Plasmonics in random media Cid B. de Araújo

Size: px
Start display at page:

Download "Plasmonics in random media Cid B. de Araújo"

Transcription

1 Plasmonics in random media Cid B. de Araújo Departamento de Física Universidade Federal de Pernambuco Recife Brazil 1

2 Plasmonics Science and technology that deals with the generation, control, manipulation, and transmission of plasmon excitation in metal nanostructures 2

3 Surface plasmons in nanoparticles Notre Dame de Paris Cu, Ag, Au 3

4 4

5 5 Boyd, Swieca School 2004

6 6

7 Surface plasmon frequency (depend on shape, size and material) E in in E 0 applied electric field nanosphere in 1 2 p 2 host dielectric function Drude dielectric function SP frequency is therefore: p 1 2 (This assumes particle is small compared to wavelength.) 0 7

8 Extinction coefficient C ext 9 c 3/ 2 m V Mie theory 1908 (dipole aproximation) m 2 nanospheres Silver in aqueous colloid 8

9 Metal nanoshell colloids Plasmon resonance tunable by core and shell dimensions t = 20 nm 15 nm 10 nm 5 nm 9

10 Near-field intensity Schatz et al. Spatial extension: nm 10

11 Coupled nanoparticles Kottmannn, Martin Opt. Lett 2001 Field increases by 24 for particles with diameter of 20 nm. Intensity enhancement >

12 More complex nano-structures n=1.5 Log enhancement 40 nm 600nm Plasmonic nanolens: First proposed by Li, Stockman & Bergman, PRL (2003) Bidaut, JACS

13 Metal-dielectric nanocomposites Plasmon enhanced fluorescence Third-order nonlinear optics in plasmonic materials Random lasers Surface plasmon resonances may increase NL response Scale size of inhomogeneities << optical wavelength Optical susceptibility can be described by volume averaged quantities 13

14 Plasmon enhanced luminescence ATOM Novotny et al. PRL 2006 PL (, ) ( ) ( ex PL abs ex rad PL ) 14

15 Fractals structures and hot spots Shalaev et al. Marder et al. Optical glasses doped with trivalent rare earth ions containing silver or gold NPs 15

16 No Au NPs 16

17 Enhanced luminescence at 614 nm (excitation at 405 nm) 17

18 Absorption spectra Absorption (a.u.) Frequência (%) Frequency upconversion in Er 3+ doped PbO-GeO 2 glasses containing silver nanoparticles 59 PbO 41 GeO 2 40,0 35,0 1,0 0,8 4 G 11/2 no silver NP 16h 39h 51h 0,4 0,3 Plasmon Ag 4 F 3/2 + 4 F 5/2 2 G 9/2 4 F 7/2 2 H 11/2 30,0 25,0 20,0 15,0 10,0 5,0 0, Diâmetro da nanoparticulas (nm) 0,2 4 S 3/2 0,6 0,1 0, Wavelength (nm) 0,2 4 F 9/2 4 I 9/2 4 I 11/2 4 I 13/ Wavelength (nm) Appl. Phys. Lett. 90, (2007) 18

19 100% enhancement Infrared laser Infrared laser 980 nm 680 nm 547 nm 530 nm 980 nm Nanothermometer 19

20 Tellurium glass with silver NPs doped with Pr 3+ or (Tb 3+ - Eu 3+ ) or Tb 3+ : J. Appl. Phys. 105, (2009). J. Appl. Phys. 104, (2008). J. Appl. Phys. 103, (2008). Gemanate glass doped with Eu 3+ or (Yb 3+ -Er 3+ ) containing silver, gold or copper NPs: Appl. Phys. Lett. 94, (2009). Appl. Phys. B 94, 239 (2009). Appl. Phys. Lett. 92, (2008). 20

21 Nonlinear Optics Interaction light-matter under circunstances that the linear superposition principle is violated Optical polarization Dipole moment per unit volume P = o [ (1) E + (2) E 2 + (3) E ] (n) 0, n = even (centro-symmetric media) P induces changes in the speed of light in the medium and new frequencies may be generated 21

22 Nonlinear Optics hold great promise for applications such as: All-Optical Switching Optical Limiting Optical Sensors Lasers and Amplifiers but the lack of appropriate materials do not allow the implementation of many ideas already presented 22

23 Z-scan technique Nonlinear refraction n = n 0 + n 2 I(r) n 2 > 0 self focusing n 2 < 0 self defocusing Tn 2 I Nonlinear absorption = I(r) T 2 I n 2 > 0 n 2 < 0 23

24 Colloids containing metallic nanoparticles Local field enhancement (3) (3) NP Surface plasmon resonance 2 eff f 2 Filling fraction Re (3) host ( ) 2 ( ) 0 NP sp h sp NP 3 NP( ) ( ) 2 ( ) h 24

25 Third order susceptibility of silver colloids Sodium citrate PVP Z scan 532 nm 80 ps 5 Hz PVA Sodium citrate PVP PVA Ag Influence of stabilizing agents and dipole moment of solvents Susceptibility changes by more that 100% for PVA and PVP J.O.S.A. B 24, 2136 (2007) Applied Physics B 92, 61 (2008) 25

26 Number of particles NL susceptibility of silver nanoparticles in CS 2 Competing processes between nonlinearities of the constituents Silver NPs capped with dodecanethiol (b) 80 average diameter: 3.9 nm 50 nm Diameter of particles (nm) i i h 2 h 5 nm eff h 1 3 f 26 1 f

