Deformation of Polymers. Version 2.1. Boban Tanovic, MATTER David Dunning, University of North London

Size: px
Start display at page:

Download "Deformation of Polymers. Version 2.1. Boban Tanovic, MATTER David Dunning, University of North London"

Transcription

1 Deformation of Polymers Version 2.1 Boban Tanovic, MATTER David Dunning, University of North London Assumed Pre-knowledge It is assumed that the user is familiar with the terms elasticity, stress, strain, modulus, viscosity and is able to manipulate basic first order differential equations. Module structure This module comprises four sections: Introduction Mechanical Models of Viscoelastic Behaviour Dynamic Properties Design methods Introduction Stress-strain curves are often used to define several mechanical properties of polymers. This sections starts by defining modulus, tensile strength, elongation at break and yield strength on a typical stress-strain graph. It follows by discussing the difference between elastic, linear viscoelastic and non-linear viscoelastic materials. To reinforce these concepts, a stress-strain graph is plotted for each of the above materials at two values of elapsed time. A characteristic feature of polymers is the way in which their response to an applied stress or strain depends on the rate, temperature or time period of loading. These effects are shown in turn.

2 The last two pages in this section concentrate in more detail on the effects of temperature on polymer materials, including descriptions of the four regions of viscoelasticity. Describe how the behaviour of polymers deviate from that of linear-elastic materials such as metals and ceramics; State that time and temperature are critical parameters in the deformation of polymers. Explain the importance of time and temperature, in the deformation of polymers. Mechanical models of viscoelastic behaviour This section shows how viscoelastic behaviour of polymers can be simulated using elastic springs and viscous dashpots. It starts by discussing the individual properties of elastic springs and viscous dashpots under different loading conditions. The first model to be discussed is the Maxwell model, which consists of a spring and dashpot in series as shown here.

3 The user can study the effect of different loads and viscosity on the stress-strain curve (creep and recovery) and stress-time curves (relaxation). A tensile test on a Maxwell model is also discussed. The full derivation for differential equations is not always given, but all the important derivation conditions are clearly stated and the final solution is presented for each of the models discussed. Apart from the Maxwell model the following models are also studied: Kelvin (Voigt) Model, Zener and 4-element model. This section contains several simple exercises and finishes with a revision questions exercise. It refreshes most of the important points made earlier in the module. Describe the deformation behaviour of an ideal elastic spring and ideal viscous dashpot under static applied stress. Describe the deformation behaviour of an ideal elastic spring and ideal viscous dashpot under static applied strain. Manipulate the constitututive equations for an ideal elastic spring and for an ideal viscous dashpot. Describe the Maxwell, Kelvin, Zener and 4-element models of viscoelastic behaviour. Draw the general shape of the stress-time and strain-time curves for the Maxwell and Kelvin models under a given applied strain and stress respectively. Describe how the shapes of these curves are altered by changing the values of the parameters. Describe how the addition of extra elements would improve the modelling of real polymers. Dynamic properties This section starts by comparing the response of an elastic, viscous and viscoelastic material to cyclic loading. Real and imaginary components of the stress are also defined. An animation is created to show how strain and stress vectors rotate. The angular phase difference between these two vectors is denoted δ (delta). By dividing each component of the stress by the strain, two components of a complex modulus are formed:

4 In-phase component, known as Storage modulus (E'); and Out-of-phase component, known as Loss Modulus (E''). The ratio of E'/E'' = tan δ is a frequently used value, proportional to the ratio of energy lost to energy stored in one cycle (loss factor). On the last two pages, the time-temperature superposition principle is studied. An animation is created so the user can see the process of shifting the isotherms on the time scale and by doing so, a master curve is produced. This is the basis of time temperature superposition, giving results over a wider time range than is available experimentally.

5 Define dynamic testing within the context of polymers. Distinguish the response of elastic, viscous, and viscoelastic elements to cyclic loading. Define the complex modulus of a polymer. Define phase angle. Explain the relationship between complex modulus and phase angle. Predict the effects of temperature and test rate on the behaviour of a polymer. Describe the interchangeability of time and temperature in their effect on the mechanical behaviour of polymers. Describe the construction of viscoelastic master curves for a polymer. Design Methods This short section contains an exercise where the user is asked to create an isometric graph using the given creep curves for rubber-toughened polypropylene at 20 0 C. The last part of this section explains the Boltzmann Superposition principle. To describe how long-term deformation behaviour of polymers is presented for the purposes of product design. Use the Boltzmann Superposition Principle to determine the strain in a sample subjected to a complex loading and unloading cycles. Bibliography The student is referred to the following resources in this module: Aklonis J.J., Introduction to Polymer Viscoelasticity, Wiley, 1995 McCrum, N.G., Buckley, C.P., Bucknall,C.B., Principles of Polymer Engineering, Oxford University Press, 1988 Ward, J.M., Mechanical Properties of Solid Polymers, Wiley, 1979 Rosen, S.L., Fundamental Principles of Polymeric Materials, Wiley, 1993 Gedde, U.W., Polymer Physics, Chapman & Hall, 1995 Ferry,J.D., Viscoelastic Properties of Polymers, Wiley, 1980

