * * * * = 0.60 S 3, N 3 S 1, N 1 S 2, N 2 For 50 kg/mm 2 : N = 3 * 10 5 cycles (from the curve) Remaining life : = 0.4, which corresponds to 0.4 * (3 * 10 5 ) = 1.2 * 10 5 cycles

9 Example: Cumulative Fatigue Damage (using formula) Q. Calculate the remaining life of a round steel bar (having S ut = 75 kg/mm 2 and S e = 25 kg/mm 2 ) at the stress amplitude of 42 kg/mm 2 after subjected to the given alternating stresses: 35 kg/mm 2 for 1.5 * 10 4 cycles kg/mm 2 for 5 * 10 4 cycles 40 kg/mm 2 for 10 4 cycles A. For the given stress amplitudes, Thus, the total damage is calculated as follows: the corresponding number of No. S (given) n (given) N (from formula) n i / N i cycles (N) are determined using * * following equations: * * S b log ut * = 3 S = e 0.83 ( 0.8 ) 2 S ut For 42 kg/mm 2 : N = 1.7 * 10 4 cycles (from formula) c = log Se Remaining life : = 0.17, corresponding to N = - / 1/ 10 c b S b 0.17 * (1.7 * 10 4 ) = 2.9 * 10 3 cycles

10 Interpretation of Fatigue Fatigue is influenced by many factors. S-N curves are approximations to represent fatigue behaviour of specimens at laboratory conditions. Fatigue life of an actual part varies considerably from laboratory tests. Followings are important considerations: 1. Statistical nature of fatigue: When identical specimens are tested at the same stress level, their fatigue lives are generally not the same, but scatter at a great deal. S-N curve representsastatisticalaverage of the test results. Thereby, a modifying factor (M r ) is used to modify S-N curve for different probabilities (reliabilities) of failure, denoted by P (Fig. 13): Figure 13 M r = P 10

11 Interpretation of Fatigue 2. Effect of surface quality: This factor predominantly affects the fatigue behaviour. Microscopic irregularities on the part surface which are not visible to naked eye (e.g. rough surface after machining, a decarburized layer, corrosion pits, inclusions and gas blowholes, etc.) will trigger the fatigue failure. Modifying factor for surface quality (M s ) Figure 14 is used to modify fatigue strength of a part machined with specific process (Fig. 14). Fatigue life increases with decrease in surface roughness. Machining is detrimental to fatigue life due to formation of tensile residual stresses in the near-surface area. Cold working causes relaxation of stress concentration, so better fatigue properties. Finishing and heat treatment operations are also beneficial by forming compressive residual stresses to improve fatigue life. a : mirror polished b : ground c : honed d : machined e : hot-rolled f : corroded in tap water g : as-forged h : corroded in salt water 11

12 Interpretation of Fatigue 3. Size effect: Experiments have shown that the fatigue results depend strongly upon specimensize, which is one of the most important problems in fatigue applications. The general observation is that fatigue strength of large parts may be considerably lower than that of small specimens. This may be due to the fact that materials become more heterogeneous with increasing size, which makes it impossible to prepare specimens retaining the nominal properties of specified material. Also, the capacities of testers are limited to conduct experiments with large parts. 4. Method of testing: S-N curves obtained by three methods of fatigue testing differ appreciably (Fig. 15). The ranking based oncurvesfromthehighesttothelowest: highest to 1) alternating bending test2) rotating bending test3) push-pull test Most S-N curves are produced by the rotating bending test due to its simplicity. Figure 15 12

13 Modified (Actual) Fatigue Strength Since fatigue properties of materials are easily influenced by many factors (as mentioned previously), S-N curve obtained from laboratory tests must be related to real-life design conditions. Therefore, the endurance strength of Actual endurance strength material obtained by laboratory tests is modified with following factors always has lower value than laboratory result (Fig. 16). (having values of < 1.0): Figure 16 S e = k a * k b * k c * k d * k e * k f * S e S e : actual endurance strength of material S e : endurance strength in laboratory conditions k a : surface quality factor k b : size factor k c : reliability (probability) factor k d : temperature factor k e : stress concentration factor k f : miscellaneous factor 13

14 Endurance Ratio Endurance limit of a material can usually be related to its tensile strength. Ratio of endurance limit (fatigue strength) to tensile strength is known as endurance ratio, that is used to predict fatigue behaviour of materials. 14

DESIGN FOR FATIGUE STRENGTH

DESIGN FOR FATIGUE STRENGTH UNIT 3 DESIGN FOR FATIGUE STRENGTH Instructional Objectives Mean and variable stresses and endurance limit. S-N plots for metals and non-metals and relation between endurance limit and ultimate tensile

