12.744/ The Basic Rules, Nuclear Stability, Radioactive Decay and Radioactive Dating

Size: px
Start display at page:

Download "12.744/ The Basic Rules, Nuclear Stability, Radioactive Decay and Radioactive Dating"

Transcription

1 12.744/ The Basic Rules, Nuclear Stability, Radioactive Decay and Radioactive Dating What we see in the earth and oceans is the product of the "cosmic" abundance (i.e. the original) pattern of elements, and the chemical and physical processes that form and maintain the oceans and earth as whole. There is a very distinct flavour to the cosmic abundance of the elements that we can explain on the basis of their origin, and from the fundamental nature of nuclear structure and stability. There are four fundamental forces of nature, their respective strengths span 39 orders of magnitude 1. Strong nuclear (short range, between nucleons) Strength = 1 2. Electromagnetic (infinite, but shielded) Strength = Weak nuclear force (very short range between leptons, beta decay) Strength = Gravity (infinite range, cannot be shielded against) Strength = The two most significant advances in modern physics (and science in general) this century are relativity and quantum mechanics. The former provided a fundamental linkage between matter, energy and gravity. The latter rationalized atomic (and ultimately nuclear) structure, and the behaviour of subatomic particles. The two in combination played a fundamental role in building the foundations for our understanding of the cosmos around us, and its origins. Mass is energy, energy is mass: E=mc 2. What does this mean? One gram of matter yields the following amount of energy: ( 3 10 m / s) 10 J 2 10 cal 2 E = mc = 1 g The nuclear mass of hydrogen (i.e., a proton) is AMU. Combining four hydrogen atoms together to make a helium nucleus, it weighs AMU, rather than AM. The whole is lighter than the sum of the parts. This difference is liberated in the form of fusion energy. 12 m = AMU 10 cal That doesn't sound like much, but converting 1 gram of H 2 in this fashion yields a respectable calories. Nuclear stability and mass are related. More stable nuclei are heavier (binding energy is converted to mass) E=mc 2 so that 1 A.M.U. = 930 MeV. That is, 1 MeV is about 0.1% of an A.M.U. 1

2 You can calculate the total binding energy of the nucleus from its mass (using E=MC 2 ) and divide by the number of nucleons in the nucleus (neutrons and protons) to produce an average binding energy vs mass curve. The higher the number, the more stable the nucleus is. There are several factors affecting nuclear stability, many of which are reflected in the abundance curve: 1. attraction between nucleons, the more the merrier, so B.E. increases with A initially 2. spin pairing (odd/even) produces zigzag in B.E., and in cosmic abundances. Also, the abundance of stable isotopes favours even numbers: # Protons # Neutrons Atomic Number # of Stable Isotopes (Z) (N) (A) Even Even Even 156 Even Odd Odd 50 Odd Even Odd 48 Odd Odd Even 5 3. shell structure (magic numbers) shows preferred numbers (2,8,20,28,50,82, 126) with very high abundances for isotopes or elements with N or Z equal to those closed shell numbers. 4. surface tension (unrequited bonds): smaller nuclei are less stable because they have high surface/volume ratios. 5. coulomb repulsion works against larger nuclei, because you pay a price stuffing charge into a small volume. Although you always gain by adding more nucleons, you have to add protons and neutrons in roughly equal proportions. The coulomb repulsion gives an ultimate limit to nuclear size. The binding energy curve peaks at Fe, Ni region: these are the most stable nuclei. Neutrons, protons and isotopes Nuclei consist of a mix of neutrons and protons, roughly in equal proportions. There exists a valley of stability in the N vs. Z plot which drifts away from N=Z toward N>Z at higher masses. In general, the further away from this valley you get, the more unstable you become, and the shorter your half-life against decay. Radioactive decay (alpha, beta, gamma, & fission) The general form of a radioactive decay is that a parent nucleus transforms to a daughter with the emission or adsorption of one or more particles. All decays are quantum-mechanical transitions, and are thus characterized by a unique single energy. If there are only two daughter particles, then each will have a single energy. There is a general inverse relationship between the energy of decay, and the half-life. There are four basic kinds of radioactive decay, used to transition to lower energy (more stable states): 2