27 n 2 (10-14 cm 2 / W ) 4.0 (a) NL Maxwell Garnet model (3) eff (3) h f (3) ( a i b) NP (3) NP 16 ( 6.3 i 1.9) 10 m V f ( 10-5 ) (3) h i m 2 /V 2 Control of spatial and temporal profile of optical beams (Space and temporal solitons) 2 (cm/gw) (b) f ( 10-5 ) 27 J.O.S.A. B 22, 2444 (2005)

28 First observation of high-order nonlinearities in Ag aqueous colloids Normalized transmittance Normalized transmittance Z-scan nm (single pulses 5 Hz) NL refractive behavior Nonlinear absorption Z (mm) (a) (b) Z (mm) T n2i T 2 I 3rd order T I J.O.S.A. B 24, 2948 (2007) 28

29 n 2 (x10-18 m 2 / W ) n 4 (x10-30 m 4 / W 2 ) NL refraction NL absorption 3rd. order nonlinearity f ( x 10-4 ) 2 (x10-10 m / W ) f ( x 10-4 ) 5th. order nonlinearity f ( x 10-4 ) 4 (x10-23 m 3 / W 2 ) f ( x 10-4 ) High order nonlinearities also depend linearly with f [Up to (9) ] 29

30 Thermally managed eclipse Z-scan Large rep rate 70 MHz Opt. Express 15, 1712 (2007) 30

31 No crossing PbO-GeO 2 film with copper NPs Influence of the Surface Plasmon Resonance Laser pulses 150 fs Appl. Phys. Lett. 92, (2008) 31

32 Nonlinear refraction at 1560 nm Nanoshells silica-gold Absorbance (arbtrary units) Normalized Transmitance. Normalized Transmittance 2 Metal Nanoshell Thermally - managed eclipse Z-scan 1 Laser 1560 nm Inner radius: 50 nm Outer radius: 70 nm Wavelength (nm) n 2 = 20 x m 2 /W 1.06 Laser pulses 60 fs time = 20us Peak Valley Z/Z Time (us) 32

33 HYBRID COMPOSITES Silver NPs in-situ growth within crosslinked poly (ester co - styrene) induced by UV irradiation aggregation control with exposition time J. Phys. Chem. Solids 68, 729 (2007) Silver NPs (5-10 nm) 33

34 Lithography 34

35 Random lasers (lasers without mirrors) Lawandy et al. Nature 1994 Generated photons make a random pathway due to reflection by the TiO 2 particles 2 x 10-3 M particles / cm 3 Mean free path: nm and nm Intensity mj 15

36 Intensidade Normalizada Intensidade (a.u.) Rh6G Our polymers with TiO 2 particles TiO 2 particles Rhodamine 6G 2 x 10-3 M particles / cm 3 Mean free path: nm and nm 1,0 0,8 0,6 2 mw 15 mw 160 mw (2 mw) (15 mw) (150 mw) , , , (nm) Line narrowing (nm) Threshold like behavior 36

37 37

38 Is it possible to operate a random laser with directional emission but using no mirrors? Photonic band gap fiber Refractive index profile Colloid with Rh 6G +TiO 2 Hollow core fiber Transverse feedback: total internal reflection Axial feedback: multiple scattering 38

39 First Random Fiber Laser 100 times more efficient than conventional random lasers Phys. Rev. Lett. 99, (2007) 39

40 Nd 3+ doped fluoroindate glass 575nm ( 4 I 9/2 2 G 7/2 ) 40

41 Upconversion Random Laser Fluoroindate glass powder Normalized UV signal 381 nm Above threshold 30 m 41

42 NEXT STEP Random fiber laser based on Nd 3+ doped nanocrystals + metal nanoparticles combined effects of multiple light scattering with local field enhancement due to surface plasmons reduced threshold 42

43 Plasmonics: a fundamentally multidisciplinary enterprise Fundamental science of metallic nano-optical components Plasmon-enhanced spectroscopies for chemical & biodetection SPASER nanoshells Raman Shift (cm -1 ) In vitro and in vivo Biomedical applications wavelength (nm) Light harvesting for energy conversion Optical interconnects in nextgeneration computer chips Plasmonic solar cells 43

44 Web of Science 01/Sept/2009 Keywords: plasmonics; surface plasmons; surface plasmon polaritons; localized surface plasmons. 44

45 Web of Science 01/Sept/2009 Keywords: plasmonics; surface plasmons; surface plasmon polaritons; localized surface plasmons. 45

46 Ernesto Valdez Rodriguez (D. Sc. 2007) Research Associate Antonio Marcos Brito-Silva D. Sc. student - Materials Science Denise Valença M. Sc. student Physics Euclides C. Lins de Almeida - D. Sc. student - Physics Gemima Barros Correia D. Sc. student Materials Science Hans A. Garcia Mejia - D. Sc. student - Physics Marcos André Soares de Oliveira D. Sc. student Physics Milena Frej M. Sc. Physics Ronaldo P. de Melo D. Sc. student Materials Science Tâmara P. R. de Oliveira - D. Sc. student - Physics Jamil Saade D. Sc. Student Materials Science Renato B. Silva M. Sc. Student Materials Science A. Galembeck - UFPE L. Kassab FATEC SP M. Poulain Rennes France Y. Messaddeq UNESP - SP 46