More information

Endurance Strength Pg 274

Endurance Strength Pg 274 [Pg / 8] Fatigue Analysis Pg 257 The Units used as standard: in, kip, kpsi, sec, hp in, kip, kpsi, sec/min, hp Endurance Strength Pg 274 Fatigue failure occurs when a machine element is sujected to fluctuating

More information

Load Determination. Fatigue Life Predictions Infinite Life, Stress Life, Strain Life

Load Determination. Fatigue Life Predictions Infinite Life, Stress Life, Strain Life Durability Agenda Durability Basics Fatigue, Stress, Strain Load Determination Measurements, Multi-Body Simulation Loads and Damage S-N Curve, Cycle Counting Load Characterization Establishing Durability

More information

Volume 2 Fatigue Theory Reference Manual

Volume 2 Fatigue Theory Reference Manual Volume Fatigue Theory Reference Manual Contents 1 Introduction to fatigue 1.1 Introduction... 1-1 1. Description of the applied loading... 1-1.3 Endurance curves... 1-3 1.4 Generalising fatigue data...

More information

ME 207 Material Science I

ME 207 Material Science I ME 207 Material Science I Chapter 3 Properties in Tension and Compression Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction

More information

FME461 Engineering Design II

FME461 Engineering Design II FME461 Engineering Design II Dr.Hussein Jama Hussein.jama@uobi.ac.ke Office 414 Lecture: Mon 8am -10am Tutorial Tue 3pm - 5pm 10/1/2013 1 Semester outline Date Week Topics Reference Reading 9 th Sept 1

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION A - INTRODUCTION INTRODUCTION M.N.Tamin, CSMLab, UTM Course Content: A - INTRODUCTION Mechanical failure modes; Review of load and stress analysis equilibrium equations, complex stresses, stress transformation,

More information

2.1 Background of Piping Stresses

2.1 Background of Piping Stresses 2 Research Review One of the major additions to Tmin was the inclusion of analysis of a 2-Dimensional vertical piping span. The original plan from Dupont was to include several types of 2-D and 3-D vertical

More information

Fundamentals of Durability. Unrestricted Siemens AG 2013 All rights reserved. Siemens PLM Software

Fundamentals of Durability. Unrestricted Siemens AG 2013 All rights reserved. Siemens PLM Software Fundamentals of Durability Page 1 Your single provider of solutions System simulation solutions 3D simulation solutions Test-based engineering solutions Engineering services - Deployment services Troubleshooting

More information

Drive Shaft Failure of Z-Drive Propulsion System. Suzanne Higgins

Drive Shaft Failure of Z-Drive Propulsion System. Suzanne Higgins Drive Shaft Failure of Z-Drive Propulsion System Suzanne Higgins Background Bunkering vessel MV Southern Valour Commissioned in 2008 in Singapore Operating in Cape Town harbour since August 2008 Z-Drive

More information

MEMS Project 2 Assignment. Design of a Shaft to Transmit Torque Between Two Pulleys

MEMS Project 2 Assignment. Design of a Shaft to Transmit Torque Between Two Pulleys MEMS 029 Project 2 Assignment Design of a Shaft to Transmit Torque Between Two Pulleys Date: February 5, 206 Instructor: Dr. Stephen Ludwick Product Definition Shafts are incredibly important in order

More information

Static Failure (pg 206)

Static Failure (pg 206) Static Failure (pg 06) All material followed Hookeʹs law which states that strain is proportional to stress applied, until it exceed the proportional limits. It will reach and exceed the elastic limit

More information

1.3 Working temperature T 200,0 1.4 Working environment. F... Guided seating. Light service. Cold formed springs. Music wire ASTM A228

1.3 Working temperature T 200,0 1.4 Working environment. F... Guided seating. Light service. Cold formed springs. Music wire ASTM A228 Helical cylindrical compression spring of round wires and bars i ii? 1.0 Calculation without errors. Project information Input parameters section Selection of load conditions, spring operational and production

More information

Stress Concentrations, Fatigue, Fracture

Stress Concentrations, Fatigue, Fracture Stress Concentrations, Fatigue, Fracture The fundamental topic in this document is the development of cracks in steel. For structures subjected to cyclic loads, such cracks can develop over time and ultimately

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Fatigue calculations in ANSYS Workbench. Martin Eerme