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers Abvanced Lab Course Dynamical-Mechanical Analysis (DMA) of Polymers M211 As od: 9.4.213 Aim: Determination of the mechanical properties of a typical polymer under alternating load in the elastic range

More information

Measurement Engineering Group, Paderborn University, Warburger Straße 100, Paderborn, Germany

Measurement Engineering Group, Paderborn University, Warburger Straße 100, Paderborn, Germany Nadine Feldmann 1, Fabian Bause 1, Bernd Henning 1 1 Measurement Engineering Group, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany feldmann@emt.uni-paderborn.de Abstract The present

More information

Practical 2P11 Mechanical properties of polymers

Practical 2P11 Mechanical properties of polymers Practical 2P11 Mechanical properties of polymers What you should learn from this practical Science This practical will help you to understand two of the most important concepts in applied polymer science:

More information

Creep. Creep behavior of viscoelastic polymeric materials

Creep. Creep behavior of viscoelastic polymeric materials B1 Version: 2.2_EN Date: 15. March 2018. BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF POLYMER ENGINEERING Creep Creep behavior of viscoelastic polymeric

More information

University Graz / Austria Institut für Chemie Volker Ribitsch

University Graz / Austria Institut für Chemie Volker Ribitsch University Graz / Austria Institut für Chemie Volker Ribitsch 1 Rheology Oscillatory experiments Dynamic experiments Deformation of materials under non-steady conditions in the linear viscoelastic range

More information

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004

Elements of Polymer Structure and Viscoelasticity. David M. Parks Mechanics and Materials II February 18, 2004 Elements of Polymer Structure and Viscoelasticity David M. Parks Mechanics and Materials II 2.002 February 18, 2004 Outline Elements of polymer structure Linear vs. branched; Vinyl polymers and substitutions

More information

Viscoelasticity, Creep and Oscillation Experiment. Basic Seminar Applied Rheology

Viscoelasticity, Creep and Oscillation Experiment. Basic Seminar Applied Rheology Viscoelasticity, Creep and Oscillation Experiment Basic Seminar Applied Rheology Overview Repetition of some basic terms Viscoelastic behavior Experimental approach to viscoelasticity Creep- and recovery

More information

BIOEN LECTURE 18: VISCOELASTIC MODELS

BIOEN LECTURE 18: VISCOELASTIC MODELS BIOEN 326 2013 LECTURE 18: VISCOELASTIC MODELS Definition of Viscoelasticity. Until now, we have looked at time-independent behaviors. This assumed that materials were purely elastic in the conditions

More information

Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics

Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics Viscoelastic Mechanical Analysis for High Temperature Process of a Soda-Lime Glass Using COMSOL Multiphysics R. Carbone 1* 1 Dipartimento di Ingegneria dei Materiali e della Produzione sez. Tecnologie

More information

Figure 1. Dimension of PSA in face paper laminate

Figure 1. Dimension of PSA in face paper laminate EVALUATION OF DYNAMIC MECHANICAL PROPERTIES OF PRESSURE SENSITIVE ADHESIVE IN PAPER LANIMATES FOR POSTAGE STAMP APPLICATION: METHOD DEVELOPMENT AND ADHESIVE CHARACTERIZATION Hailing Yang, Graduate Student,

More information

Dynamic Mechanical Analysis of Solid Polymers and Polymer Melts

Dynamic Mechanical Analysis of Solid Polymers and Polymer Melts Polymer Physics 2015 Matilda Larsson Dynamic Mechanical Analysis of Solid Polymers and Polymer Melts Polymer & Materials Chemistry Introduction Two common instruments for dynamic mechanical thermal analysis

More information

Thermal Analysis of Polysaccharides Mechanical Methods

Thermal Analysis of Polysaccharides Mechanical Methods Biopolymer Solutions Thermal Analysis of Polysaccharides Mechanical Methods John Mitchell John.Mitchell@biopolymersolutions.co.uk 1 Topics Covered Introduction to polymer viscoelasticity Examples Thermal

More information

Viscoelastic Structures Mechanics of Growth and Aging

Viscoelastic Structures Mechanics of Growth and Aging Viscoelastic Structures Mechanics of Growth and Aging Aleksey D. Drozdov Institute for Industrial Mathematics Ben-Gurion University of the Negev Be'ersheba, Israel ACADEMIC PRESS San Diego London Boston

More information

Linear viscoelastic behavior

Linear viscoelastic behavior Harvard-MIT Division of Health Sciences and Technology HST.523J: Cell-Matrix Mechanics Prof. Ioannis Yannas Linear viscoelastic behavior 1. The constitutive equation depends on load history. 2. Diagnostic

More information

Multi-mode revisited

Multi-mode revisited Multi-mode revisited Testing the application of shift factors S.J.M Hellenbrand 515217 MT 7.29 Coaches: Ir. L.C.A. van Breemen Dr. Ir. L.E. Govaert 2-7- 7 Contents Contents 1 Introduction 2 I Polymers