3 1. Alpha decay (alpha particles emitted only from the heaviest nuclei), da=-4, dz=-2. It is mono-energetic (although a nucleus could decay by a number of different alpha decays). Involves the strong nuclear force. There is a general inverse relationship between energy of decay and half-life. For an approximately factor of 3 range in energy, there is a 24 order of magnitude range (related to quantum-mechanical tunneling). Usually accompanied by a gamma decay when the daughter nucleus is created in an excited state. Even though an alpha decay has only a single energy, a parent nucleus can decay to a number of ground states in the daughter nucleus. 2. Beta decay (electrons/positrons) ejected from nuclei, da=0, dz=+-1. It is like a proton becomes a neutron, or vice versa. That is, the atomic number of the nucleus (number of protons plus neutrons) does not change. Beta decay involves the weak nuclear force. It is not mono-energetic, because it involves more than two particles, so there is an infinite number of ways that energy and momentum can be shared among the products. The third particle is a neutrino, which is very weakly interacting, has no charge, and probably has no mass. Despite its weak behaviour, neutrinos are very important particles for cosmology, and are the reason stars die. There is an inverse relationship between beta decay half life and energy, but has much more complex rules of decay associated with spin/parity differences between parent and daughter wave functions. 3. Gamma decay (photons) no isotope change, da=0, dz=0. It is the relaxation of excited state in the nucleus, usually as a de-excitation after another nuclear decay (e.g., alpha decay). It is mono-energetic (a quantum state change). The character of the emission (electric or magnetic, dipole or quadrupole, etc) is determined by the spin and parity differences between the initial and final wave functions. These rules also play a role in determining the half-life, in addition to the inverse relationship between half-life and energy. Unlike beta and alpha particles, which interact with matter very strongly because they are charged, photons are much more penetrating, and although they are not responsible for isotope changes, are often signatures of such changes. 4. Fission is the splitting of largest nuclei due to coulomb repulsion. This generally happens in nature very slowly, with half-lives usually many orders of magnitude greater than the age of the universe. However certain nuclei are susceptible to induced fission (usually from slow neutrons): e.g. 235 U. The nucleus, which behaves very much as a liquid drop, fragments asymmetrically, producing a large and a 3

4 small fragment. The split is statistical, never happening the same way. A two-humped mass distribution of fission products is produced. For U, the humps are centred around masses 90 and 130. Also, because the neutron/proton ratio is different at the high mass end, then the fragments are off the line of stability, and are therefore subject to beta decay. These beta decays produce characteristic isotope signatures, because some isotopes are "shielded" from production by isotopes in the way. Isotopes and radioactive decay Atoms consist of a central core or nucleus which contains the bulk of the atomic mass, surrounded by a cloud of electrons. Chemical reactions involve the outer cloud of electrons. Unionised atoms are electrically neutral, with the outer, negative electron cloud perfectly balanced by the inner, positive nucleus. The nucleus consists of an approximately equal number of neutrons and protons, collectively referred to as nucleons. Neutrons have a similar mass to protons, but have no charge. An unionised atom has an equal number of electrons and protons. The number of protons determines what element an atom is. For a given element (number of protons), the number of neutrons may vary, and are called isotopes. Not all combinations of neutrons and protons are allowed, and only a few are stable. The rest fall apart or decay more or less quickly, depending on how unstable they are. For example, Carbon has 2 stable isotopes o 12 C is more abundant (6 protons, 6 neutrons) o 13 C is less abundant (6 protons, 7 neutrons) Oxygen has 3 stable isotopes o 16 O is most abundant (8 protons, 8 neutrons) o 17 O is least abundant (8 protons, 9 neutrons) o 18 O is intermediate (8 protons, 10 neutrons) Fluorine has only 1 stable isotope ( 19 F) Tin has 10 stable isotopes A general rule is there is approximately equal numbers of neutrons and protons, but as you go to larger masses, you require more neutrons than protons for stability. Nuclear stability is governed by a combination of quantum mechanical rules, nuclear forces, and electrostatic charge. When these are violated, the nucleus is unstable. An unstable nucleus will decay to another isotope. The further it is away the happy line, the faster it will decay. The rate at which a nucleus decays is fixed by its internal properties, and is not affected by biological, chemical or physical conditions. There are three basic modes of radioactive decay. They are Alpha Decay: Emission of an alpha particle (bare 4 He nucleus), done by heavy nuclei only A+ N λ A+ N 2 4 AP A 2D+ 2He Beta Decay: Emission of an electron, a positron, or electron capture, done by many nuclei P D+ e P D+ e P+ e D A+ N λ A+ N A+ N λ A+ N + A+ N λ A+ N A A+ 1 A A 1 A A 1 Gamma Decay: Emission of a gamma ray (photon), usually as a result of alpha or beta decay. 4