47 Surface plasmons: electromagnetic resonances in the visible Localized plasmon oscillation Propagating surface plasmon polariton (SPP) dielectric metal 4 3 m 0R 2m k x m d c m d 1/ 2 dielectric metal 47

48 Pr 3+ in Ga 10 Ge 25 S 65 with Ag nanoparticles Heat treatment: 23 h JAP 103, (2008) 48

49 Heat treatment 23 hours ( P0 H4) ( D2 H4) Increase by 130 % 49

Nonlinear optics spectroscopy in glasses doped with nanoparticles

Nonlinear optics spectroscopy in glasses doped with nanoparticles Nonlinear optics spectroscopy in glasses doped with nanoparticles Juliana Mara Pinto de Almeida 1, Luciana R. P. Kassab, Cleber R. Mendonça 1 and Leonardo De Boni 1 1 Instituto de Física de São Carlos,

More information

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston Understanding Nanoplasmonics Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm 1ns 100ps 10ps Photonics 1ps 100fs 10fs 1fs Time Surface Plasmons Surface

More information

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays

Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays CHAPTER 4 Simulated Study of Plasmonic Coupling in Noble Bimetallic Alloy Nanosphere Arrays 4.1 Introduction In Chapter 3, the noble bimetallic alloy nanosphere (BANS) of Ag 1-x Cu x at a particular composition

More information

Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials

Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials Robert W. Boyd The Institute of Optics, University of Rochester, Rochester, NY 14627, USA with special thanks to: Nick Lepeshkin,

More information

Optical cavity modes in gold shell particles

Optical cavity modes in gold shell particles 9 Optical cavity modes in gold shell particles Gold (Au) shell particles with dimensions comparable to the wavelength of light exhibit a special resonance, with a tenfold field enhancement over almost

More information

Origin of Optical Enhancement by Metal Nanoparticles. Greg Sun University of Massachusetts Boston

Origin of Optical Enhancement by Metal Nanoparticles. Greg Sun University of Massachusetts Boston Origin of Optical Enhancement by Metal Nanoparticles Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm Photonics 1ns 100ps 10ps 1ps 100fs 10fs 1fs Time

More information

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK

CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK 161 CHAPTER 7 SUMMARY OF THE PRESENT WORK AND SUGGESTIONS FOR FUTURE WORK 7.1 SUMMARY OF THE PRESENT WORK Nonlinear optical materials are required in a wide range of important applications, such as optical

More information

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials

Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials Chapter 5. Photonic Crystals, Plasmonics, and Metamaterials Reading: Saleh and Teich Chapter 7 Novotny and Hecht Chapter 11 and 12 1. Photonic Crystals Periodic photonic structures 1D 2D 3D Period a ~

More information

arxiv: v1 [physics.bio-ph] 11 Sep 2015

arxiv: v1 [physics.bio-ph] 11 Sep 2015 arxiv:1509.04625v1 [physics.bio-ph] 11 Sep 2015 IR-Laser Welding and Ablation of Biotissue Stained with Metal Nanoparticles A. A. Lalayan, S. S. Israelyan Centre of Strong Fields Physics, Yerevan State

More information

ECE280: Nano-Plasmonics and Its Applications. Week8

ECE280: Nano-Plasmonics and Its Applications. Week8 ECE280: Nano-Plasmonics and Its Applications Week8 Surface Enhanced Raman Scattering (SERS) and Surface Plasmon Amplification by Stimulated Emission of Radiation (SPASER) Raman Scattering Chandrasekhara

More information

Nanophysics: Main trends

Nanophysics: Main trends Nano-opto-electronics Nanophysics: Main trends Nanomechanics Main issues Light interaction with small structures Molecules Nanoparticles (semiconductor and metallic) Microparticles Photonic crystals Nanoplasmonics

More information

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium

Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium Supplementary Figure 1 Schematics of an optical pulse in a nonlinear medium. A Gaussian optical pulse propagates along z-axis in a nonlinear medium with thickness L. Supplementary Figure Measurement of

More information

quantum dots, metallic nanoparticles, and lanthanide ions doped upconversion

quantum dots, metallic nanoparticles, and lanthanide ions doped upconversion Chapter 1 Introduction 1.1 Background Nanostructured materials have significantly different characteristics from their bulk counterparts. 1 Inorganic nanoparticles such as semiconductor quantum dots, metallic

More information

Doctor of Philosophy

Doctor of Philosophy FEMTOSECOND TIME-DOMAIN SPECTROSCOPY AND NONLINEAR OPTICAL PROPERTIES OF IRON-PNICTIDE SUPERCONDUCTORS AND NANOSYSTEMS A Thesis Submitted for the degree of Doctor of Philosophy IN THE FACULTY OF SCIENCE

More information

Nanocomposite photonic crystal devices

Nanocomposite photonic crystal devices Nanocomposite photonic crystal devices Xiaoyong Hu, Cuicui Lu, Yulan Fu, Yu Zhu, Yingbo Zhang, Hong Yang, Qihuang Gong Department of Physics, Peking University, Beijing, P. R. China Contents Motivation

More information

Natallia Strekal. Plasmonic films of noble metals for nanophotonics

Natallia Strekal. Plasmonic films of noble metals for nanophotonics Natallia Strekal Plasmonic films of noble metals for nanophotonics The aim of our investigation is the mechanisms of light interactions with nanostructure and High Tech application in the field of nanophotonics