More information

MATERIAL MODELS FOR CRUMB RUBBER AND TDA. California State University, Chico

MATERIAL MODELS FOR CRUMB RUBBER AND TDA. California State University, Chico MATERIAL MODELS FOR CRUMB RUBBER AND TDA California State University, Chico Waste Tire Products for CE Applications Whole Tires Tire Shreds (TDA) Crumb Rubber/Tire Buffings Whole Tires TIRE DERIVED AGGREGATE

More information

Lecture 7 Constitutive Behavior of Asphalt Concrete

Lecture 7 Constitutive Behavior of Asphalt Concrete Lecture 7 Constitutive Behavior of Asphalt Concrete What is a Constitutive Model? A constitutive model or constitutive equation is a relation between two physical quantities that is specific to a material

More information

OPTIMISING THE MECHANICAL CHARACTERISATION OF A RESILIENT INTERLAYER FOR THE USE IN TIMBER CON- STRUCTION

OPTIMISING THE MECHANICAL CHARACTERISATION OF A RESILIENT INTERLAYER FOR THE USE IN TIMBER CON- STRUCTION OPTIMISING THE MECHANICAL CHARACTERISATION OF A RESILIENT INTERLAYER FOR THE USE IN TIMBER CON- STRUCTION Luca Barbaresi, Federica Morandi, Juri Belcari, Andrea Zucchelli and Alice Speranza University

More information

Mechanical Models for Asphalt Behavior and Performance

Mechanical Models for Asphalt Behavior and Performance Mechanical Models for Asphalt Behavior and Performance All Attendees Are Muted Questions and Answers Please type your questions into your webinar control panel We will read your questions out loud, and

More information

SEISMOLOGY. Master Degree Programme in Physics - UNITS Physics of the Earth and of the Environment ANELASTICITY FABIO ROMANELLI

SEISMOLOGY. Master Degree Programme in Physics - UNITS Physics of the Earth and of the Environment ANELASTICITY FABIO ROMANELLI SEISMOLOGY Master Degree Programme in Physics - UNITS Physics of the Earth and of the Environment ANELASTICITY FABIO ROMANELLI Department of Mathematics & Geosciences University of Trieste romanel@units.it

More information

The 2S2P1D: An Excellent Linear Viscoelastic Model

The 2S2P1D: An Excellent Linear Viscoelastic Model The 2S2P1D: An Excellent Linear Viscoelastic Model Md. Yusoff 1, N. I., Monieur, D. 2, Airey, G. D. 1 Abstract An experimental campaign has been carried out on five different unaged and five aged penetration

More information

Analysis of high loss viscoelastic composites

Analysis of high loss viscoelastic composites Analysis of high loss viscoelastic composites by C. P. Chen, Ph.D. and R. S. Lakes, Ph.D. Department of Engineering Physics Engineering Mechanics Program; Biomedical Engineering Department Materials Science

More information

VISCOELASTIC PROPERTIES OF POLYMERS

VISCOELASTIC PROPERTIES OF POLYMERS VISCOELASTIC PROPERTIES OF POLYMERS John D. Ferry Professor of Chemistry University of Wisconsin THIRD EDITION JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore Contents 1. The Nature of

More information

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Mechanical Properties of Polymers Scope MSE 383, Unit 3-1 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Structure - mechanical properties relations Time-dependent mechanical

More information

Testing Elastomers and Plastics for Marc Material Models

Testing Elastomers and Plastics for Marc Material Models Testing Elastomers and Plastics for Marc Material Models Presented by: Kurt Miller Axel Products, Inc. axelproducts.com We Measure Structural Properties Stress Strain Time-Temperature Test Combinations

More information

The Internal Friction and the Relaxation Time Spectrum of Ferroelectric Ceramic PZT Type

The Internal Friction and the Relaxation Time Spectrum of Ferroelectric Ceramic PZT Type Vol. 114 008) ACTA PHYSICA POLONICA A No. 6 A Optical and Acoustical Methods in Science and Technology The Internal Friction and the Relaxation Time Spectrum of Ferroelectric Ceramic PZT Type J. Bartkowska

More information

Thermal physics revision questions

Thermal physics revision questions Thermal physics revision questions ONE SECTION OF QUESTIONS TO BE COMPLETED AND MARKED EVERY WEEK AFTER HALF TERM. Section 1: Energy 1. Define the law of conservation of energy. 2. State the first law

More information

TENSILE TESTS (ASTM D 638, ISO

TENSILE TESTS (ASTM D 638, ISO MODULE 4 The mechanical properties, among all the properties of plastic materials, are often the most important properties because virtually all service conditions and the majority of end-use applications

More information

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Dynamic Mechanical Behavior MSE 383, Unit 3-3 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Scope Why DMA & TTS? DMA Dynamic Mechanical Behavior (DMA) Superposition Principles

More information

On the modeling of the linear viscoelastic behaviour of biological materials using Comsol Multiphysics

On the modeling of the linear viscoelastic behaviour of biological materials using Comsol Multiphysics Applied and Computational Mechanics 1 (2007) 175-184 On the modeling of the linear viscoelastic behaviour of biological materials using Comsol Multiphysics F. Moravec a,, N. Letzelter b a Faculty of Applied

More information

CM4655 Polymer Rheology Lab. Torsional Shear Flow: Parallel-plate and Cone-and-plate