5 The first one results in a change of atomic mass (the total number of neutrons and protons), the latter two do not. The first two result in a change in the element (i.e., number of protons in the nucleus). The last one does not. The Radioactive Decay Equations Activity Definition Radioactive dating dn dt = λn N = N e A = λc Radioactive decay rates are unaffected by physical, chemical or biological environmental factors 1. This constancy makes radioactivity a powerful and reliable tool for timing geochemical events and rates. Nature provides us with a variety of radioisotopes that we can use to study nature. These radioisotopes are either primordial (inherited from the material that makes up the earth) nucleogenic (produced directly or indirectly by the decay of other isotopes) cosmogenic (produced by cosmic rays bombarding the earth) anthropogenic (produced by nuclear bombs, accelerators, or reactors) Primordial radioisotopes obviously will have very long half-lives, generally in excess of many millions of years. There are three basic approaches to dating. All make use of the immutability of the radioactive decay constant, and rely on the radioactive decay equation somehow. Simple Dating: Simple dating requires that you know what the original concentration, activity, or isotopic ratio of the radioactive species was. Thus, if you have the radioactive decay equation: λt N = N 0 e By dividing both sides by N 0 and taking the natural logarithm of both sides, you get ln N N 0 = λ t where we have used the fact that the natural log of e x 1 is just x. And noting that ln( x) = ln we x finally get N = 0 t λ 1 ln N In the above equation, N can be either the number of radioactive atoms, its concentration, or the isotopic ratio of the radioisotope relative to a stable isotope of the same element. 1 This is because the nuclear forces are much, much stronger than the environmental forces that we are accustomed to. For example, the force that binds protons and neutrons in the nucleus is times stronger than gravity! 0 λt 5

6 The most famous example of simple dating is Radiocarbon Dating. This involves the use of natural radiocarbon ( 14 C), which has a half-life of 5730 years and is produced in the atmosphere by cosmic rays. The bombardment of the atmosphere by cosmic rays maintains a global inventory of about 80 tonnes of natural radiocarbon. This radiocarbon is distributed between the atmosphere, the ocean, and the land biosphere. Once a sample (for example a fossil bone, or a water mass) is isolated from the modern carbon pool, the radiocarbon decays. We normally use the ratio of radiocarbon to normal carbon ( 12 C) to account for chemical or biological processes that move carbon around. Consider the radiocarbon age of the deep ocean. The average radiocarbon isotope ratio ( 14 C/ 12 C) for the deep ocean is about 83% of the atmospheric ratio. Using our knowledge of the half-life, and the simple dating equation, we obtain 1 t = 8267 ln = 1540 years 0.83 This is about the right time-scale for the grand oceanic overturning, but seems just a little long. There is a reason for this, and it s related to the very slow gas exchange rate for carbon isotopes. But if you want the full answer, you ll have to wait for a later lecture! Parent-Daughter Dating: When you don t know what the initial radioisotope activity should be, either due to spatial or temporal variations in the isotope, things become more difficult. However, when a radioisotope decays to a stable isotope, and that isotope is retained in the sample, we can reconstruct what the initial activity or concentration was. If we have the parent (P) decaying to the daughter (D) P λ D we rewrite the radioactive decay equation as P = 0 P e λ t but since the daughter is retained, then it is just the difference between the initial and final parent populations D= P0 P P0 = P+ D 1 P0 1 P+ D 1 D t = ln = ln = ln 1+ λ P λ P λ P Note that although this eliminates the need for knowing the initial parent radioisotope, you must assume that no biogeochemical processes have acted to separate the daughter and parent during this aging process. That is, the system is assumed to be closed. Secular Equilibrium and Disequilibrium Dating: The heaviest radioisotopes typically do not decay to stable isotopes right away. They generally decay to other radioisotopes that in turn decay, forming a decay chain that ultimately ends up with stable isotopes. All the natural decay chains (there are 4 of them) lead to Pb isotopes. 6