Fatigue calculations in ANSYS Workbench. Martin Eerme Fatigue calculations in ANSYS Workbench Martin Eerme What is fatigue? In materials science, fatigue is the progressive and localized structural damage that occurs when a material is subjected to cyclic

More information

V Predicted Weldment Fatigue Behavior AM 11/03 1

V Predicted Weldment Fatigue Behavior AM 11/03 1 V Predicted Weldment Fatigue Behavior AM 11/03 1 Outline Heavy and Light Industry weldments The IP model Some predictions of the IP model AM 11/03 2 Heavy industry AM 11/03 3 Heavy industry AM 11/03 4

More information

Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139

Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139 Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139 2.002 Mechanics and Materials II Spring 2004 Laboratory Module No. 6 Fracture Toughness Testing and Residual

More information

Design against fluctuating load

Design against fluctuating load Design against fluctuating load In many applications, the force acting on the spring is not constants but varies in magnitude with time. The valve springs of automotive engine subjected to millions of

More information

5. Repeated Loading. 330:148 (g) Machine Design. Dynamic Strength. Dynamic Loads. Dynamic Strength. Dynamic Strength. Nageswara Rao Posinasetti

5. Repeated Loading. 330:148 (g) Machine Design. Dynamic Strength. Dynamic Loads. Dynamic Strength. Dynamic Strength. Nageswara Rao Posinasetti 330:48 (g) achine Design Nageswara Rao Posinasetti P N Rao 5. Repeated Loading Objectives Identify the various kinds of loading encountered on a part and learn to combine them as appropriate. Determine

More information

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction and classes of properties Case studies showing selection of the right material for the job Deformation of material under the action of a

More information

A fatigue limit diagram for plastic rail clips

A fatigue limit diagram for plastic rail clips Computers in Railways XIV 839 A fatigue limit diagram for plastic rail clips S. Tamagawa, H. Kataoka & T. Deshimaru Department of Track Structures and Components, Railway Technical Research Institute,

More information

EFFECT OF ALTERNATE CHANGE IN STRESS RATIO ON FATIGUE STRENGTH OF WOVEN FABRIC CFRP LAMINATE AND LIFE PREDICTION USING THE ANISOMORPHIC CFL DIAGRAM

EFFECT OF ALTERNATE CHANGE IN STRESS RATIO ON FATIGUE STRENGTH OF WOVEN FABRIC CFRP LAMINATE AND LIFE PREDICTION USING THE ANISOMORPHIC CFL DIAGRAM EFFECT OF ALTERNATE CHANGE IN STRESS RATIO ON FATIGUE STRENGTH OF WOVEN FABRIC CFRP LAMINATE AND LIFE PREDICTION USING THE ANISOMORPHIC CFL DIAGRAM M. Kawai a*, K. Yang a, S. Oh a a Department of Engineering

More information

Laboratory 4 Bending Test of Materials

Laboratory 4 Bending Test of Materials Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective

More information

Elastic Properties of Solid Materials. Notes based on those by James Irvine at

Elastic Properties of Solid Materials. Notes based on those by James Irvine at Elastic Properties of Solid Materials Notes based on those by James Irvine at www.antonine-education.co.uk Key Words Density, Elastic, Plastic, Stress, Strain, Young modulus We study how materials behave

More information

Characterization and reliability of A36 steel under alternating dynamic and static loading

Characterization and reliability of A36 steel under alternating dynamic and static loading Characterization and reliability of A36 steel under alternating dynamic and static loading Jilali NATTAJ 1, Mohamed SAFE 2, Fatima MAJID 3, Hassan CHAFFOUI 4, Mohamed EL GHORBA 5 1 Laboratory Of Atmosphere

More information

TINIUS OLSEN Testing Machine Co., Inc.

TINIUS OLSEN Testing Machine Co., Inc. Interpretation of Stress-Strain Curves and Mechanical Properties of Materials Tinius Olsen has prepared this general introduction to the interpretation of stress-strain curves for the benefit of those

More information

STEEL. General Information

STEEL. General Information General Information General Information TYPICAL STRESS-STRAIN CURVE Below is a typical stress-strain curve. Each material has its own unique stress-strain curve. Tensile Properties Tensile properties indicate

More information

DESIGN OF SHAFT UNDER FATIGUE LOADING

DESIGN OF SHAFT UNDER FATIGUE LOADING DESIGN OF SHAFT UNDER FATIGUE LOADING Aditya Anand, Ashish Aggarwal, Jatin Kumar Mechanical Engineering, Dronacharya College of Engineering, Khentawas, Gurgaon, INDIA Abstract - In this paper, shaft employed

