Nuclear and Particle Physics Lecture 4

Size: px
Start display at page:

Download "Nuclear and Particle Physics Lecture 4"

Transcription

1 Nuclear and Particle Physics Lecture 4 Dr.$Dan$Protopopescu Kelvin$Building,$room$524 Dan.Protopopescu@glasgow.ac.uk 12 Recap puzzle Concept Equa.on Defini.on Exponen.al$decay N(t)$=$N 0 Number"of"nuclei"that"have" decayed"in"the"6me"t c.vity (t)$=$ 0 Number"of"nuclei"decaying"per" unit"6me Decay$probability P decay Probability"of"a"single"nucleus" decaying"in"the"interval"t Life.me Half@life τ$=$1/λ t 1/2 $=$ln2/λ Maximum"6me"un6l"an"unstable" nucleus"decays Time"by"which"half"the"radioac6ve" sample"has"not"yet"decayed 13

2 nswers Concept Equa.on Defini.on Exponen.al$decay N(t)$=$N 0 Number"of"nuclei"that"have"not" decayed"by"6me"t c.vity (t)$=$ 0 Number"of"nuclei"decaying"per" unit"6me,"where" 0$ ="λn 0 Decay$probability P decay Probability"of"a"single"nucleus" decaying"in"the"interval"t* *t+ Mean$life.me$or$ simply$life'me Half@life τ$=$1/λ t 1/2 $=$ln2/λ Mean"6me"un6l"an"unstable" nucleus"decays Time"aCer"which"half"the" radioac6ve"sample"has"decayed 14 Simple decay If$a$sample$of$material$consists$of$nucleus$$which$is$unstable$and$ decays$to$nucleus$b$(of$which$there$are$ini.ally$none)$we$have$simply: $$$$$$$$$$$$$$$$$$ $$$$$$$$$ $B Nomenclature: $$$$@$ parent $$$B$@$ daughter The initial number of each nucleus is: (t = 0) = N 0 (t = 0) = 0 s nucleus decays into nucleus B (t) = N 0 e λ t and since N 0 = (t) + (t) (t) = N 0 (1 e λ t ) ("="total"number"of"nuclei) $@$Dan$Protopopescu 15

3 lternative decay modes n$ini.al$nuclide$$that$decays$into$two$products:$$$$$$$ $B$+$C$ We$have$at$any$.me$t:$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$***and$ (t)+ (t)+n C (t) =N 0 d =, d = B, dn C = C with$λ $=$λ B $+$λ C.$The$decay$constants$λ B $and$λ C $only$determine$ the$probabili.es$of$the$decays$to$products$b$or$c and (t) = B N 0(1 e t ) N C (t) = C N 0(1 e t ) (t) =N 0 (t) N C (t) =N 0 e t $@$Dan$Protopopescu 16 Decay series (or chains) Many$heavy$nuclei$decay$via$complicated$series$involving$several$α$and$β$decays.$ Consider$the$simple$case$of$$ $B$ $C,$where$C$is$stable$and$only$$is$present$ ini.ally: The number of nuclei vary according to: $ $B$ $C (t) = N o e λ t The number of nuclei B as a function of time can be found from: d (t) = λ B (t) + λ (t) where the first term is the decay of nuclei B and the second term is due to B being created from the decay of. Integrating, we can get (t) and its activity B (t) : λ (t) = N 0 ( e λ t e λ Bt ) λ B λ B (t) = λ B (t) = λ λ B N 0 ( e λ t e λ Bt ) λ B λ $@$Dan$Protopopescu (1) (2) 17

4 How was equation (2) derived? We multiply both sides of the equation by d (t) = B (t)+ e B t and we rearrange to obtain This can be written as d (e Bt (t)) = where we use (t) =N 0 e e B t to obtain the form d (e Bt (t)) = N 0 e ( B )t t e B t e B t d (t) + B e Bt (t) = e B t 18 How was eq.(2) derived (part II) We multiply by and integrate both sides R t 0 to obtain d(e Bt (t)) = R t 0 N 0 e ( B )t (t)e B t 0= B N 0(e ( B )t 1) which gives us (t) = t 0(e e Bt ) B QED 19

5 B C decay series For$the$stable$element$C$from$such$a$series$one$would$obtain: N C (t) =N 0 h 1 Be t e B t B i which$we$derived$using N 0 = (t)+ (t)+n C (t) Instead$we$will$focus$on$ (t)*and$inves.gate$a$few$special$cases: λα $ $λ Β$$$$$$$$ (parent$decays$quickly) λα $=$λ Β λα $<$λ Β λα $ $λ Β$$$$$$$ (parent$is$long$lived) 20 B C decay series for λα λβ Parent$decays$quickly,$$τ Α * *τ Β The$number$of$daughter$nuclei$rises$to$maximum,$then$decays$with$ constant$λ B.$ (t) = t 0(e e Bt ) B B =I1 λ Α " "λ Β =0! N 0 e Bt `er$a$given$.me,$daughter$nuclei$decay$almost$as$if$there$were$no$ parent$nuclei. 21