More information

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau

Surface Plasmon Amplification by Stimulated Emission of Radiation. By: Jonathan Massey-Allard Graham Zell Justin Lau Surface Plasmon Amplification by Stimulated Emission of Radiation By: Jonathan Massey-Allard Graham Zell Justin Lau Surface Plasmons (SPs) Quanta of electron oscillations in a plasma. o Electron gas in

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

Optical properties of morphology-controlled gold nanoparticles

Optical properties of morphology-controlled gold nanoparticles Optical properties of morphology-controlled gold nanoparticles Qiguang Yang, 1* Jaetae Seo, 1* Wan-Joong Kim, SungSoo Jung, 3 Bagher Tabibi, 1 Justin Vazquez, 1 Jasmine Austin, 1 and Doyle Temple 1 1 Department

More information

Study of Surface Plasmon Excitation on Different Structures of Gold and Silver

Study of Surface Plasmon Excitation on Different Structures of Gold and Silver Nanoscience and Nanotechnology 2015, 5(4): 71-81 DOI: 10.5923/j.nn.20150504.01 Study of Surface Plasmon Excitation on Different Structures of Gold and Silver Anchu Ashok 1,*, Arya Arackal 1, George Jacob

More information

Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials

Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials Enhanced Nonlinear Optical Response from Nano-Scale Composite Materials Robert W. Boyd Institute of Optics and Department of Physics and Astronomy University of Rochester, Rochester, NY 14627, USA with

More information

Linear and Nonlinear Optical Properties of Acridine Dye Doped PMMA Polymer

Linear and Nonlinear Optical Properties of Acridine Dye Doped PMMA Polymer Linear and Nonlinear Optical Properties of Acridine Dye Doped PMMA Polymer Wurood Jaber Abed AL-Zahra 1, Lazem Hassan Aboud 2, Zaineb F. Mahdi 3 1, 2 Department of Laser Physics, Babylon University, 3

More information

Localized surface plasmons (Particle plasmons)

Localized surface plasmons (Particle plasmons) Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 04 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 4: outline 2 Characterization of nanomaterials SEM,

More information

Application of IR Raman Spectroscopy

Application of IR Raman Spectroscopy Application of IR Raman Spectroscopy 3 IR regions Structure and Functional Group Absorption IR Reflection IR Photoacoustic IR IR Emission Micro 10-1 Mid-IR Mid-IR absorption Samples Placed in cell (salt)

More information

PLASMONICS/METAMATERIALS

PLASMONICS/METAMATERIALS PLASMONICS/METAMATERIALS Interconnects Optical processing of data Subwavelength confinement Electrodes are in place Coupling to other on-chip devices Combination of guiding, detection, modulation, sensing

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Cascaded plasmon resonances multi-material nanoparticle trimers for extreme field enhancement S. Toroghi a, Chatdanai Lumdee a, and P. G. Kik* a CREOL, The College of Optics and Photonics, University of

More information

Optical Spectroscopy of Advanced Materials

Optical Spectroscopy of Advanced Materials Phys 590B Condensed Matter Physics: Experimental Methods Optical Spectroscopy of Advanced Materials Basic optics, nonlinear and ultrafast optics Jigang Wang Department of Physics, Iowa State University

More information

The Dielectric Function of a Metal ( Jellium )

The Dielectric Function of a Metal ( Jellium ) The Dielectric Function of a Metal ( Jellium ) Total reflection Plasma frequency p (10 15 Hz range) Why are Metals Shiny? An electric field cannot exist inside a metal, because metal electrons follow the

More information

Energy transfer and frequency upconversion involving triads of Pr 3 + ions in ( Pr 3 +, Gd 3 + ) doped fluoroindate glass

Energy transfer and frequency upconversion involving triads of Pr 3 + ions in ( Pr 3 +, Gd 3 + ) doped fluoroindate glass Energy transfer and frequency upconversion involving triads of Pr 3 + ions in ( Pr 3 +, Gd 3 + ) doped fluoroindate glass Diego J. Rátiva, Cid B. de Araújo, and Younes Messaddeq Citation: Journal of Applied

More information

7. Localized surface plasmons (Particle plasmons)

7. Localized surface plasmons (Particle plasmons) 7. Localized surface plasmons (Particle plasmons) ( Plasmons in metal nanostructures, Dissertation, University of Munich by Carsten Sonnichsen, 2001) Lycurgus cup, 4th century (now at the British Museum,

More information

Photothermal Spectroscopy Lecture 2 - Applications

Photothermal Spectroscopy Lecture 2 - Applications Photothermal Spectroscopy Lecture 2 - Applications Aristides Marcano Olaizola (PhD) Research Professor Department of Physics and Engineering Delaware State University, US 1 Outlook 1. Optical characterization

More information

Thermal optical nonlinearity enhanced by gold nanoparticles

Thermal optical nonlinearity enhanced by gold nanoparticles Thermal optical nonlinearity enhanced by gold nanoparticles Rogério F. Souza a, Márcio A. R. C. Alencar b, César M. Nascimento b, Monique G. A. da Silva c, Mario R. Meneghetti c, Jandir M. Hickmann b a

More information

Magnetoplasmonics: fundamentals and applications

Magnetoplasmonics: fundamentals and applications Antonio García-Martín http://www.imm-cnm.csic.es/magnetoplasmonics Instituto de Microelectrónica de Madrid Consejo Superior de Investigaciones Científicas Magnetoplasmonics: fundamentals and applications

More information

Nonlinear transmission of light through synthetic colloidal suspensions Zhigang Chen. San Francisco State Univ., California, USA & Nankai Univ.