7 Given enough time, these chains reach secular equilibrium. That is, for a given radioisotope in the middle of the chain, its concentration (and hence activity) will evolve until the rate at which it is being produced (from the decay of its parent radioisotope) exactly matches the rate at which it is decaying. That is, the abundances of the isotopes will adjust so that A daughter = A parent Now the important point to note is that with any radioactive decay (either α or β) the radioisotope changes its number of protons, and hence becomes another element. This may result in a fundamental change in the isotope s chemical or biological behaviour. Such changes can lead to a susceptibility to chemical or biological fractionation which can drive the system away from secular disequilibrium. There are two basic tools that arise from this. The first is that an event, such as formation of magma from a parent igneous rock, or crystallisation of a substance from solution results in a sudden generation of disequilibrium that will then tend back toward secular equilibrium. The equations describing this relaxation are complicated and beyond the scope of this course, but they can be used to determine how long it has been since the event has occurred. The second involves the fact that the chain may be held out of equilibrium by a competing chemical or biological process. We can then use the immutable radioactive decay constants to determine the rate of the process responsible. A classic example of this is U-Th disequilibrium in the ocean. Uranium is homogeneously distributed in the ocean, because it is made soluble by carbonate complexation. However, 238 U is radioactive, with a half-life of 4.5 x 10 9 years. It decays to 234 Th, which has a half-life of about 24 days. Ordinarily, the two should rapidly approach secular equilibrium, with A 234 = A 238 However, unlike its parent, 234 Th (and indeed Thorium as an element) is extremely particle reactive, and adsorbs rapidly onto biologically produced particles in the ocean. The net result is that the A 234 is generally less than A 238 because there are two pathways of losing 234 Th from seawater: radioactive decay, and particle adsorption. By balancing production and loss, we have: production = loss A = λ C234 kc234 7

8 where the first term on the RHS is the radioactive decay, and the second is the adsorption rate (here assumed to be proportional to the concentration of the Thorium in seawater). The first term is the 234 Th activity, and using its definition, we can get k adsorption A238 = 1 λ A234 If you think about this equation, it should make sense. 8

Chapter 22 - Nuclear Chemistry

Chapter 22 - Nuclear Chemistry Chapter - Nuclear Chemistry - The Nucleus I. Introduction A. Nucleons. Neutrons and protons B. Nuclides. Atoms identified by the number of protons and neutrons in the nucleus 8 a. radium-8 or 88 Ra II.

More information

Welcome to Logistics. Welcome to Lecture 1. Welcome to Resources. Welcome to : Grading

Welcome to Logistics. Welcome to Lecture 1. Welcome to Resources. Welcome to : Grading Welcome to 12.744 Logistics and organizational Course Objectives and Layout What you can expect, and what is expected of you Resources Introduction to isotopes, nuclear structure, stability, and radioactivity

More information

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications

Alta Chemistry CHAPTER 25. Nuclear Chemistry: Radiation, Radioactivity & its Applications CHAPTER 25 Nuclear Chemistry: Radiation, Radioactivity & its Applications Nuclear Chemistry Nuclear Chemistry deals with changes in the nucleus The nucleus of an atom contains Protons Positively Charged

More information

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology 1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology Reading (all from White s Notes) Lecture 1: Introduction And Physics Of The Nucleus: Skim Lecture 1: Radioactive Decay- Read all Lecture 3:

More information

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart?

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? Question 32.1 The Nucleus There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? a) Coulomb repulsive force doesn t act inside the nucleus b) gravity overpowers the Coulomb repulsive

More information

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity Physics 1161: Lecture 25 Nuclear Binding, Radioactivity Sections 32-1 32-9 Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel

More information

Nuclear Decays. Alpha Decay

Nuclear Decays. Alpha Decay Nuclear Decays The first evidence of radioactivity was a photographic plate, wrapped in black paper and placed under a piece of uranium salt by Henri Becquerel on February 26, 1896. Like many events in

More information

Lecture Outlines Chapter 32. Physics, 3 rd Edition James S. Walker

Lecture Outlines Chapter 32. Physics, 3 rd Edition James S. Walker Lecture Outlines Chapter 32 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in

More information

From Last Time. Stronger than coulomb force, But much shorter range than coulomb force.