6 B C decay series for λα = λβ The$solu.on$of$eq.(1)$when$$λ Α =$λ Β =$λ$is: (t) = N 0 te t λ Α = λ Β = λ 22 B C decay series for λα < λβ Parent$$decays$slower$than$the$daughter$B. Ra.o$of$ac.vi.es$becomes$constant$a`er$a$sufficiently$long$.me: B = B = B B (1 e ( B )t ) B B when t!1 23

7 B C decay series for λ λ Β Parent$nucleus$is$long$lived:$λ λ B $or$τ τ B $so: e λ t 1 N 0 λ λ B ( 1 e λ Bt ) `er$a$sufficiently$long$.me$ 1 e λ Bt ( ) 1 λ = λ B d / = 0 c6vity"of"""=""c6vity"of"b in$eq.$(1) This$is$known$a$secular*equilibrium,$i.e.$at$large$.mes$B$is$ decaying$at$the$same$rate$as$it$is$produced. 24 Secular equilibrium (λ λ Β ) n$example$of$secular$equilibrium$is:$ $$$$$$$$$$$$$$$$$$$ 132 Te(12hrs)$ 132 I(2.28hrs)$ 132 Xe 25

8 lpha decay chains the$atomic$mass$number$$of$the$ nucleus$by$4,$almost$any$decay$will$ result$in$a$nucleus$with$an$atomic$ mass$ $such$that$ $$$$$$$$$$$$$**mod*4*=* *mod*4 s$a$result,$there$are$four$ radioac.ve$decay$chains$known$as$ the$thorium$(4n),$neptunium$(4n +1),$Radium$(4n+2)$and$c.nium$ (4n+3)$series. 26 Image$credits:$Wikipedia Thorium series and the age of the Earth 232 Th$has$a$very$long$half$life$ (t 1/2$ =$14Gyr)$and$goes$through$ a$long$decay$chain$to$stable$ 208 Pb. Image$credits:$Wikipedia It$effec.vely$behaves$as$if$$$$ 232 Th 232 Pb By$measuring$the$rela.ve$ abundance$of$ 208 Pb: N( 208 Pb) N( 232 Th) = N (1 0 e λtht ) N 0 e λ Tht one$can$es.mate$of$the$age$of$ the$earth$at$ yr. 27

9 Radiometric dating Based$on$a$comparison$between$the$observed$abundance$of$a$naturally$ occurring$radioac.ve$isotope$and$its$decay$products,$using$known$decay$ rates. Image$credits:$earthsci.unimelb.edu.au 28 Radiocarbon dating Carbon$is$a$fundamental$part$of$living$.ssue.$ 12 C,$ 13 C$and$ 14 are$absorbed$by$living$organisms. The$ra.o$of$ 14 C/ 12 C$is$known$to$be$γ 0$=$ C$is$permanently$created$by$cosmic$ rays,$i.e.$this$isotopic$ra.o$is$constant$in$ nature The$concentra.on$of$ 14 C$in$living$organisms$ is$the$same$as$that$in$the$environment When$the$organism$dies$it$no$longer$ absorbs$ 14 C.$The$ 14 C$in$the$organism$decays$ but$the$amount$of$ 12 C$remains$constant $$$$$$$$$$$$$$$$$$$$$$$$$ 14 C/ 12 C$=$γ$=$ $ γ 0 Βy$measuring$the$ra.o$of$ 14 C/ 12 C$one$can$ find$out$how$much$.me$has$passed $$$$$$$$$$$$$$$$$$$$$$t$=$ln(γ 0 /γ)/λ $@$Dan$Protopopescu 29

Natural Radiation K 40

Natural Radiation K 40 Natural Radiation There are a few radioisotopes that exist in our environment. Isotopes that were present when the earth was formed and isotopes that are continuously produced by cosmic rays can exist

More information

Radioisotope Tracers

Radioisotope Tracers Radioisotope Tracers OCN 623 Chemical Oceanography 31 March 2016 Reading: Emerson and Hedges, Chapter 5, p.153-169 2016 Frank Sansone and David Ho Student Learning Outcomes At the completion of this module,

More information

Radioisotope Tracers

Radioisotope Tracers Radioisotope Tracers OCN 623 Chemical Oceanography 23 March 2017 Reading: Emerson and Hedges, Chapter 5, p.153-169 2017 Frank Sansone Student Learning Outcomes At the completion of this class, students

More information

NUCLEAR PHYSICS AND RADIOACTIVITY

NUCLEAR PHYSICS AND RADIOACTIVITY CHAPTER 31 NUCLEAR PHYSICS AND RADIOACTIVITY CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION Isotopes are nuclei that contain the same number of protons, but a different number of neutrons. A material is

More information

The previous images display some of our hopes and fears associated with nuclear radiation. We know the images, and some of the uses, but what is Nuclear Radiation and where does it come from? Nuclide In

More information

LECTURE 24 HALF-LIFE, RADIOACTIVE DATING, AND BINDING ENERGY. Instructor: Kazumi Tolich

LECTURE 24 HALF-LIFE, RADIOACTIVE DATING, AND BINDING ENERGY. Instructor: Kazumi Tolich LECTURE 24 HALF-LIFE, RADIOACTIVE DATING, AND BINDING ENERGY Instructor: Kazumi Tolich Lecture 24 2 Reading chapter 32.3 to 32.4 Half-life Radioactive dating Binding energy Nuclear decay functions 3 If