Nonlinear transmission of light through synthetic colloidal suspensions Zhigang Chen. San Francisco State Univ., California, USA & Nankai Univ. Nonlinear transmission of light through synthetic colloidal suspensions Zhigang Chen San Francisco State Univ., California, USA & Nankai Univ. China What do we do with light? Spatial solitons & dynamics

More information

of Gold Nanoparticles

of Gold Nanoparticles 2 Behaviour of Gold Nanoparticles The behaviour of matter at the nanoscale is often unexpected and can be completely different from that of bulk materials. This has stimulated the study and the development

More information

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS www.arpapress.com/volumes/vol19issue1/ijrras_19_1_06.pdf HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS M. Eslamifar Physics Department, BehbahanKhatamAl-Anbia

More information

Strong focusing higher-order laser modes: transverse and longitudinal optical fields

Strong focusing higher-order laser modes: transverse and longitudinal optical fields Journal of Physics: Conference Series PAPER OPEN ACCESS Strong focusing higher-order laser modes: transverse and longitudinal optical fields To cite this article: A V Kharitonov and S S Kharintsev 015

More information

Optical and Photonic Glasses. Lecture 31. Rare Earth Doped Glasses I. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 31. Rare Earth Doped Glasses I. Professor Rui Almeida Optical and Photonic Glasses : Rare Earth Doped Glasses I Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Rare-earth doped glasses The lanthanide

More information

Effect of Addition Au Nanoparticles on Emission Spectra of Laser Dye

Effect of Addition Au Nanoparticles on Emission Spectra of Laser Dye International Journal of Applied Engineering Research ISSN 973-462 Volume 2, Number 24 (27) pp. 4833-484 Effect of Addition Au Nanoparticles on Emission Spectra of Laser Dye Sara Ali Razzak, Lazem Hassan

More information

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix

Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix Excerpt from the Proceedings of the COMSOL Conference 2008 Hannover Photonic/Plasmonic Structures from Metallic Nanoparticles in a Glass Matrix O.Kiriyenko,1, W.Hergert 1, S.Wackerow 1, M.Beleites 1 and

More information

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots

Towards the Lasing Spaser: Controlling. Metamaterial Optical Response with Semiconductor. Quantum Dots Towards the Lasing Spaser: Controlling Metamaterial Optical Response with Semiconductor Quantum Dots E. Plum, V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev,, Optoelectronics Research Centre, University

More information

Energy transport in metal nanoparticle plasmon waveguides

Energy transport in metal nanoparticle plasmon waveguides Energy transport in metal nanoparticle plasmon waveguides Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater California Institute of Technology Thomas J. Watson Laboratory of Applied Physics, Pasadena,

More information

Plasmonic properties and sizing of core-shell Cu-Cu 2 O nanoparticles fabricated by femtosecond laser ablation in liquids ABSTRACT

Plasmonic properties and sizing of core-shell Cu-Cu 2 O nanoparticles fabricated by femtosecond laser ablation in liquids ABSTRACT Plasmonic properties and sizing of core-shell Cu-Cu O nanoparticles fabricated by femtosecond laser ablation in liquids J. M. J. Santillán 1, F. A. Videla 1,, D. C. Schinca 1, and L. B. Scaffardi 1, 1

More information

Photonics applications II. Ion-doped ChGs

Photonics applications II. Ion-doped ChGs Photonics applications II Ion-doped ChGs 1 ChG as a host for doping; pros and cons - Important - Condensed summary Low phonon energy; Enabling emission at longer wavelengths Reduced nonradiative multiphonon

More information

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses

2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass. Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses 2008,, Jan 7 All-Paid US-Japan Winter School on New Functionalities in Glass Photonic Glass Controlling Light with Nonlinear Optical Glasses and Plasmonic Glasses Takumi FUJIWARA Tohoku University Department

More information

Seminars in Nanosystems - I

Seminars in Nanosystems - I Seminars in Nanosystems - I Winter Semester 2011/2012 Dr. Emanuela Margapoti Emanuela.Margapoti@wsi.tum.de Dr. Gregor Koblmüller Gregor.Koblmueller@wsi.tum.de Seminar Room at ZNN 1 floor Topics of the

More information

Collective effects in second-harmonic generation from plasmonic oligomers

Collective effects in second-harmonic generation from plasmonic oligomers Supporting Information Collective effects in second-harmonic generation from plasmonic oligomers Godofredo Bautista,, *, Christoph Dreser,,, Xiaorun Zang, Dieter P. Kern,, Martti Kauranen, and Monika Fleischer,,*

More information

transmission reflection absorption

transmission reflection absorption Optical Cages V. Kumar*, J. P. Walker* and H. Grebel The Electronic Imaging Center and the ECE department at NJIT, Newark, NJ 0702. grebel@njit.edu * Contributed equally Faraday Cage [], a hollow structure

More information

Twentyfold blue upconversion emission enhancement through thermal effects in Pr 3+ /Yb 3+ -codoped fluoroindate glasses excited at 1.