More information

Example 1. Stress amplitude (MPa) 130 1x10 7 (no failure)

Example 1. Stress amplitude (MPa) 130 1x10 7 (no failure) Example 1 For the ollowing R=-1 AISI 1090 steel test data, plot two S-N curves, one using loglinear coordinates and the other using log-log coordinates. a) Use linear regression to estimate the best it

More information

Failure from static loading

Failure from static loading Failure from static loading Topics Quiz /1/07 Failures from static loading Reading Chapter 5 Homework HW 3 due /1 HW 4 due /8 What is Failure? Failure any change in a machine part which makes it unable

More information

4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS 4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

More information

Predicting Fatigue Life with ANSYS Workbench

Predicting Fatigue Life with ANSYS Workbench Predicting Fatigue Life with ANSYS Workbench How To Design Products That Meet Their Intended Design Life Requirements Raymond L. Browell, P. E. Product Manager New Technologies ANSYS, Inc. Al Hancq Development

More information

Kul Aircraft Structural Design (4 cr) Fatigue Analyses

Kul Aircraft Structural Design (4 cr) Fatigue Analyses Kul-34.4300 Aircraft Structural Design (4 cr) M Kanerva 2016 Objective and Contents of the Module The objective of the module is to describe (1) how aircraft fatigue analyses are performed and (2) how

More information

MODIFIED MONTE CARLO WITH LATIN HYPERCUBE METHOD

MODIFIED MONTE CARLO WITH LATIN HYPERCUBE METHOD MODIFIED MONTE CARLO WITH LATIN HYPERCUBE METHOD Latin hypercube sampling (LHS) was introduced by McKay, Conover and Beckman as a solution to increase the efficiency of computer simulations. This technique

More information

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there? High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

Engineering Fracture Mechanics Prof. K. Ramesh Department of Applied Mechanics Indian Institute of Technology, Madras

Engineering Fracture Mechanics Prof. K. Ramesh Department of Applied Mechanics Indian Institute of Technology, Madras Engineering Fracture Mechanics Prof. K. Ramesh Department of Applied Mechanics Indian Institute of Technology, Madras Module No. # 07 Lecture No. # 34 Paris Law and Sigmoidal Curve (Refer Slide Time: 00:14)

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

DIN 2445 Part-2 SEAMLESS STEEL TUBES FOR DYNAMIC LOADS SUPPLEMENT BASIS FOR CALUCULATION OF STRAIGHT TUBES

DIN 2445 Part-2 SEAMLESS STEEL TUBES FOR DYNAMIC LOADS SUPPLEMENT BASIS FOR CALUCULATION OF STRAIGHT TUBES DIN Part- SEAMLESS STEEL TUBES FOR DYNAMIC LOADS SUPPLEMENT BASIS FOR CALUCULATION OF STRAIGHT TUBES. General information During the operation of hydraulic installations, when the control valve is operated

More information

EXTENDED TENSILE TESTING WITH SIMULTANEOUS BENDING

EXTENDED TENSILE TESTING WITH SIMULTANEOUS BENDING International Deep Drawing Research Group IDDRG 2008 International Conference 16-18 June 2008, Olofström, Sweden EXTENDED TENSILE TESTING WITH SIMULTANEOUS BENDING W. C. Emmens, A. H. van den Boogaard

More information

Cyclic Event Identification and Fatigue Damage Assessment for Multiaxial Mission Loadings

Cyclic Event Identification and Fatigue Damage Assessment for Multiaxial Mission Loadings Cyclic Event Identification and Fatigue Damage Assessment for Multiaxial Mission Loadings Mr. Eric Goodin 1, Dr. Alan Kallmeyer 1, and Dr. Peter Kurath 2 1 Department of Mechanical Engineering, North Dakota

More information

Fatigue Life Estimation of an Aircaft Engine Under Different Load Spectrums

Fatigue Life Estimation of an Aircaft Engine Under Different Load Spectrums Int. J. Turbo Jet-Engines, Vol. 29 (2012), 259 267 Copyright 2012 De Gruyter. DOI 10.1515/tjj-2012-0017 Fatigue Life Estimation of an Aircaft Engine Under Different Load Spectrums Hong-Zhong Huang, 1;

More information

Module 7 Design of Springs. Version 2 ME, IIT Kharagpur

Module 7 Design of Springs. Version 2 ME, IIT Kharagpur Module 7 Design of Springs Lesson 1 Introduction to Design of Helical Springs Instructional Objectives: At the end of this lesson, the students should be able to understand: Uses of springs Nomenclature

More information

Equilibrium. the linear momentum,, of the center of mass is constant

Equilibrium. the linear momentum,, of the center of mass is constant Equilibrium is the state of an object where: Equilibrium the linear momentum,, of the center of mass is constant Feb. 19, 2018 the angular momentum,, about the its center of mass, or any other point, is

More information

Stress-Strain Behavior

Stress-Strain Behavior Stress-Strain Behavior 6.3 A specimen of aluminum having a rectangular cross section 10 mm 1.7 mm (0.4 in. 0.5 in.) is pulled in tension with 35,500 N (8000 lb f ) force, producing only elastic deformation.