More information

Nuclear Powe. Bronze Buddha at Hiroshima

Nuclear Powe. Bronze Buddha at Hiroshima Nuclear Powe Bronze Buddha at Hiroshima Nuclear Weapons Nuclear Power Is it Green & Safe? Nuclear Waste 250,000 tons of Spent Fuel 10,000 tons made per year Health Effects of Ionizing Radiation Radiocarbon

More information

Radioactive Decay and Radiometric Dating

Radioactive Decay and Radiometric Dating Radioactive Decay and Radiometric Dating Extra credit: chapter 7 in Bryson See online (link fixed) or moodle Radioactivity and radiometric dating Atomic nucleus Radioactivity Allows us to put numerical

More information

Recap from last time

Recap from last time Recap from last time Nuclear Decay Occurs. when a nucleus is unstable (lower open energy levels) An unstable nucleus metamorphoses ( decays ) into a more stable (more tightly bound) nucleus Difference

More information

Nothing in life is to be feared. It is only to be understood. -Marie Curie. Segre Chart (Table of Nuclides)

Nothing in life is to be feared. It is only to be understood. -Marie Curie. Segre Chart (Table of Nuclides) Nothing in life is to be feared. It is only to be understood. -Marie Curie Segre Chart (Table of Nuclides) Z N 1 Segre Chart (Table of Nuclides) Radioac8ve Decay Antoine Henri Becquerel Marie Curie, née

More information

Introduction to Nuclear Engineering. Ahmad Al Khatibeh

Introduction to Nuclear Engineering. Ahmad Al Khatibeh Introduction to Nuclear Engineering Ahmad Al Khatibeh CONTENTS INTRODUCTION (Revision) RADIOACTIVITY Radioactive Decay Rates Units of Measurement for Radioactivity Variation of Radioactivity Over Time.

More information

Radioactivity and energy levels

Radioactivity and energy levels Radioactivity and energy levels Book page 497-503 Review of radioactivity β ; Free neutron proton β- decay is continuous β : Proton in nucleus neutron antineutrino neutrino Summary of useful equations

More information

Nuclear Fusion and Radiation

Nuclear Fusion and Radiation Nuclear Fusion and Radiation Lecture 8 (Meetings 20, 21 & 22) Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Nuclear Fusion and Radiation p. 1/66 The discovery

More information

Lecture 13. Constraints on Melt Models Arising From Disequilibrium in the Th-U Decay System

Lecture 13. Constraints on Melt Models Arising From Disequilibrium in the Th-U Decay System Lecture 13 Constraints on Melt Models Arising From Disequilibrium in the Th-U Decay System (for reference: see Uranium-Series Geochemistry, volume 52 of Reviews in Mineralogy and Geochemistry (Bourdon,

More information

Lecture 3 Radioactivity

Lecture 3 Radioactivity Objectives In this lecture you will learn the following We shall begin with a general discussion on the nucleus. Learn about some characteristics of nucleons. Understand some concepts on stability of a

More information

Masses and binding energies

Masses and binding energies Masses and binding energies Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 January 10, 2011 NUCS 342 (Lecture 1) January 10, 2011 1 / 23 Outline 1 Notation NUCS 342 (Lecture

More information

Radiogenic Isotopes. W. F. McDonough 1 1 Department of Earth Sciences and Research Center for

Radiogenic Isotopes. W. F. McDonough 1 1 Department of Earth Sciences and Research Center for Radiogenic Isotopes W. F. McDonough 1 1 Department of Earth Sciences and Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan (Dated: May 17, 2018) I. SUMMRY Isotope systems

More information

12.744/ The Basic Rules, Nuclear Stability, Radioactive Decay and Radioactive Dating

12.744/ The Basic Rules, Nuclear Stability, Radioactive Decay and Radioactive Dating 12.744/12.754 The Basic Rules, Nuclear Stability, Radioactive Decay and Radioactive Dating What we see in the earth and oceans is the product of the "cosmic" abundance (i.e. the original) pattern of elements,

More information

Physics 219 Help Session. Date: Wed 12/07, Time: 6:00-8:00 pm. Location: Physics 331

Physics 219 Help Session. Date: Wed 12/07, Time: 6:00-8:00 pm. Location: Physics 331 Lecture 25-1 Physics 219 Help Session Date: Wed 12/07, 2016. Time: 6:00-8:00 pm Location: Physics 331 Lecture 25-2 Final Exam Dec. 14. 2016. 1:00-3:00pm in Phys. 112 Bring your ID card, your calculator

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 37 Modern Physics Nuclear Physics Radioactivity Nuclear reactions http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 29 1 Lightning Review Last lecture: 1. Nuclear

More information

1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA PLUS DECAY 1.5 NEUTRON EMISSION 1.6 SPONTANEOUS FISSION

1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA PLUS DECAY 1.5 NEUTRON EMISSION 1.6 SPONTANEOUS FISSION Chapter NP-3 Nuclear Physics Decay Modes and Decay Rates TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 RADIOACTIVE DECAY 1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA

More information

1 Radiation Sources and Radioactive Decay

1 Radiation Sources and Radioactive Decay 1 Radiation Sources and Radioactive Decay 1.1 Definitions and Equations 1.1.1 Radioactivity and Decay Equations Activity Activity is defined as A = dn dt = λn Unit : 1 Bq (becquerel) = 1 s 1 (1.1.1) where

More information

Nuclear Physics Part 2: Radioactive Decay

Nuclear Physics Part 2: Radioactive Decay Nuclear Physics Part 2: Radioactive Decay Last modified: 17/10/2017 Part A: Decay Reactions What is a Decay? Alpha Decay Definition Q-value Example Not Every Alpha Decay is Possible Beta Decay β rays are

More information

26.6 The theory of radioactive decay Support. AQA Physics. Decay constant and carbon dating. Specification reference. Introduction.

26.6 The theory of radioactive decay Support. AQA Physics. Decay constant and carbon dating. Specification reference. Introduction. 6.6 The theory of radioactive Decay constant and carbon dating Specification reference 3.8.1.3 MS 0.1, 0., 0.3, 0.5,.,.3,.4 Introduction You have already studied half-life, the definition and various means

More information

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology 1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology Reading (all from White s Notes) Lecture 1: Introduction And Physics Of The Nucleus: Skim Lecture 1: Radioactive Decay- Read all Lecture 3:

More information

Radioactive Decay and Radioactive Series

Radioactive Decay and Radioactive Series Radioactive Decay and Radioactive Series by Michele Laino June 7, 2015 Abstract In this short paper I will explain some general aspects of radioactive decays, furthermore, some useful tables, concerning

More information

Nuclear Binding, Radioactivity

Nuclear Binding, Radioactivity Physics 102: Lecture 28 Nuclear Binding, Radioactivity Physics 102: Lecture 27, Slide 1 Recall: Nuclear Physics A Z 6 3 Li Nucleus = Protons+ Neutrons nucleons Z = proton number (atomic number) Gives chemical

More information

RANDOM PROCESS: Identical to Unimolecular Decomposition. E a

RANDOM PROCESS: Identical to Unimolecular Decomposition. E a 7 Lecture 13: Radioactive Decay Kinetics I. Kinetics of First-Order Processes. Mechanism: 1. ucleus has Internal Structure Z X Z Decay involves internal + Y + Q ; Q = + rearrangement of system. RDOM PROCESS:

More information

LECTURE 26 RADIATION AND RADIOACTIVITY

LECTURE 26 RADIATION AND RADIOACTIVITY LECTURE 26 RADIATION AND RADIOACTIVITY 30.4 Radiation and radioactivity Decay series Nuclear radiation is a form of ionizing radiation 30.5 Nuclear decay and half-lives Activity Radioactive dating Radiocarbon

More information

Radioactivity, Radiation and the Structure of the atom

Radioactivity, Radiation and the Structure of the atom Radioactivity, Radiation and the Structure of the atom What do you know (or can we deduce) about radioactivity from what you have learned in the course so far? How can we learn about whether radioactive

More information

Chapter 30 Questions 8. Quoting from section 30-3, K radioactivity was found in every case to be unaffected

Chapter 30 Questions 8. Quoting from section 30-3, K radioactivity was found in every case to be unaffected Physics 111 Fall 007 Homework Solutions Week #10 Giancoli Chapter 30 Chapter 30 Questions 8. Quoting from section 30-3, K radioactivity was found in every case to be unaffected by the strongest physical

More information

Chapter 10 - Nuclear Physics

Chapter 10 - Nuclear Physics The release of atomic energy has not created a new problem. It has merely made more urgent the necessity of solving an existing one. -Albert Einstein David J. Starling Penn State Hazleton PHYS 214 Ernest

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 21 Study Guide Concepts 1. There are several modes of radioactive decay: (1) alpha (α) decay, (2) beta (β) decay, (3) gamma (γ)

More information

CH Practice Exam #4 (Fall 2017) - Answers

CH Practice Exam #4 (Fall 2017) - Answers H1810 - Practice Exam #4 (Fall 2017) - nswers Name: Part I (~5 points each) Score: Multiple hoice - hoose the best answer and place the letter corresponding to the answer in the space provided N on the

More information

SOURCES of RADIOACTIVITY

SOURCES of RADIOACTIVITY Section 9: SOURCES of RADIOACTIVITY This section briefly describes various sources of radioactive nuclei, both naturally occurring and those produced artificially (man-made) in, for example, reactors or

More information

Chapter IV: Radioactive decay

Chapter IV: Radioactive decay Chapter IV: Radioactive decay 1 Summary 1. Law of radioactive decay 2. Decay chain/radioactive filiation 3. Quantum description 4. Types of radioactive decay 2 History Radioactivity was discover in 1896

More information

Core Physics Second Part How We Calculate LWRs

Core Physics Second Part How We Calculate LWRs Core Physics Second Part How We Calculate LWRs Dr. E. E. Pilat MIT NSED CANES Center for Advanced Nuclear Energy Systems Method of Attack Important nuclides Course of calc Point calc(pd + N) ϕ dn/dt N