CM4655 Polymer Rheology Lab. Torsional Shear Flow: Parallel-plate and Cone-and-plate CM4655 Polymer heology Lab Torsional Shear Flow: Parallel-plate and Cone-and-plate (Steady and SAOS) Professor Faith A. Morrison Department of Chemical Engineering Michigan Technological University r (-plane

More information

Rheology and Viscoelasticity

Rheology and Viscoelasticity Rheology and Viscoelasticity Key learning outcomes Viscoelasticity, elastic and viscous materials Storage (E ) modulus curve Basic concepts of viscosity and deformation Stress-strain curve Newtonian, dilatant,

More information

Damping: Hysteretic Damping and Models. H.T. Banks and G.A. Pinter

Damping: Hysteretic Damping and Models. H.T. Banks and G.A. Pinter Damping: Hysteretic Damping and Models H.T. Banks and G.A. Pinter Center for Research in Scientic Computation, North Carolina State University, Raleigh, N.C. USA Denition of Hysteretic Damping Vibrational

More information

Estimation of damping capacity of rubber vibration isolators under harmonic excitation

Estimation of damping capacity of rubber vibration isolators under harmonic excitation Estimation of damping capacity of rubber vibration isolators under harmonic excitation Svetlana Polukoshko Ventspils University College, Engineering Research Institute VSRC, Ventspils, Latvia E-mail: pol.svet@inbox.lv

More information

Transactions on Engineering Sciences vol 6, 1994 WIT Press, ISSN

Transactions on Engineering Sciences vol 6, 1994 WIT Press,   ISSN A computational method for the analysis of viscoelastic structures containing defects G. Ghazlan," C. Petit," S. Caperaa* " Civil Engineering Laboratory, University of Limoges, 19300 Egletons, France &

More information

Notes about this lecture:

Notes about this lecture: Notes about this lecture: There is a lot of stuff on the following slides!!! Make sure you can explain what the following mean: Viscous material and elastic material; viscoelastic Flow curve Newtonian

More information

Thermal physics revision questions

Thermal physics revision questions Thermal physics revision questions ONE SECTION OF QUESTIONS TO BE COMPLETED AND MARKED EVERY WEEK AFTER HALF TERM. Section 1: Energy 1. Define the law of conservation of energy. Energy is neither created

More information

Theoretical Seismology. Astrophysics and Cosmology and Earth and Environmental Physics. Anelasticity. Fabio ROMANELLI

Theoretical Seismology. Astrophysics and Cosmology and Earth and Environmental Physics. Anelasticity. Fabio ROMANELLI Theoretical Seismology Astrophysics and Cosmology and Earth and Environmental Physics Anelasticity Fabio ROMANELLI Department of Mathematics & Geosciences University of Trieste romanel@units.it Intrinsic

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSETTS 02139 MASSACHUSES INSIUE OF ECHNOLOGY DEPARMEN OF MAERIALS SCIENCE AND ENGINEERING CAMBRIDGE, MASSACHUSES 02139 3.22 MECHANICAL PROPERIES OF MAERIALS PROBLEM SE 5 SOLUIONS 1. (Hertzber 6.2) If it takes 300 seconds

More information

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, MECHANICAL BEHAVIOR OF RUBBER SAMPLES UNDER RELAXATION

ENGINEERING FOR RURAL DEVELOPMENT Jelgava, MECHANICAL BEHAVIOR OF RUBBER SAMPLES UNDER RELAXATION MECHANICAL BEHAVIOR OF RUBBER SAMPLES UNDER RELAXATION Ruslan Askarbekov, David Herak, Cestmir Mizera Czech University of Life Sciences Prague askarbekovu@gmail.com, herak@tf.czu.cz, mizera@tf.czu.cz Abstract.

More information

Comparison between the visco-elastic dampers And Magnetorheological dampers and study the Effect of temperature on the damping properties

Comparison between the visco-elastic dampers And Magnetorheological dampers and study the Effect of temperature on the damping properties Comparison between the visco-elastic dampers And Magnetorheological dampers and study the Effect of temperature on the damping properties A.Q. Bhatti National University of Sciences and Technology (NUST),

More information

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises Non-linear and time-dependent material models in Mentat & MARC Tutorial with Background and Exercises Eindhoven University of Technology Department of Mechanical Engineering Piet Schreurs July 7, 2009

More information

Two Experiments to Teach Modulus of Elasticity and Modulus of Rigidity

Two Experiments to Teach Modulus of Elasticity and Modulus of Rigidity 1793 Two Experiments to Teach Modulus of Elasticity and Modulus of Rigidity Peter J. Joyce, Assistant Professor Mechanical Engineering, U.S. Naval Academy Annapolis, Maryland Abstract The relationship

More information

ERM - Elasticity and Strength of Materials

ERM - Elasticity and Strength of Materials Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 205 - ESEIAAT - Terrassa School of Industrial, Aerospace and Audiovisual Engineering 712 - EM - Department of Mechanical Engineering

More information

Analysis of Cantilever-Beam Bending Stress Relaxation Properties of Thin Wood Composites

Analysis of Cantilever-Beam Bending Stress Relaxation Properties of Thin Wood Composites Analysis of Cantilever-Beam Bending Stress Relaxation Properties of Thin Wood Composites John F. Hunt, a, * Houjiang Zhang, b and Yan Huang b An equivalent strain method was used to analyze and determine

More information

POE Practice Test - Materials

POE Practice Test - Materials Class: Date: POE Practice Test - Materials Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A student weighs 150 lbs and is standing on a beam which spans

More information

MDR 3000 Professional Professional Moving Die Rheometer. Testing instruments. Laboratory Equipment. Software systems. Service.