Twentyfold blue upconversion emission enhancement through thermal effects in Pr 3+ /Yb 3+ -codoped fluoroindate glasses excited at 1. Twentyfold blue upconversion emission enhancement through thermal effects in Pr 3+ /Yb 3+ -codoped fluoroindate glasses excited at 1.064 m A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto,

More information

10. Optics of metals - plasmons

10. Optics of metals - plasmons 1. Optics of metals - plasmons Drude theory at higher frequencies The Drude scattering time corresponds to the frictional damping rate The ultraviolet transparency of metals Interface waves - surface plasmons

More information

Advanced Vitreous State The Physical Properties of Glass

Advanced Vitreous State The Physical Properties of Glass Advanced Vitreous State The Physical Properties of Glass Active Optical Properties of Glass Lecture 21: Nonlinear Optics in Glass-Applications Denise Krol Department of Applied Science University of California,

More information

Nanoscale antennas. Said R. K. Rodriguez 24/04/2018

Nanoscale antennas. Said R. K. Rodriguez 24/04/2018 Nanoscale antennas Said R. K. Rodriguez 24/04/2018 The problem with nanoscale optics How to interface light emitters & receivers with plane waves? Ε ii(kkkk ωωωω) ~1-10 nm ~400-800 nm What is an antenna?

More information

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 39. Non-Linear Optical Glasses III Metal Doped Nano-Glasses. Professor Rui Almeida Optical and Photonic Glasses : Non-Linear Optical Glasses III Metal Doped Nano-Glasses Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Metal-doped

More information

Biosensing based on slow plasmon nanocavities

Biosensing based on slow plasmon nanocavities iosensing based on slow plasmon nanocavities. Sepulveda, 1, Y. Alaverdyan,. rian, M. Käll 1 Nanobiosensors and Molecular Nanobiophysics Group Research Center on Nanoscience and Nanotechnolog (CIN)CSIC-ICN

More information

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings

Supplementary Information for. Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Information for Vibrational Spectroscopy at Electrolyte Electrode Interfaces with Graphene Gratings Supplementary Figure 1. Simulated from pristine graphene gratings at different Fermi energy

More information

Applications of field-enhanced near-field optical microscopy

Applications of field-enhanced near-field optical microscopy Applications of field-enhanced near-field optical microscopy A. Bouhelier, M. R. Beversluis, and L. Novotny The Institute of Optics, University of Rochester, Rochester, NY 14627, U.S.A Abstract Metal nanostructures

More information

Connecting metallic nanoparticles by optical

Connecting metallic nanoparticles by optical Supplementary Information for Connecting metallic nanoparticles by optical printing Julián Gargiulo 1, Santiago Cerrota 1, Emiliano Cortés 1, Ianina L. Violi 1, Fernando D. Stefani* 1,2 1 Centro de Investigaciones

More information

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer Journal of Electrical and Electronic Engineering 2015; 3(2-1): 78-82 Published online February 10, 2015 (http://www.sciencepublishinggroup.com/j/jeee) doi: 10.11648/j.jeee.s.2015030201.27 ISSN: 2329-1613

More information

Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays.

Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays. Mat. Res. Soc. Symp. Proc. Vol. 797 2004 Materials Research Society W4.6.1 Very large plasmon band shift in strongly coupled metal nanoparticle chain arrays. L. A. Sweatlock 1, J. J. Penninkhof 2, S. A.

More information

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology

Fiber-Optics Group Highlights of Micronova Department of Electrical and Communications Engineering Helsinki University of Technology Highlights of 2004 Micronova Department of Electrical and Communications Engineering Micronova Seminar 3 December 2004 Group Leader: Hanne Ludvigsen Postdoctoral researcher: Goëry Genty Postgraduate students:

More information

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Nanoscale optical circuits: controlling light using localized surface plasmon resonances Nanoscale optical circuits: controlling light using localized surface plasmon resonances T. J. Davis, D. E. Gómez and K. C. Vernon CSIRO Materials Science and Engineering Localized surface plasmon (LSP)

More information

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES Igor Zozouleno Solid State Electronics Department of Science and Technology Linöping University Sweden igozo@itn.liu.se http://www.itn.liu.se/meso-phot

More information

Chapter - 9 CORE-SHELL NANOPARTICLES

Chapter - 9 CORE-SHELL NANOPARTICLES Chapter - 9 CORE-SHELL NANOPARTICLES Fig. 9.1: Transmission electron micrographs of silica coated gold nanoparticles. The shell thicknesses are (a) 10 nm, (b) 23 nm, (c) 58 nm, and (d) 83 nm. Reprinted

More information

Optical and Photonic Glasses. Lecture 37. Non-Linear Optical Glasses I - Fundamentals. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 37. Non-Linear Optical Glasses I - Fundamentals. Professor Rui Almeida Optical and Photonic Glasses : Non-Linear Optical Glasses I - Fundamentals Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Non-linear optical glasses

More information

Quantum Nanoplasmonics and the Spaser

Quantum Nanoplasmonics and the Spaser Photo Credit: I. Tsukerman, Seefeld, Austria, January, Department 2009 of Physics and Astronomy US Israel Binational Science Foundation Quantum Nanoplasmonics and the Spaser Mark I. Stockman Department

More information

Supplementary Figure 1 Reflection and transmission measurement. Supplementary Figure 2 Wavelength dependence of χ

Supplementary Figure 1 Reflection and transmission measurement. Supplementary Figure 2 Wavelength dependence of χ Supplementary Figure 1 Reflection and transmission measurement. (a) and (b) show the reflection and transmission curves with 45 incident angle and S-polarization for the 3 nm metal quantum well sample.