More information

Lecture 11 Krane Enge Cohen Williams. Beta decay` Ch 9 Ch 11 Ch /4

Lecture 11 Krane Enge Cohen Williams. Beta decay` Ch 9 Ch 11 Ch /4 Lecture 11 Krane Enge Cohen Williams Isospin 11.3 6.7 6.3 8.10 Beta decay` Ch 9 Ch 11 Ch 11 5.3/4 Problems Lecture 11 1 Discuss the experimental evidence for the existence of the neutrino. 2 The nuclide

More information

Table of Isotopic Masses and Natural Abudances

Table of Isotopic Masses and Natural Abudances Table of Isotopic Masses and Natural Abudances in amu, where 1amu = 1/12 mass 12 C Atomic weight element = M i (abun i )+M j (abun j ) + Four types of radioactive decay 1) alpha (α) decay - 4 He nucleus

More information

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011 Alpha decay Introduction to Nuclear Science Simon Fraser University Spring 2011 NUCS 342 February 21, 2011 NUCS 342 (Lecture 13) February 21, 2011 1 / 29 Outline 1 The decay processes NUCS 342 (Lecture

More information

THE CHART OF NUCLIDES

THE CHART OF NUCLIDES THE CHART OF NUCLIDES LAB NR 10 INTRODUCTION The term nuclide refers to an atom or nucleus as characterized by the number of protons (Z) and neutrons (N) that the nucleus contains. A chart of nuclides

More information

The Geiger Counter. Gavin Cheung. April 10, 2011

The Geiger Counter. Gavin Cheung. April 10, 2011 The Geiger Counter Gavin Cheung 0938173 April 10, 011 Abstract The half life of indium-116 was found using a Geiger counter. The half life was found to be 3300 ± 50s. The dead time of the Geiger counter

More information

Nuclear Spin and Stability. PHY 3101 D. Acosta

Nuclear Spin and Stability. PHY 3101 D. Acosta Nuclear Spin and Stability PHY 3101 D. Acosta Nuclear Spin neutrons and protons have s = ½ (m s = ± ½) so they are fermions and obey the Pauli- Exclusion Principle The nuclear magneton is eh m µ e eh 1

More information

Nuclear Chemistry - HW

Nuclear Chemistry - HW Nuclear Chemistry - HW PSI AP Chemistry Name 1) In balancing the nuclear reaction 238 92U 234 90E + 4 2He, the identity of element E is. A) Pu B) Np C) U D) Pa E) Th 2) This reaction is an example of.

More information

UNIT 13: NUCLEAR CHEMISTRY

UNIT 13: NUCLEAR CHEMISTRY UNIT 13: NUCLEAR CHEMISTRY REVIEW: ISOTOPE NOTATION An isotope notation is written as Z A X, where X is the element, A is the mass number (sum of protons and neutrons), and Z is the atomic number. For

More information

Radioactivity Review (Chapter 7)

Radioactivity Review (Chapter 7) Science 10 Radioactivity Review (Chapter 7) 1. The alpha decay of radon-222 will yield which of the following? a. bismuth-220 c. astatine-222 b. francium-222 d. polonium-218 2. Which of the following types

More information

Physics 11. Unit 10 Nuclear Physics

Physics 11. Unit 10 Nuclear Physics Physics 11 Unit 10 Nuclear Physics 1. Review of atomic structure From chemistry we have learned that all matters in this world are made of tiny particles called atoms. Atoms are made of three smaller particles:

More information

atomic number and mass number. Go over nuclear symbols, such as He-4 and He. Discuss

atomic number and mass number. Go over nuclear symbols, such as He-4 and He. Discuss Nuclear Decay and Chain Reactions ID: 9522 Time required 45 minutes Topic: Nuclear Identify and write equations for the three forms of nuclear decay. Predict decay products. Perform half-life and decay

More information

Physics 142 Modern Physics 2 Page 1. Nuclear Physics

Physics 142 Modern Physics 2 Page 1. Nuclear Physics Physics 142 Modern Physics 2 Page 1 Nuclear Physics The Creation of the Universe was made possible by a grant from Texas Instruments. Credit on a PBS Program Overview: the elements are not elementary The

More information

NUCLEAR PHYSICS. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

NUCLEAR PHYSICS. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe NUCLEAR PHYSICS Challenging MCQ questions by The Physics Cafe Compiled and selected by The Physics Cafe 1 The activity of a radioactive sample decreases to one third of its original activity Ao in a period

More information

17. Radiometric dating and applications to sediment transport

17. Radiometric dating and applications to sediment transport OCEAN/ESS 410 17. Radiometric dating and applications to sediment transport William Wilcock Lecture/Lab Learning Goals Understand the basic equations of radioactive decay Understand how Potassium-Argon

More information

The number of protons in the nucleus is known as the atomic number Z, and determines the chemical properties of the element.