MDR 3000 Professional Professional Moving Die Rheometer. Testing instruments. Laboratory Equipment. Software systems. Service. Testing instruments Laboratory Equipment Software systems Service Consulting Contents MDR 3000 Professional 3 Overview 4 System description 5 Test chamber system 6 Test programs 8 Determinable measurements

More information

CONSISTENCY OF RHEOLOGICAL EXPERIMENTS FOR PSA CHARACTERIZATION

CONSISTENCY OF RHEOLOGICAL EXPERIMENTS FOR PSA CHARACTERIZATION CONSISTENCY OF RHEOLOGICAL EXPERIMENTS FOR PSA CHARACTERIZATION Dr. Laura Yao, Senior Research Chemist, Scapa North America, Windsor, CT Robert Braiewa, Research Chemist, Scapa North America, Windsor,

More information

(Refer Slide Time: 00:58)

(Refer Slide Time: 00:58) Nature and Properties of Materials Professor Bishak Bhattacharya Department of Mechanical Engineering Indian Institute of Technology Kanpur Lecture 18 Effect and Glass Transition Temperature In the last

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

Constitutive Model for High Density Polyethylene to Capture Strain Reversal

Constitutive Model for High Density Polyethylene to Capture Strain Reversal Constitutive Model for High Density Polyethylene to Capture Strain Reversal Abdul Ghafar Chehab 1 and Ian D. Moore 2 1 Research Assistant, GeoEngineering Centre at Queen s RMC, Queen s University, Kingston,

More information

Viscoelastic-Viscoplastic Model to Predict Creep in a Random Chopped Mat Thermoplastic Composite

Viscoelastic-Viscoplastic Model to Predict Creep in a Random Chopped Mat Thermoplastic Composite Viscoelastic-Viscoplastic Model to Predict Creep in a Random Chopped Mat Thermoplastic Composite by Jonathan Mui A thesis presented to the University of Waterloo in fulfillment of the thesis requirement

More information

Which expression gives the elastic energy stored in the stretched wire?

Which expression gives the elastic energy stored in the stretched wire? 1 wire of length L and cross-sectional area is stretched a distance e by a tensile force. The Young modulus of the material of the wire is E. Which expression gives the elastic energy stored in the stretched

More information

ENAS 606 : Polymer Physics

ENAS 606 : Polymer Physics ENAS 606 : Polymer Physics Professor Description Course Topics TA Prerequisite Class Office Hours Chinedum Osuji 302 Mason Lab, 432-4357, chinedum.osuji@yale.edu This course covers the static and dynamic

More information

Mechanical characterization of visco termo elastic properties of a polymer interlayer by dynamic tests

Mechanical characterization of visco termo elastic properties of a polymer interlayer by dynamic tests Mechanical characterization of visco termo elastic properties of a polymer interlayer by dynamic tests Laura Andreozzi 1, Silvia Briccoli Bati 2, Mario Fagone 2 Giovanna Ranocchiai 2 Fabio Zulli 1 1 Department

More information

Viscoelastic Characterization of Different Solid Rocket Propellants Using the Maxwell Spring-Dashpot Model

Viscoelastic Characterization of Different Solid Rocket Propellants Using the Maxwell Spring-Dashpot Model Viscoelastic Characterization of Different Solid Rocket Propellants... 189 Central European Journal of Energetic Materials, 2012, 9(3), 189-199 ISSN 1733-7178 Viscoelastic Characterization of Different

More information

The Rheology Handbook

The Rheology Handbook Thomas G. Mezger The Rheology Handbook For users of rotational and oscillatory rheometers 2nd revised edition 10 Contents Contents 1 Introduction 16 1.1 Rheology, rheometry and viscoelasticity 16 1.2 Deformation

More information

The Influence of Strain Amplitude, Temperature and Frequency on Complex Shear Moduli of Polymer Materials under Kinematic Harmonic Loading

The Influence of Strain Amplitude, Temperature and Frequency on Complex Shear Moduli of Polymer Materials under Kinematic Harmonic Loading Mechanics and Mechanical Engineering Vol. 21, No. 1 (2017) 157 170 c Lodz University of Technology The Influence of Strain Amplitude, Temperature and Frequency on Complex Shear Moduli of Polymer Materials

More information

Dynamic Finite Element Modeling of Elastomers

Dynamic Finite Element Modeling of Elastomers Dynamic Finite Element Modeling of Elastomers Jörgen S. Bergström, Ph.D. Veryst Engineering, LLC, 47A Kearney Rd, Needham, MA 02494 Abstract: In many applications, elastomers are used as a load-carrying