More information

CHAPTER 3 RESULTS AND DISCUSSION

CHAPTER 3 RESULTS AND DISCUSSION CHAPTER 3 RESULTS AND DISCUSSION 3.1 CHAPTER OUTLINE This chapter presents the data obtained from the investigation of each of the following possible explanations: (1) Experimental artifacts. (2) Direct

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Electronic Supplementary Information. Au/Ag Core-shell Nanocuboids for High-efficiency Organic Solar Cells with Broadband Plasmonic Enhancement

Electronic Supplementary Information. Au/Ag Core-shell Nanocuboids for High-efficiency Organic Solar Cells with Broadband Plasmonic Enhancement Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information Au/Ag Core-shell Nanocuboids for High-efficiency

More information

Shell-isolated nanoparticleenhanced Raman spectroscopy: Insight from COMSOL simulations

Shell-isolated nanoparticleenhanced Raman spectroscopy: Insight from COMSOL simulations Shell-isolated nanoparticleenhanced Raman spectroscopy: Insight from COMSOL simulations Song-Yuan Ding, Jun Yi, En-Ming You, and Zhong-Qun Tian 2016-11-03, Shanghai Excerpt from the Proceedings of the

More information

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath Time resolved optical spectroscopy methods for organic photovoltaics Enrico Da Como Department of Physics, University of Bath Outline Introduction Why do we need time resolved spectroscopy in OPV? Short

More information

OPTICAL PROPERTIES of Nanomaterials

OPTICAL PROPERTIES of Nanomaterials OPTICAL PROPERTIES of Nanomaterials Advanced Reading Optical Properties and Spectroscopy of Nanomaterials Jin Zhong Zhang World Scientific, Singapore, 2009. Optical Properties Many of the optical properties

More information

Surface Plasmon Resonance. Magneto-optical. optical enhancement and other possibilities. Applied Science Department The College of William and Mary

Surface Plasmon Resonance. Magneto-optical. optical enhancement and other possibilities. Applied Science Department The College of William and Mary Surface Plasmon Resonance. Magneto-optical optical enhancement and other possibilities Applied Science Department The College of William and Mary Plasmonics Recently surface plasmons have attracted significant

More information

l* = 109 nm Glycerol Clean Water Glycerol l = 108 nm Wavelength (nm)

l* = 109 nm Glycerol Clean Water Glycerol l = 108 nm Wavelength (nm) 1/ (rad -1 ) Normalized extinction a Clean 0.8 Water l* = 109 nm 0.6 Glycerol b 2.0 1.5 500 600 700 800 900 Clean Water 0.5 Glycerol l = 108 nm 630 660 690 720 750 Supplementary Figure 1. Refractive index

More information

Optical spectroscopy and upconversion luminescence in Nd3+ doped Ga10Ge25S65 glass

Optical spectroscopy and upconversion luminescence in Nd3+ doped Ga10Ge25S65 glass Optical spectroscopy and upconversion luminescence in Nd3+ doped Ga0Ge25S65 glass Vineet Kumar Rai, Cid B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain et al. Citation: J. Appl. Phys. 06, 0352 (2009); doi:

More information

Supporting Information The Effect of Temperature and Gold Nanoparticle Interaction on the Lifetime and Luminescence of Upconverting Nanoparticles

Supporting Information The Effect of Temperature and Gold Nanoparticle Interaction on the Lifetime and Luminescence of Upconverting Nanoparticles Supporting Information Synthesis and Characterization Supporting Information The Effect of Temperature and Gold Nanoparticle Interaction on the Lifetime and Luminescence of Upconverting Nanoparticles Ali

More information

A Study on the Suitability of Indium Nitride for Terahertz Plasmonics

A Study on the Suitability of Indium Nitride for Terahertz Plasmonics A Study on the Suitability of Indium Nitride for Terahertz Plasmonics Arjun Shetty 1*, K. J. Vinoy 1, S. B. Krupanidhi 2 1 Electrical Communication Engineering, Indian Institute of Science, Bangalore,

More information

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida

Optical and Photonic Glasses. Lecture 30. Femtosecond Laser Irradiation and Acoustooptic. Professor Rui Almeida Optical and Photonic Glasses : Femtosecond Laser Irradiation and Acoustooptic Effects Professor Rui Almeida International Materials Institute For New Functionality in Glass Lehigh University Femto second

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

A microring multimode laser using hollow polymer optical fibre

A microring multimode laser using hollow polymer optical fibre PRAMANA c Indian Academy of Sciences Vol. 75, No. 5 journal of November 2010 physics pp. 923 927 A microring multimode laser using hollow polymer optical fibre M KAILASNATH, V P N NAMPOORI and P RADHAKRISHNAN

More information

Probing vacuum ultraviolet energy levels of trivalent gadolinium by two-photon spectroscopy

Probing vacuum ultraviolet energy levels of trivalent gadolinium by two-photon spectroscopy Journal of Luminescence 102 103 (2003) 211 215 Probing vacuum ultraviolet energy levels of trivalent gadolinium by two-photon spectroscopy P.S. Peijzel a, *, W.J.M. Schrama a, M.F. Reid b, A. Meijerink

More information

Nanosecond, Picosecond, and Femtosecond Nonlinear Optical Properties of a Zinc Phthalocyanine studied using Z-scan and DFWM techniques.

Nanosecond, Picosecond, and Femtosecond Nonlinear Optical Properties of a Zinc Phthalocyanine studied using Z-scan and DFWM techniques. anosecond, Picosecond, and Femtosecond onlinear Optical Properties of a Zinc Phthalocyanine studied using Z-scan and DFWM techniques. B. M. Krishna Mariserla, a D. arayana Rao, a, * R.S.S. Kumar, a L.