The number of protons in the nucleus is known as the atomic number Z, and determines the chemical properties of the element. I. NUCLEAR PHYSICS I.1 Atomic Nucleus Very briefly, an atom is formed by a nucleus made up of nucleons (neutrons and protons) and electrons in external orbits. The number of electrons and protons is equal

More information

Heavy Element Nucleosynthesis. A summary of the nucleosynthesis of light elements is as follows

Heavy Element Nucleosynthesis. A summary of the nucleosynthesis of light elements is as follows Heavy Element Nucleosynthesis A summary of the nucleosynthesis of light elements is as follows 4 He Hydrogen burning 3 He Incomplete PP chain (H burning) 2 H, Li, Be, B Non-thermal processes (spallation)

More information

Phys 102 Lecture 27 The strong & weak nuclear forces

Phys 102 Lecture 27 The strong & weak nuclear forces Phys 102 Lecture 27 The strong & weak nuclear forces 1 4 Fundamental forces of Nature Today Gravitational force (solar system, galaxies) Electromagnetic force (atoms, molecules) Strong force (atomic nuclei)

More information

ln 2 ln 2 t 1 = = = 26.06days λ.0266 = = 37.6days

ln 2 ln 2 t 1 = = = 26.06days λ.0266 = = 37.6days Pae 1 1/3/26 22.1 Problem Set 3 Homework Solutions 1. (3 points The activity of a radioisotope is found to decrease to 45% of its oriinal value in 3 days. (a What is the decay constant? We are solvin for

More information

More Energetics of Alpha Decay The energy released in decay, Q, is determined by the difference in mass of the parent nucleus and the decay products, which include the daughter nucleus and the particle.

More information

Experimental Techniques in

Experimental Techniques in Experimental Techniques in uclear Physics 50503744 Course web http://nuclear.bau.edu.jo/experimental or http://nuclear.dababneh.com/experimental Grading Mid-term Exam 30% HW s 0% Projects 0% Final Exam

More information

The Electromagnetic Spectrum. 7.1 Atomic Theory and Radioactive Decay. Isotopes. 19K, 19K, 19K Representing Isotopes

The Electromagnetic Spectrum. 7.1 Atomic Theory and Radioactive Decay. Isotopes. 19K, 19K, 19K Representing Isotopes 7.1 Atomic Theory and Radioactive Decay Natural background radiation exists all around us. Radioactivity is the release of high energy particles or waves When atoms lose high energy particles and waves,

More information

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics

Particle Physics. Question Paper 1. Save My Exams! The Home of Revision. International A Level. Exam Board Particle & Nuclear Physics For more awesome GSE and level resources, visit us at www.savemyexams.co.uk/ Particle Physics Question Paper 1 Level International Level Subject Physics Exam oard IE Topic Particle & Nuclear Physics Sub

More information

Nuclear Binding, Radioactivity

Nuclear Binding, Radioactivity Physics 102: Lecture 27 Nuclear Binding, Radioactivity Make sure your grade book entries are correct e.g. HOUR EXAM EX / AB! Ex=excused / AB=0 (absent, no excuse) Please fill out on-line ICES forms Physics

More information

8 Nuclei. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

8 Nuclei. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 8 Nuclei introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 8.1 - The nucleus The atomic nucleus consists of protons and neutrons. Protons and neutrons are called nucleons. A nucleus is characterized

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 18 Modern Physics Nuclear Physics Nuclear properties Binding energy Radioactivity The Decay Process Natural Radioactivity Last lecture: 1. Quantum physics Electron Clouds

More information

PHYSICS OF NUCLEAR MEDICINE

PHYSICS OF NUCLEAR MEDICINE PHYSICS OF NUCLEAR MEDICINE Radioactivity A certain natural elements, heavy have unstable that disintegrate to emit various rays. Alpha(α ), Beta(β), and Gamma(γ )rays. Alpha(α ) Beta(β) Gamma(γ ) 1-Positive

More information

Introduction to Nuclear Physics and Nuclear Decay

Introduction to Nuclear Physics and Nuclear Decay Introduction to Nuclear Physics and Nuclear Decay Larry MacDonald macdon@uw.edu Nuclear Medicine Basic Science Lectures September 6, 2011 toms Nucleus: ~10-14 m diameter ~10 17 kg/m 3 Electron clouds:

More information

Nuclear Chemistry. Proposal: build a nuclear power plant in Broome County. List the pros & cons

Nuclear Chemistry. Proposal: build a nuclear power plant in Broome County. List the pros & cons Nuclear Chemistry Proposal: build a nuclear power plant in Broome County. List the pros & cons 1 Nuclear Chemistry Friend or Fiend 2 The Nucleus What is in the nucleus? How big is it vs. the atom? How

More information

Radioactivity. Lecture 10 The radioactive Universe

Radioactivity. Lecture 10 The radioactive Universe Radioactivity Lecture The radioactive Univere Univere, Galaxy, Solar Sytem, Earth The Radioactive Univere The Planck map of the Univere howing the temperature ditribution in the bacround radiation from

More information

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity Physics 1161: Lecture 25 Nuclear Binding, Radioactivity Sections 32-1 32-9 Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel

More information

6. Atomic and Nuclear Physics

6. Atomic and Nuclear Physics 6. Atomic and Nuclear Physics Chapter 6.2 Radioactivity From IB OCC, prepared by J. Domingues based on Tsokos Physics book Warm Up Define: nucleon atomic number mass number isotope. Radioactivity In 1896,

More information

Chapter 12: Nuclear Reaction

Chapter 12: Nuclear Reaction Chapter 12: Nuclear Reaction A nuclear reaction occurs when a nucleus is unstable or is being bombarded by a nuclear particle. The product of a nuclear reaction is a new nuclide with an emission of a nuclear

More information

Radioactivity. Radioactivity

Radioactivity. Radioactivity The Law of Radioactive Decay. 72 The law of radioactive decay. It turns out that the probability per unit time for any radioactive nucleus to decay is a constant, called the decay constant, lambda, ".