From Last Time. Stronger than coulomb force, But much shorter range than coulomb force. From Last Time Nucleus is small, tightly bound system of protons & neutrons. Proton number determines the element. Different isotopes have different # neutrons. Some isotopes unstable, radioactively decay

More information

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983)

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983) Fundamental Forces Force Relative Strength Range Carrier Observed? Gravity 10-39 Infinite Graviton No Weak 10-6 Nuclear W+ W- Z Yes (1983) Electromagnetic 10-2 Infinite Photon Yes (1923) Strong 1 Nuclear

More information

Chemistry 1000 Lecture 3: Nuclear stability. Marc R. Roussel

Chemistry 1000 Lecture 3: Nuclear stability. Marc R. Roussel Chemistry 1000 Lecture 3: Nuclear stability Marc R. Roussel Radioactive decay series Source: Wikimedia commons, http://commons.wikimedia.org/wiki/file: Decay_Chain_Thorium.svg Forces between nucleons Electrostatic

More information

Radioisotopes. alpha. Unstable isotope. stable. beta. gamma

Radioisotopes. alpha. Unstable isotope. stable. beta. gamma Nuclear Chemistry Nuclear Chemistry Nucleus of an atom contains protons and neutrons Strong forces (nuclear force) hold nucleus together Protons in nucleus have electrostatic repulsion however, strong

More information

Particles involved proton neutron electron positron gamma ray 1

Particles involved proton neutron electron positron gamma ray 1 TOPIC : Nuclear and radiation chemistry Nuclide - an atom with a particular mass number and atomic number Isotopes - nuclides with the same atomic number (Z) but different mass numbers (A) Notation A Element

More information

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability Basic Nuclear Theory Lecture 1 The Atom and Nuclear Stability Introduction Nuclear power is made possible by energy emitted from either nuclear fission or nuclear fusion. Current nuclear power plants utilize

More information

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel 1852-1908 Wilhelm Roentgen 1845-1923 Nuclear Physics A Z Nucleus =

More information

Chapter 10 - Nuclear Physics

Chapter 10 - Nuclear Physics The release of atomic energy has not created a new problem. It has merely made more urgent the necessity of solving an existing one. -Albert Einstein David J. Starling Penn State Hazleton PHYS 214 Ernest

More information

Introduction to Nuclear Engineering. Ahmad Al Khatibeh

Introduction to Nuclear Engineering. Ahmad Al Khatibeh Introduction to Nuclear Engineering Ahmad Al Khatibeh CONTENTS INTRODUCTION (Revision) RADIOACTIVITY Radioactive Decay Rates Units of Measurement for Radioactivity Variation of Radioactivity Over Time.

More information

The previous images display some of our hopes and fears associated with nuclear radiation. We know the images, and some of the uses, but what is Nuclear Radiation and where does it come from? Nuclide In

More information

UNIT 13: NUCLEAR CHEMISTRY

UNIT 13: NUCLEAR CHEMISTRY UNIT 13: NUCLEAR CHEMISTRY REVIEW: ISOTOPE NOTATION An isotope notation is written as Z A X, where X is the element, A is the mass number (sum of protons and neutrons), and Z is the atomic number. For

More information

Chapter Three (Nuclear Radiation)

Chapter Three (Nuclear Radiation) Al-Mustansiriyah University College of Science Physics Department Fourth Grade Nuclear Physics Dr. Ali A. Ridha Chapter Three (Nuclear Radiation) (3-1) Nuclear Radiation Whenever a nucleus can attain a

More information

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions

Chapter 21. Preview. Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Preview Lesson Starter Objectives Mass Defect and Nuclear Stability Nucleons and Nuclear Stability Nuclear Reactions Section 1 The Nucleus Lesson Starter Nuclear reactions result in much larger energy

More information

Preview. Subatomic Physics Section 1. Section 1 The Nucleus. Section 2 Nuclear Decay. Section 3 Nuclear Reactions. Section 4 Particle Physics

Preview. Subatomic Physics Section 1. Section 1 The Nucleus. Section 2 Nuclear Decay. Section 3 Nuclear Reactions. Section 4 Particle Physics Subatomic Physics Section 1 Preview Section 1 The Nucleus Section 2 Nuclear Decay Section 3 Nuclear Reactions Section 4 Particle Physics Subatomic Physics Section 1 TEKS The student is expected to: 5A

More information

1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA PLUS DECAY 1.5 NEUTRON EMISSION 1.6 SPONTANEOUS FISSION

1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA PLUS DECAY 1.5 NEUTRON EMISSION 1.6 SPONTANEOUS FISSION Chapter NP-3 Nuclear Physics Decay Modes and Decay Rates TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 RADIOACTIVE DECAY 1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA

More information

Chapter 44. Nuclear Structure

Chapter 44. Nuclear Structure Chapter 44 Nuclear Structure Milestones in the Development of Nuclear Physics 1896: the birth of nuclear physics Becquerel discovered radioactivity in uranium compounds Rutherford showed the radiation