More information

LONG-TERM RELIABILITY OF CRT MONITORS

LONG-TERM RELIABILITY OF CRT MONITORS LONG-TERM RELIABILITY OF CRT MONITORS Y. Omoto 1, S. Tani, S. Ohsugi, and T. Karita 2 1 Advanced Technology R&D Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchihonmachi, Amagasaki, Hyogo, 661-8661,

More information

High Cycle Fatigue Estimation of Aircraft Exhaust T50 Thermocouple Siddesha T 1 Dr. B Ravindra 2

High Cycle Fatigue Estimation of Aircraft Exhaust T50 Thermocouple Siddesha T 1 Dr. B Ravindra 2 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 07, 2015 ISSN (online): 2321-0613 High Cycle Fatigue Estimation of Aircraft Exhaust T50 Thermocouple Siddesha T 1 Dr. B

More information

ME 354, MECHANICS OF MATERIALS LABORATORY COMPRESSION AND BUCKLING

ME 354, MECHANICS OF MATERIALS LABORATORY COMPRESSION AND BUCKLING ME 354, MECHANICS OF MATERIALS LABATY COMPRESSION AND BUCKLING PURPOSE 01 January 2000 / mgj The purpose of this exercise is to study the effects of end conditions, column length, and material properties

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials Notation: a = acceleration = area (net = with holes, bearing = in contact, etc...) SD = allowable stress design d = diameter of a hole = calculus symbol for differentiation e = change

More information

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the 5. STRESS CONCENTRATIONS So far in this thesis, most of the formulas we have seen to calculate the stresses and strains in shafts apply only to solid and hollow circular shafts while they are in the elastic

More information

This guide is made for non-experienced FEA users. It provides basic knowledge needed to start your fatigue calculations quickly.

This guide is made for non-experienced FEA users. It provides basic knowledge needed to start your fatigue calculations quickly. Quick Fatigue Analysis Guide This guide is made for non-experienced FEA users. It provides basic knowledge needed to start your fatigue calculations quickly. Experienced FEA analysts can also use this

More information

Design and analysis of axle under fatigue life loading condition

Design and analysis of axle under fatigue life loading condition Design and analysis of axle under fatigue life loading condition Research Paper Mehul Pravinchandra Mehta 1 Assistant Professor, 1 Vadodara Institute of Engineering, kotambi, Vadodara, Gujarat, India Mechanical

More information

CORRECTION: Practical Implementation of the Double Linear Damage Rule and Damage Curve Approach for Treating Cumulative Fatigue Damage*

CORRECTION: Practical Implementation of the Double Linear Damage Rule and Damage Curve Approach for Treating Cumulative Fatigue Damage* R35 CORRECTION: Practical Implementation of the Double Linear Damage Rule and Damage Curve Approach for Treating Cumulative Fatigue Damage* S. S. Manson Mechanical and Aerospace Engineering, Cleveland,

More information

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion

Chapter 8 Structural Design and Analysis. Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion Chapter 8 Structural Design and Analysis 1 Strength and stiffness 5 types of load: Tension Compression Shear Bending Torsion Normal Stress Stress is a state when a material is loaded. For normal forces

More information

Variable Stresses in Machine Parts

Variable Stresses in Machine Parts Variable Stresses in Machine Parts n 181 C H A P T E R 6 Variable Stresses in Machine Parts 1. Introduction.. Completely Reversed or Cyclic Stresses.. Fatigue and Endurance Limit. 4. Effect of Loading

More information

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2000. Dr. Coates Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

More information

CONNECTION DESIGN. Connections must be designed at the strength limit state

CONNECTION DESIGN. Connections must be designed at the strength limit state CONNECTION DESIGN Connections must be designed at the strength limit state Average of the factored force effect at the connection and the force effect in the member at the same point At least 75% of the

More information

Mechanical properties 1 Elastic behaviour of materials

Mechanical properties 1 Elastic behaviour of materials MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical

More information

For ASME Committee use only.