More information

Dating of ground water

Dating of ground water PART 16 Dating of ground water Introduction Why date? - to determine when recharge occurred - to determine groundwater velocities - to reconstruct regional flow patterns How to do this? - decay of radioactive

More information

What do all of these things have in Common?

What do all of these things have in Common? What do all of these things have in Common? What do all of these things have in Common? They all produce some form of radiation From E-Bay Nov. 29 th 2010 FITRITE RADIUM OUTFIT NOTE!!!!!NOTE!!!!! This

More information

Allowed beta decay May 18, 2017

Allowed beta decay May 18, 2017 Allowed beta decay May 18, 2017 The study of nuclear beta decay provides information both about the nature of the weak interaction and about the structure of nuclear wave functions. Outline Basic concepts

More information

Fission and Fusion Book pg cgrahamphysics.com 2016

Fission and Fusion Book pg cgrahamphysics.com 2016 Fission and Fusion Book pg 286-287 cgrahamphysics.com 2016 Review BE is the energy that holds a nucleus together. This is equal to the mass defect of the nucleus. Also called separation energy. The energy

More information

Notepack 19. AIM: How can we tell the age of rocks? Do Now: Regents Question: Put the layers of rock in order from oldest to youngest.

Notepack 19. AIM: How can we tell the age of rocks? Do Now: Regents Question: Put the layers of rock in order from oldest to youngest. Notepack 19 AIM: How can we tell the age of rocks? Do Now: Regents Question: Put the layers of rock in order from oldest to youngest. Geological Time Geological Time refers to time as it relates to the

More information

Nuclear Spectroscopy: Radioactivity and Half Life

Nuclear Spectroscopy: Radioactivity and Half Life Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.

More information

( ) c) Electron capture (inverse beta decay)

( ) c) Electron capture (inverse beta decay) c) Electron capture (inverse beta decay) A Z X N + e A Z 1 X N+1 +ν e ( ) Q EC = M P c 2 M D c 2 B en Atomic electron is captured by a proton. This process leaves the atom in an excited state: a vacancy

More information

Lecture 3: Radiometric Dating Simple Decay

Lecture 3: Radiometric Dating Simple Decay Lecture 3: Radiometric Dating Simple Decay The oldest known rocks on Earth: 4.28 billion years - Nuvvuagittuq belt region, N Quebec on the shores of Hudson Bay. O Neil et al., Science 321 (2008) 1828-1831.

More information

Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Experiment 10 1 Introduction Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Some radioactive isotopes formed billions of years ago have half-lives so long

More information

Review A Z. a particle. proton. neutron. electron e -1. positron. e +1. Mass Number Atomic Number. Element Symbol

Review A Z. a particle. proton. neutron. electron e -1. positron. e +1. Mass Number Atomic Number. Element Symbol Nuclear Chemistry 1 Review Atomic number (Z) = number of protons in nucleus Mass number (A) = number of protons + number of neutrons = atomic number (Z) + number of neutrons Mass Number Atomic Number A

More information

QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter

QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter QUIZ: Physics of Nuclear Medicine Atomic Structure, Radioactive Decay, Interaction of Ionizing Radiation with Matter 1. An atomic nucleus contains 39 protons and 50 neutrons. Its mass number (A) is a)

More information

The strong & weak nuclear forces

The strong & weak nuclear forces Phys 102 Lecture 27 The strong & weak nuclear forces 1 4 Fundamental forces of Nature Today Gravitational force (solar system, galaxies) Electromagnetic force (atoms, molecules) Strong force (atomic nuclei)

More information

Dating. AST111 Lecture 8a. Isotopic composition Radioactive dating

Dating. AST111 Lecture 8a. Isotopic composition Radioactive dating Dating Martian Lafayette Asteroid with patterns caused by the passaged through the atmosphere. Line on the fusion crust were caused by beads of molten rock. AST111 Lecture 8a Isotopic composition Radioactive

More information

FUNDAMENTALS OF PHYSICS SIXTH EDITION

FUNDAMENTALS OF PHYSICS SIXTH EDITION Halliday Resnick Walker FUNDAMENTALS OF PHYSICS SIXTH EDITION Selected Solutions Chapter 43 43.25 43.35 43.41 43.61 43.75 25. If a nucleus contains Z protons and N neutrons, its binding energy is E be

More information

[2] State in what form the energy is released in such a reaction.... [1]

[2] State in what form the energy is released in such a reaction.... [1] (a) The following nuclear reaction occurs when a slow-moving neutron is absorbed by an isotope of uranium-35. 0n + 35 9 U 4 56 Ba + 9 36Kr + 3 0 n Explain how this reaction is able to produce energy....