More information

Chapter 2 Rheological Models: Integral and Differential Representations

Chapter 2 Rheological Models: Integral and Differential Representations Chapter 2 Rheological Models: Integral and Differential Representations Viscoelastic relations may be expressed in both integral and differential forms. Integral forms are very general and appropriate

More information

Lecture 7: Rheology and milli microfluidic

Lecture 7: Rheology and milli microfluidic 1 and milli microfluidic Introduction In this chapter, we come back to the notion of viscosity, introduced in its simplest form in the chapter 2. We saw that the deformation of a Newtonian fluid under

More information

MATERIAL MECHANICS, SE2126 COMPUTER LAB 3 VISCOELASTICITY. k a. N t

MATERIAL MECHANICS, SE2126 COMPUTER LAB 3 VISCOELASTICITY. k a. N t MATERIAL MECHANICS, SE2126 COMPUTER LAB 3 VISCOELASTICITY N t i Gt () G0 1 i ( 1 e τ = α ) i= 1 k a k b τ PART A RELAXING PLASTIC PAPERCLIP Consider an ordinary paperclip made of plastic, as they more

More information

A CRITERION OF TENSILE FAILURE FOR HYPERELASTIC MATERIALS AND ITS APPLICATION TO VISCOELASTIC-VISCOPLASTIC MATERIALS

A CRITERION OF TENSILE FAILURE FOR HYPERELASTIC MATERIALS AND ITS APPLICATION TO VISCOELASTIC-VISCOPLASTIC MATERIALS MTS ADHESIVES PROGRAMME 1996-1999 PERFORMANCE OF ADHESIVE JOINTS Project: PAJ1; Failure Criteria and their Application to Visco-Elastic/Visco-Plastic Materials Report 2 A CRITERION OF TENSILE FAILURE FOR

More information

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and

6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa ( psi) and 6.4 A cylindrical specimen of a titanium alloy having an elastic modulus of 107 GPa (15.5 10 6 psi) and an original diameter of 3.8 mm (0.15 in.) will experience only elastic deformation when a tensile

More information

Oscillatory shear rheology of polymers

Oscillatory shear rheology of polymers Oscillatory shear rheology of polymers Dino Ferri dino.ferri@versalis.eni.com Politecnico Alessandria di Milano, 14/6/22 9 th June 215 Outline - elastic solids and viscous liquids (revision) - viscoelastic

More information

A Nonlinear Generalized Standard Solid Model for Viscoelastic Materials

A Nonlinear Generalized Standard Solid Model for Viscoelastic Materials A Nonlinear Generalized Standard Solid Model for Viscoelastic Materials A Nonlinear Generalized Standard Solid Model for Viscoelastic Materials Marc Delphin MONSIA From: Département de Physique Université

More information

QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT. Please answer each question in a SEPARATE book

QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT. Please answer each question in a SEPARATE book 2.341J MACROMOLECULAR HYDRODYNAMICS Spring 2012 QUIZ 2 OPEN QUIZ WHEN TOLD THERE ARE TWO PROBLEMS OF EQUAL WEIGHT Please answer each question in a SEPARATE book You may use the course textbook (DPL) and

More information

Stress Relaxation Behaviour of PALFnDPE Composites

Stress Relaxation Behaviour of PALFnDPE Composites Chapter 7 Stress Relaxation Behaviour of PALFnDPE Composites The results presented in this chapter have been communicated for publication to Journal of Reinforced Plastics and Composites. 7.1 Introduction

More information

Characterizing Nonlinear Viscoelastic Response of Asphaltic Materials

Characterizing Nonlinear Viscoelastic Response of Asphaltic Materials Characterizing Nonlinear Viscoelastic Response of Asphaltic Materials University of Texas at Austin Amit Bhasin Arash May, Motamed 21 Computational models of asphalt composites are increasingly being used

More information

Quiz 1. Introduction to Polymers

Quiz 1. Introduction to Polymers 100406 Quiz 1. Introduction to Polymers 1) Polymers are different than low-molecular weight oligomers. For example an oligomeric polyethylene is wax, oligomeric polystyrene is similar to naphthalene (moth

More information

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS

3.091 Introduction to Solid State Chemistry. Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 3.091 Introduction to Solid State Chemistry Lecture Notes No. 5a ELASTIC BEHAVIOR OF SOLIDS 1. INTRODUCTION Crystals are held together by interatomic or intermolecular bonds. The bonds can be covalent,

More information

EXPERIMENTALLY DETERMINING THE VISCOELASTIC BEHAVIOR OF A CURING THERMOSET EPOXY R. Thorpe 1, A. Poursartip 1*

EXPERIMENTALLY DETERMINING THE VISCOELASTIC BEHAVIOR OF A CURING THERMOSET EPOXY R. Thorpe 1, A. Poursartip 1* 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EXPERIMENTALLY DETERMINING THE VISCOELASTIC BEHAVIOR OF A CURING THERMOSET EPOXY R. Thorpe 1, A. Poursartip 1* 1 Composites Group, Dept. of Materials