More information

Spring 2009 EE 710: Nanoscience and Engineering

Spring 2009 EE 710: Nanoscience and Engineering Spring 009 EE 710: Nanoscience and Engineering Part 10: Surface Plasmons in Metals Images and figures supplied from Hornyak, Dutta, Tibbals, and Rao, Introduction to Nanoscience, CRC Press Boca Raton,

More information

Coherent control of light matter interaction

Coherent control of light matter interaction UNIVERSIDADE DE SÃO PAULO Instituto de Física de São Carlos Coherent control of light matter interaction Prof. Dr. Cleber Renato Mendonça Photonic Group University of São Paulo (USP), Institute of Physics

More information

Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle

Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle Journal of Physics: Conference Series PAPER OPEN ACCESS Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle To cite this article: Norsyahidah Md Saleh and A. Abdul Aziz

More information

Supporting Information

Supporting Information Supporting Information Remarkable Photothermal Effect of Interband Excitation on Nanosecond Laser-induced Reshaping and Size Reduction of Pseudo-spherical Gold Nanoparticles in Aqueous Solution Daniel

More information

Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b

Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b Taking cascaded plasmonic field enhancement to the ultimate limit in silver nanoparticle dimers S. Toroghi* a, P. G. Kik a,b a CREOL, The College of Optics and Photonics, University of Central Florida,

More information

Aluminum for nonlinear plasmonics: Methods Section

Aluminum for nonlinear plasmonics: Methods Section Aluminum for nonlinear plasmonics: Methods Section Marta Castro-Lopez, Daan Brinks, Riccardo Sapienza, and Niek F. van Hulst, ICFO - Institut de Ciencies Fotoniques, and ICREA - Institució Catalana de

More information

Supplementary information for. plasmonic nanorods interacting with J-aggregates.

Supplementary information for. plasmonic nanorods interacting with J-aggregates. Supplementary information for Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. by Gülis Zengin, Göran Johansson, Peter Johansson, Tomasz J. Antosiewicz,

More information

"Surface-Enhanced Raman Scattering

Surface-Enhanced Raman Scattering SMR: 1643/11 WINTER COLLEGE ON OPTICS ON OPTICS AND PHOTONICS IN NANOSCIENCE AND NANOTECHNOLOGY ( 7-18 February 2005) "Surface-Enhanced Raman Scattering presented by: Martin Moskovits University of California,

More information

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308)

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) (invited) TBC Session 3: Metamaterials Theory (16:45 17:00, Huxley LT308) Light trapping states in media with longitudinal electric waves D McArthur,

More information

Scattering-type near-field microscopy for nanoscale optical imaging

Scattering-type near-field microscopy for nanoscale optical imaging Scattering-type near-field microscopy for nanoscale optical imaging Rainer Hillenbrand Nano-Photonics Group Max-Planck-Institut für Biochemie 82152 Martinsried, Germany Infrared light enables label-free

More information

SUPPORTING INFORMATION. Preparation of colloidal photonic crystal containing CuO nanoparticles with. tunable structural colors

SUPPORTING INFORMATION. Preparation of colloidal photonic crystal containing CuO nanoparticles with. tunable structural colors Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 215 SUPPORTING INFORMATION Preparation of colloidal photonic crystal containing CuO nanoparticles

More information

Ultrafast spectroscopy of a single metal nanoparticle. Fabrice Vallée FemtoNanoOptics group

Ultrafast spectroscopy of a single metal nanoparticle. Fabrice Vallée FemtoNanoOptics group CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE Ultrafast spectroscopy of a single metal nanoparticle Fabrice Vallée FemtoNanoOptics group LASIM, CNRS - Université Lyon 1, France Metal Nanoparticles: from

More information

Nonlinear Refraction Spectroscopy

Nonlinear Refraction Spectroscopy UNIVERSIDADE DE SÃO PAULO Instituto de Física de São Carlos Nonlinear Refraction Spectroscopy of Ion Doped Laser Materials Tomaz Catunda Instituto de Física de São Carlos, Universidade de São Paulo São

More information

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept.

CHEM*3440. Photon Energy Units. Spectrum of Electromagnetic Radiation. Chemical Instrumentation. Spectroscopic Experimental Concept. Spectrum of Electromagnetic Radiation Electromagnetic radiation is light. Different energy light interacts with different motions in molecules. CHEM*344 Chemical Instrumentation Topic 7 Spectrometry Radiofrequency

More information

Usama Anwar. June 29, 2012

Usama Anwar. June 29, 2012 June 29, 2012 What is SPR? At optical frequencies metals electron gas can sustain surface and volume charge oscillations with distinct resonance frequencies. We call these as plasmom polaritons or plasmoms.

More information

Optical Properties of Nanostructured Random Media

Optical Properties of Nanostructured Random Media Vladimir M. Shalaev (Ed.) Optical Properties of Nanostructured Random Media With 185 Figures Springer Contents Nanocomposite Materials for Nonlinear Optics Based on Local Field Effects John E. Sipe and

More information

Nano Optics Based on Coupled Metal Nanoparticles

Nano Optics Based on Coupled Metal Nanoparticles Nano Optics Based on Coupled Metal Nanoparticles Shangjr Gwo ( 果尚志 ) Department of Physics National Tsing-Hua University, Hsinchu 30013, Taiwan E-mail: gwo@phys.nthu.edu.tw NDHU-Phys (2010/03/01) Background

More information