More information

Chapter 44 Solutions. So protons and neutrons are nearly equally numerous in your body, each contributing mass (say) 35 kg:

Chapter 44 Solutions. So protons and neutrons are nearly equally numerous in your body, each contributing mass (say) 35 kg: Chapter 44 Solutions *44. An iron nucleus (in hemoglobin) has a few more neutrons than protons, but in a typical water molecule there are eight neutrons and ten protons. So protons and neutrons are nearly

More information

Nuclear Chemistry Lecture Notes: I Radioactive Decay A. Type of decay: See table. B. Predicting Atomic Stability

Nuclear Chemistry Lecture Notes: I Radioactive Decay A. Type of decay: See table. B. Predicting Atomic Stability Nuclear Chemistry Lecture Notes: I Radioactive Decay A. Type of decay: See table Type Symbol Charge Mass (AMU) Effect on Atomic # Alpha α +2 4 decrease by 2 Beta β- -1 0 increase electron by 1 Beta β+

More information

Nuclear Shell model. C. Prediction of spins and Parities: GROUND RULES 1. Even-Even Nuclei. I π = 0 +

Nuclear Shell model. C. Prediction of spins and Parities: GROUND RULES 1. Even-Even Nuclei. I π = 0 + Nuclear Shell model C. Prediction of spins and Parities: GOUND ULES 1. Even-Even Nuclei I π = 0 + ULE: ll nucleon orbitals are filled pairwise, i.e., ν,l, j, m j state followed by ν, l, j, m j state NO

More information

Chapter 3 Radioactivity

Chapter 3 Radioactivity Chapter 3 Radioactivity Marie Curie 1867 1934 Discovered new radioactive elements Shared Nobel Prize in physics in 1903 Nobel Prize in Chemistry in 1911 Radioactivity Radioactivity is the spontaneous emission

More information

Ch. 18 Problems, Selected solutions. Sections 18.1

Ch. 18 Problems, Selected solutions. Sections 18.1 Sections 8. 8. (I) How many ion pairs are created in a Geiger counter by a 5.4-MeV alpha particle if 80% of its energy goes to create ion pairs and 30 ev (average in gases) is required per ion pair? Notice

More information

NOTES: 25.2 Nuclear Stability and Radioactive Decay

NOTES: 25.2 Nuclear Stability and Radioactive Decay NOTES: 25.2 Nuclear Stability and Radioactive Decay Why does the nucleus stay together? STRONG NUCLEAR FORCE Short range, attractive force that acts among nuclear particles Nuclear particles attract one

More information

Experiment Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Experiment Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Experiment 10 1 Introduction Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Some radioactive isotopes formed billions of years ago have half- lives so long

More information

Page 17a. Objective: We will identify different types of radioactive decay. Warm-up:

Page 17a. Objective: We will identify different types of radioactive decay. Warm-up: Page 17a Objective: We will identify different types of radioactive decay. Warm-up: What are the three subatomic particles? Where is each particle located in the atom? What is an isotope? Page 17a (again)

More information

Radioactivity Outcomes. Radioactivity Outcomes. Radiation

Radioactivity Outcomes. Radioactivity Outcomes. Radiation 1 Radioactivity Outcomes Describe the experimental evidence for there being three types of radiation. Discuss the nature and properties of each type. Solve problems about mass and atomic numbers in radioactive

More information

Activity: Atomic Number and Nucleon Number Radioactivity and Radioactive Decay

Activity: Atomic Number and Nucleon Number Radioactivity and Radioactive Decay Chapter 10 Nuclear Physics 10.1 Nuclear Structure and Stability 10.1.1 Atomic Number and Nucleon Number 10.2 Radioactivity and Radioactive Decay 10.2.1 Types of Radioactive Decay 10.2.2 Predicting the

More information

Lab 14. RADIOACTIVITY

Lab 14. RADIOACTIVITY Lab 14. RADIOACTIVITY 14.1. Guiding Question What are the properties of different types of nuclear radiation? How does nucelar decay proceed over time? 14.2. Equipment 1. ST360 Radiation Counter, G-M probe

More information

Chapter 17. Radioactivity and Nuclear Chemistry

Chapter 17. Radioactivity and Nuclear Chemistry Chapter 17 Radioactivity and Nuclear Chemistry The Discovery of Radioactivity (1896) Antoine-Henri Bequerel designed experiment to determine whether phophorescent minerals also gave off X-rays. Bequerel

More information

Nuclear Binding Energy

Nuclear Binding Energy Nuclear Binding Energy...increases almost linearly with A; average B/A about 8 MeV per nucleon nuclei most tightly bound around A=60 below A=60, we can release energy by nuclear fusion above A=60, we can

More information

Use the graph to show that, after a time of 500 s, about nuclei are decaying every second.

Use the graph to show that, after a time of 500 s, about nuclei are decaying every second. 1 The graph below shows the number of radioactive nuclei remaining in a sample of material against time. The radioactive isotope decays to a non-radioactive element. (a) Use the graph to show that, after

More information

21.3 Radioactive Decay

21.3 Radioactive Decay 1158 Chapter 21 Nuclear Chemistry 21.3 Radioactive Decay By the end of this section, you will be able to: Recognize common modes of radioactive decay Identify common particles and energies involved in

More information