More information

Long-term stress relaxation behaviour of pre-drawn PET

Long-term stress relaxation behaviour of pre-drawn PET Long-term stress relaxation behaviour of pre-drawn PET T. Hazelwood, 1 A. D. Jefferson, 1 R.J. Lark, 1 D. R. Gardner 1 1 Cardiff School of Engineering, Cardiff University, Queen s Buildings, The Parade,

More information

2. be aware of the thermal properties of materials and their practical importance in everyday life;

2. be aware of the thermal properties of materials and their practical importance in everyday life; MODULE 3: THERMAL AND MECHANICAL PROPERTIES OF MATTER GENERAL OBJECTIVES On completion of this Module, students should: 1. understand the principles involved in the design and use of thermometers; 2. be

More information

Quiz 1 Introduction to Polymers (Please answer each question even if you guess)

Quiz 1 Introduction to Polymers (Please answer each question even if you guess) 080407 Quiz 1 Introduction to Polymers (Please answer each question even if you guess) This week we explored the definition of a polymer in terms of properties. 1) The flow of polymer melts and concentrated

More information

An Introduction to Polymer Physics

An Introduction to Polymer Physics An Introduction to Polymer Physics David I. Bower Formerly at the University of Leeds (CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xii xv 1 Introduction 1 1.1 Polymers and the scope of the book

More information

Measurement of stress and strain during tensile testing of gellan gum gels: effect of deformation speed

Measurement of stress and strain during tensile testing of gellan gum gels: effect of deformation speed Carbohydrate Polymers 47 2002) 1±5 www.elsevier.com/locate/carbpol Measurement of stress and strain during tensile testing of gellan gum gels: effect of deformation speed M. Teratsubo, Y. Tanaka*, S. Saeki

More information

F7. Characteristic behavior of solids

F7. Characteristic behavior of solids F7. Characteristic behavior of solids F7a: Deformation and failure phenomena: Elasticity, inelasticity, creep, fatigue. à Choice of constitutive model: Issues to be considered è Relevance? Physical effect

More information

Structural Analysis III Compatibility of Displacements & Principle of Superposition

Structural Analysis III Compatibility of Displacements & Principle of Superposition Structural Analysis III Compatibility of Displacements & Principle of Superposition 2007/8 Dr. Colin Caprani, Chartered Engineer 1 1. Introduction 1.1 Background In the case of 2-dimensional structures

More information

ADVANCED DYNAMIC MECHANICAL ANALYSIS OF A TIRE SAMPLE BY NANOINDENTATION

ADVANCED DYNAMIC MECHANICAL ANALYSIS OF A TIRE SAMPLE BY NANOINDENTATION ADVANCED DYNAMIC MECHANICAL ANALYSIS OF A TIRE SAMPLE BY NANOINDENTATION Duanjie Li and Pierre Leroux, Nanovea, Irvine, CA Abstract The viscoelastic properties of a tire sample are comprehensively studied

More information

Rheology of Soft Materials. Rheology

Rheology of Soft Materials. Rheology Τ Thomas G. Mason Department of Chemistry and Biochemistry Department of Physics and Astronomy California NanoSystems Institute Τ γ 26 by Thomas G. Mason All rights reserved. γ (t) τ (t) γ τ Δt 2π t γ

More information

Forced Response of Plate with Viscoelastic Auxetic Dampers

Forced Response of Plate with Viscoelastic Auxetic Dampers Vibrations in Physical Systems 2018, 29, 2018003 (1 of 9) Abstract Forced Response of Plate with Viscoelastic Auxetic Dampers Tomasz STREK Poznan University of Technology, Institute of Applied Mechanics

More information

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior

Viscoelasticity. Basic Notions & Examples. Formalism for Linear Viscoelasticity. Simple Models & Mechanical Analogies. Non-linear behavior Viscoelasticity Basic Notions & Examples Formalism for Linear Viscoelasticity Simple Models & Mechanical Analogies Non-linear behavior Viscoelastic Behavior Generic Viscoelasticity: exhibition of both

More information

Rheology, or the study of the flow of matter. Panta rei. (Panta rhei)

Rheology, or the study of the flow of matter. Panta rei. (Panta rhei) Rheology, or the study of the flow of matter Panta rei (Panta rhei) Overview Basics of rheology Linear elasticity Linear viscosity Linear viscoelasticity To infinity... and beyond! Coming back to Earth

More information

On the visco-elastic properties of open-cell polyurethane foams in uniaxial compression

On the visco-elastic properties of open-cell polyurethane foams in uniaxial compression Author manuscript, published in "6th International Congress of the Croatian Society of Mechanics, Dubrovnik : Croatia (2009)" On the visco-elastic properties of open-cell polyurethane foams in uniaxial

More information

Dynamic Mechanical Analysis (DMA) of Polymers by Oscillatory Indentation

Dynamic Mechanical Analysis (DMA) of Polymers by Oscillatory Indentation Dynamic Mechanical Analysis (DMA) of Polymers by Oscillatory Indentation By Jennifer Hay, Nanomechanics, Inc. Abstract This application note teaches the theory and practice of measuring the complex modulus

More information

Fundamentals of Polymer Rheology. Sarah Cotts TA Instruments Rubber Testing Seminar CUICAR, Greenville SC