For ASME Committee use only. ð15þ KD-232 PROTECTION AGAINST LOCAL FAILURE In addition to demonstrating protection against plastic collapse as defined in KD-231, the local failure criteria below shall be satisfied. KD-232.1 Elastic

More information

Presented by: Civil Engineering Academy

Presented by: Civil Engineering Academy Presented by: Civil Engineering Academy Structural Design and Material Properties of Steel Presented by: Civil Engineering Academy Advantages 1. High strength per unit length resulting in smaller dead

More information

However, reliability analysis is not limited to calculation of the probability of failure.

However, reliability analysis is not limited to calculation of the probability of failure. Probabilistic Analysis probabilistic analysis methods, including the first and second-order reliability methods, Monte Carlo simulation, Importance sampling, Latin Hypercube sampling, and stochastic expansions

More information

Solution to Multi-axial Fatigue Life of Heterogenic Parts & Components Based on Ansys. Na Wang 1, Lei Wang 2

Solution to Multi-axial Fatigue Life of Heterogenic Parts & Components Based on Ansys. Na Wang 1, Lei Wang 2 5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 215) Solution to Multi-axial Fatigue Life of Heterogenic Parts & Components Based on Ansys Na Wang 1, Lei Wang

More information

FIS Specifications for Flex Poles (Edition May 2008) Original Text: German

FIS Specifications for Flex Poles (Edition May 2008) Original Text: German FIS Specifications for Flex Poles (Edition May 2008) Original Text: German 1 Field of Application and Basic Information The following FIS specifications for flex poles are intended to ensure that flex

More information

The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties.

The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties. Objective: The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties. Introduction: Mechanical testing plays an important role

More information

2. Complete Fatigue Diagram

2. Complete Fatigue Diagram v11u1 Ui. 2. Complete Fatigue Diagram From the preceding considerations it may be clear that the relal ions between the three quantities F, 5, and N, if known, give a complete description of the fatigue

More information

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS

OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS. You should judge your progress by completing the self assessment exercises. CONTENTS Unit 2: Unit code: QCF Level: 4 Credit value: 15 Engineering Science L/601/1404 OUTCOME 1 - TUTORIAL 3 BENDING MOMENTS 1. Be able to determine the behavioural characteristics of elements of static engineering

More information

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

More information

3 Flow properties of bulk solids

3 Flow properties of bulk solids 3 Flow properties of bulk solids The flow properties of bulk solids depend on many parameters, e.g.: particle size distribution, particle shape, chemical composition of the particles, moisture, temperature.

More information

Fatigue-Ratcheting Study of Pressurized Piping System under Seismic Load

Fatigue-Ratcheting Study of Pressurized Piping System under Seismic Load Fatigue-Ratcheting Study of Pressurized Piping System under Seismic Load A. Ravi Kiran, M. K. Agrawal, G. R. Reddy, R. K. Singh, K. K. Vaze, A. K. Ghosh and H. S. Kushwaha Reactor Safety Division, Bhabha

More information

5 ADVANCED FRACTURE MODELS

5 ADVANCED FRACTURE MODELS Essentially, all models are wrong, but some are useful George E.P. Box, (Box and Draper, 1987) 5 ADVANCED FRACTURE MODELS In the previous chapter it was shown that the MOR parameter cannot be relied upon

More information

MAE 322 Machine Design. Dr. Hodge Jenkins Mercer University

MAE 322 Machine Design. Dr. Hodge Jenkins Mercer University MAE 322 Machine Design Dr. Hodge Jenkins Mercer University What is this Machine Design course really about? What you will learn: How to design machine elements 1) Design so they won t break under varying

More information

2 Experiment of GFRP bolt

2 Experiment of GFRP bolt 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS FATIGUE LIFE EVALUATION OF BOLT MADE OF WOVEN FABRIC FRP Takeshi INOUE*, Hiroaki NAKAI**, Tetsusei KURASHIKI**, Masaru ZAKO**, Yuji KOMETANI*** *Graduate

More information

ESE TOPICWISE OBJECTIVE SOLVED PAPER I

ESE TOPICWISE OBJECTIVE SOLVED PAPER I C I V I L E N G I N E E R I N G ESE TOPICWISE OBJECTIVE SOLVED PAPER I FROM 1995-018 UPSC Engineering Services Eamination, State Engineering Service Eamination & Public Sector Eamination. Regd. office

More information

4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support

4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support 4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between