Fundamentals of Polymer Rheology. Sarah Cotts TA Instruments Rubber Testing Seminar CUICAR, Greenville SC Fundamentals of Polymer Rheology Sarah Cotts TA Instruments Rubber Testing Seminar CUICAR, Greenville SC Rheology: An Introduction Rheology: The study of stress-deformation relationships =Viscosity =Modulus

More information

SIMULATION OF NONLINEAR VISCO-ELASTICITY

SIMULATION OF NONLINEAR VISCO-ELASTICITY SIMULATION OF NONLINEAR VISCO-ELASTICITY Kazuyoshi Miyamoto*, Hiroshi Yoshinaga*, Masaki Shiraishi*, Masahiko Ueda* *Sumitomo Rubber Industries,LTD. 1-1,2,Tsutsui-cho,Chuo-ku,Kobe 651-0071,Japan Key words;

More information

Determining the rheological parameters of polyvinyl chloride, with change in temperature taken into account

Determining the rheological parameters of polyvinyl chloride, with change in temperature taken into account Plasticheskie Massy, No. 1-2, 2016, pp. 30 33 Determining the rheological parameters of polyvinyl chloride, with change in temperature taken into account A.E. Dudnik, A.S. Chepurnenko, and S.V. Litvinov

More information

Elastic Properties of Solid Materials. Notes based on those by James Irvine at

Elastic Properties of Solid Materials. Notes based on those by James Irvine at Elastic Properties of Solid Materials Notes based on those by James Irvine at www.antonine-education.co.uk Key Words Density, Elastic, Plastic, Stress, Strain, Young modulus We study how materials behave

More information

Rheology of cellulose solutions. Puu Cellulose Chemistry Michael Hummel

Rheology of cellulose solutions. Puu Cellulose Chemistry Michael Hummel Rheology of cellulose solutions Puu-23.6080 - Cellulose Chemistry Michael Hummel Contents Steady shear tests Viscous flow behavior and viscosity Newton s law Shear thinning (and critical concentration)

More information

L Young modulus = gradient L/A B1

L Young modulus = gradient L/A B1 Question Expected Answers Marks Additional Guidance 1 (a) (i) It has maximum / large / increased stress at this point Allow: it has same force but thinner/smaller area Not: Thin / small area (ii) The tape

More information

Elasticity. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M.

Elasticity. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M. Elasticity A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M. Lepore Elasticity Photo Vol. 10 PhotoDisk/Getty BUNGEE jumping utilizes

More information

D Y N A M I C M E C H A N I C A L A N A L Y S I S A N D I T S A D V A N T A G E S O V E R D E F L E C T I O N T E M P E R A T U R E U N D E R L O A D

D Y N A M I C M E C H A N I C A L A N A L Y S I S A N D I T S A D V A N T A G E S O V E R D E F L E C T I O N T E M P E R A T U R E U N D E R L O A D D Y N A M I C M E C H A N I C A L A N A L Y S I S A N D I T S A D V A N T A G E S O V E R D E F L E C T I O N T E M P E R A T U R E U N D E R L O A D Sujan E. Bin Wadud TA Instruments 9 Lukens Drive, New

More information

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS

MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS 1 MECHANICS OF MATERIALS. EQUATIONS AND THEOREMS Version 2011-01-14 Stress tensor Definition of traction vector (1) Cauchy theorem (2) Equilibrium (3) Invariants (4) (5) (6) or, written in terms of principal

More information

SPECTRAL ANALYSIS AND THE INTERCONVERSION OF LINEAR VISCOELASTIC FUNCTIONS

SPECTRAL ANALYSIS AND THE INTERCONVERSION OF LINEAR VISCOELASTIC FUNCTIONS SPECTRAL ANALYSIS AND THE INTERCONVERSION OF LINEAR VISCOELASTIC FUNCTIONS 1 INTRODUCTION TA Instruments Rheology Advantage spectral analysis and interconversion software was developed in collaboration

More information

MHA042 - Material mechanics: Duggafrågor

MHA042 - Material mechanics: Duggafrågor MHA042 - Material mechanics: Duggafrågor 1) For a static uniaxial bar problem at isothermal (Θ const.) conditions, state principle of energy conservation (first law of thermodynamics). On the basis of

More information

Testing and Analysis

Testing and Analysis Testing and Analysis Testing Elastomers for Hyperelastic Material Models in Finite Element Analysis 2.6 2.4 2.2 2.0 1.8 1.6 1.4 Biaxial Extension Simple Tension Figure 1, A Typical Final Data Set for Input

More information

Tensile stress strain curves for different materials. Shows in figure below

Tensile stress strain curves for different materials. Shows in figure below Tensile stress strain curves for different materials. Shows in figure below Furthermore, the modulus of elasticity of several materials effected by increasing temperature, as is shown in Figure Asst. Lecturer

More information

Rheology. A Tool for Characterization of Materials and Optimization of Polymer Processing

Rheology. A Tool for Characterization of Materials and Optimization of Polymer Processing Rheology A Tool for Characterization of Materials and Optimization of Polymer Processing Rheology of Polymer Materials LINEAR AND NONLINEAR FLOW PROPERTIES Polymer Engineering stands for scientific and

More information