More information

Sean Carey Tafe No Lab Report: Hounsfield Tension Test

Sean Carey Tafe No Lab Report: Hounsfield Tension Test Sean Carey Tafe No. 366851615 Lab Report: Hounsfield Tension Test August 2012 The Hounsfield Tester The Hounsfield Tester can do a variety of tests on a small test-piece. It is mostly used for tensile

More information

Low-Cycle Fatigue Crack Growth in Ti-6242 at Elevated Temperature Rebecka Brommesson 1,a, Magnus Hörnqvist,2,b, and Magnus Ekh 3,c

Low-Cycle Fatigue Crack Growth in Ti-6242 at Elevated Temperature Rebecka Brommesson 1,a, Magnus Hörnqvist,2,b, and Magnus Ekh 3,c Low-Cycle Fatigue Crack Growth in Ti-6242 at Elevated Temperature Rebecka Brommesson 1,a, Magnus Hörnqvist,2,b, and Magnus Ekh 3,c 1,3 Department of Applied Mechanics, Chalmers University of Technology,

More information

Stress concentrations, fracture and fatigue

Stress concentrations, fracture and fatigue Stress concentrations, fracture and fatigue Piet Schreurs Department of Mechanical Engineering Eindhoven University of Technology http://www.mate.tue.nl/ piet December 1, 2016 Overview Stress concentrations

More information

SOUTH AFRICAN NATIONAL STANDARD. Modulus of elasticity and modulus of rupture in static bending of fibreboards Amdt 1

SOUTH AFRICAN NATIONAL STANDARD. Modulus of elasticity and modulus of rupture in static bending of fibreboards Amdt 1 ISBN 978-0-66-956-7 Any reference to SABS SM 1015 is deemed to be a reference to this standard (Government Notice No. 17 of 8 November 00) SOUTH AFRICAN NATIONAL STANDARD Modulus of elasticity and modulus

More information

Materials Selection and Design Materials Selection - Practice

Materials Selection and Design Materials Selection - Practice Materials Selection and Design Materials Selection - Practice Each material is characterized by a set of attributes that include its mechanical, thermal, electrical, optical, and chemical properties; its

More information

Statics Principles. The laws of motion describe the interaction of forces acting on a body. Newton s First Law of Motion (law of inertia):

Statics Principles. The laws of motion describe the interaction of forces acting on a body. Newton s First Law of Motion (law of inertia): Unit 2 Review Statics Statics Principles The laws of motion describe the interaction of forces acting on a body Newton s First Law of Motion (law of inertia): An object in a state of rest or uniform motion

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

Vibration Fatigue Analysis in MSC.NASTRAN

Vibration Fatigue Analysis in MSC.NASTRAN Vibration Fatigue Analysis in MSC.NASTRAN JULY 2011 MAVERICK UNITED CONSULTING ENGINEERS TABLE OF CONTENTS ACKNOWLEDGEMENTS... 3 1.1 GL, ML VIBRATION FATIGUE ANALYSIS... 4 1.1.1 Maximum Absolute Principal

More information

EUROCODE EN SEISMIC DESIGN OF BRIDGES

EUROCODE EN SEISMIC DESIGN OF BRIDGES Brussels, 18-20 February 2008 Dissemination of information workshop 1 EUROCODE EN1998-2 SEISMIC DESIGN OF BRIDGES Basil Kolias Basic Requirements Brussels, 18-20 February 2008 Dissemination of information

More information

Medical Biomaterials Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras. Lecture - 04 Properties (Mechanical)

Medical Biomaterials Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras. Lecture - 04 Properties (Mechanical) Medical Biomaterials Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras Lecture - 04 Properties (Mechanical) Welcome to the course on medical biomaterials. Today we are

More information

Lecture 2: Introduction to Uncertainty

Lecture 2: Introduction to Uncertainty Lecture 2: Introduction to Uncertainty CHOI Hae-Jin School of Mechanical Engineering 1 Contents Sources of Uncertainty Deterministic vs Random Basic Statistics 2 Uncertainty Uncertainty is the information/knowledge

More information

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour Tensile-Test Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress - true strain (flow curve) mechanical properties: - Resilience - Ductility - Toughness - Hardness A standard

More information

Basic Examination on Assessing Mechanical Properties of Concrete That Has Suffered Combined Deterioration from Fatigue and Frost Damage

Basic Examination on Assessing Mechanical Properties of Concrete That Has Suffered Combined Deterioration from Fatigue and Frost Damage 5th International Conference on Durability of Concrete Structures Jun 30 Jul 1, 2016 Shenzhen University, Shenzhen, Guangdong Province, P.R.China Basic Examination on Assessing Mechanical Properties of

More information

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001-015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress

More information

Load Sequence Interaction Effects in Structural Durability

Load Sequence Interaction Effects in Structural Durability Load Sequence Interaction Effects in Structural Durability M. Vormwald 25. Oktober 200 Technische Universität Darmstadt Fachgebiet Werkstoffmechanik Introduction S, S [ log] S constant amplitude S variable

More information

Investigation of basic elements loading and tension of heavy hydraulic presses for metallurgical production

Investigation of basic elements loading and tension of heavy hydraulic presses for metallurgical production Investigation of basic elements loading and tension of heavy hydraulic presses for metallurgical production Ganush V. I. National metallurgical academe of Ukraine Ostroverhov N. P., Sultan A. V., Dzichkovky

More information

Static and Time Dependent Failure of Fibre Reinforced Elastomeric Components. Salim Mirza Element Materials Technology Hitchin, UK

Static and Time Dependent Failure of Fibre Reinforced Elastomeric Components. Salim Mirza Element Materials Technology Hitchin, UK Static and Time Dependent Failure of Fibre Reinforced Elastomeric Components Salim Mirza Element Materials Technology Hitchin, UK Introduction Fibre reinforced elastomers are used in many applications,

More information

The Multislope Model. A new description for the fatigue strength of glass fibre reinforced plastic. G.K. Boerstra

The Multislope Model. A new description for the fatigue strength of glass fibre reinforced plastic. G.K. Boerstra The Multislope Model A new description for the fatigue strength of glass fibre reinforced plastic G.K. Boerstra Date: 10-02-2006 Document nr: D0003303 1 Introduction For the life time calculations of structures

More information

Fatigue in osteoporotic human trabecular bone Comparison between genders

Fatigue in osteoporotic human trabecular bone Comparison between genders loading to the load corresponding to a normalized stress level (Δσ/E 0 ). Fatigue in osteoporotic human trabecular bone Comparison between genders André do Carmo Saraiva Abstract In the present work, the

More information

ME 176 Final Exam, Fall 1995

ME 176 Final Exam, Fall 1995 ME 176 Final Exam, Fall 1995 Saturday, December 16, 12:30 3:30 PM, 1995. Answer all questions. Please write all answers in the space provided. If you need additional space, write on the back sides. Indicate

More information

PREDICTION OF OPEN HOLE COMPRESSIVE FAILURE FOR QUASI-ISOTROPIC CFRP LAMINATES BY MMF/ATM METHOD

PREDICTION OF OPEN HOLE COMPRESSIVE FAILURE FOR QUASI-ISOTROPIC CFRP LAMINATES BY MMF/ATM METHOD HE 19 H INERNAIONAL CONFERENCE ON COMPOSIE MAERIALS PREDICION OF OPEN HOLE COMPRESSIVE FAILURE FOR QUASI-ISOROPIC CFRP LAMINAES BY MMF/AM MEHOD. Hioki 1*, M. Nakada 2, Y. Miyano 2, H. Katoh 3 1 Graduate

More information

Part II. Probability, Design and Management in NDE

Part II. Probability, Design and Management in NDE Part II Probability, Design and Management in NDE Probability Distributions The probability that a flaw is between x and x + dx is p( xdx ) x p( x ) is the flaw size is the probability density pxdx ( )

More information

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala Abstract: FRP laminated composites have been extensively used in Aerospace and allied industries

More information

Fatigue Problems Solution

Fatigue Problems Solution Fatigue Problems Solution Problem 1. (a) Given the values of σ m (7 MPa) and σ a (1 MPa) we are asked t o compute σ max and σ min. From Equation 1 Or, σ m σ max + σ min 7 MPa σ max + σ min 14 MPa Furthermore,

More information

INFLUENCE OF HYDROSTATIC PRESSURE ON MULTIAXIAL FATIGUE OF NOTCHED COMPONENTS. G. Qilafku, G. Pluvinage

INFLUENCE OF HYDROSTATIC PRESSURE ON MULTIAXIAL FATIGUE OF NOTCHED COMPONENTS. G. Qilafku, G. Pluvinage ICF 1729OR INFLUENCE OF HYDROSTATIC PRESSURE ON MULTIAXIAL FATIGUE OF NOTCHED COMPONENTS G. Qilafku, G. Pluvinage Laboratoire de Fiabilité Mécanique, Université de Metz, France ABSTRACT: Tests have been

More information