More information

Chemistry: The Central Science. Chapter 21: Nuclear Chemistry

Chemistry: The Central Science. Chapter 21: Nuclear Chemistry Chemistry: The Central Science Chapter 21: Nuclear Chemistry A nuclear reaction involves changes in the nucleus of an atom Nuclear chemistry the study of nuclear reactions, with an emphasis in their uses

More information

Phys102 Lecture 29, 30, 31 Nuclear Physics and Radioactivity

Phys102 Lecture 29, 30, 31 Nuclear Physics and Radioactivity Phys10 Lecture 9, 30, 31 Nuclear Physics and Radioactivity Key Points Structure and Properties of the Nucleus Alpha, Beta and Gamma Decays References 30-1,,3,4,5,6,7. Atomic Structure Nitrogen (N) Atom

More information

Introduction to Nuclear Physics and Nuclear Decay

Introduction to Nuclear Physics and Nuclear Decay Introduction to Nuclear Physics and Nuclear Decay Larry MacDonald macdon@uw.edu Nuclear Medicine Basic Science Lectures September 6, 2011 toms Nucleus: ~10-14 m diameter ~10 17 kg/m 3 Electron clouds:

More information

2007 Fall Nuc Med Physics Lectures

2007 Fall Nuc Med Physics Lectures 2007 Fall Nuc Med Physics Lectures Tuesdays, 9:30am, NN203 Date Title Lecturer 9/4/07 Introduction to Nuclear Physics RS 9/11/07 Decay of radioactivity RS 9/18/07 Interactions with matter RM 9/25/07 Radiation

More information

NUCLEI, RADIOACTIVITY AND NUCLEAR REACTIONS

NUCLEI, RADIOACTIVITY AND NUCLEAR REACTIONS NUCLEI, RADIOACTIVITY AND NUCLEAR REACTIONS VERY SHORT ANSWER QUESTIONS Q-1. Which of the two is bigger 1 kwh or 1 MeV? Q-2. What should be the approximate minimum energy of a gamma ray photon for pair

More information

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

Physics 142 Modern Physics 2 Page 1. Nuclear Physics

Physics 142 Modern Physics 2 Page 1. Nuclear Physics Physics 142 Modern Physics 2 Page 1 Nuclear Physics The Creation of the Universe was made possible by a grant from Texas Instruments. Credit on a PBS Program Overview: the elements are not elementary The

More information

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich LECTURE 25 NUCLEAR STRUCTURE AND STABILITY Instructor: Kazumi Tolich Lecture 25 2 30.1 Nuclear structure Isotopes Atomic mass 30.2 Nuclear stability Biding energy 30.3 Forces and energy in the nucleus

More information

NUCLEI. Atomic mass unit

NUCLEI. Atomic mass unit 13 NUCLEI Atomic mass unit It is a unit used to express the mass of atoms and particles inside it. One atomic mass unit is the mass of atom. 1u = 1.660539 10. Chadwick discovered neutron. The sum of number

More information

Unit 12: Nuclear Chemistry

Unit 12: Nuclear Chemistry Unit 12: Nuclear Chemistry 1. Stability of isotopes is based on the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay, emitting radiation.

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity Structure and Properties of the Nucleus Nucleus is made of protons and neutrons Proton has positive charge: Neutron is electrically neutral: Neutrons and protons are collectively

More information

Nice Try. Introduction: Development of Nuclear Physics 20/08/2010. Nuclear Binding, Radioactivity. SPH4UI Physics

Nice Try. Introduction: Development of Nuclear Physics 20/08/2010. Nuclear Binding, Radioactivity. SPH4UI Physics SPH4UI Physics Modern understanding: the ``onion picture Nuclear Binding, Radioactivity Nucleus Protons tom and neutrons Let s see what s inside! 3 Nice Try Introduction: Development of Nuclear Physics

More information

Nuclear Chemistry Lecture Notes: I Radioactive Decay A. Type of decay: See table. B. Predicting Atomic Stability

Nuclear Chemistry Lecture Notes: I Radioactive Decay A. Type of decay: See table. B. Predicting Atomic Stability Nuclear Chemistry Lecture Notes: I Radioactive Decay A. Type of decay: See table Type Symbol Charge Mass (AMU) Effect on Atomic # Alpha α +2 4 decrease by 2 Beta β- -1 0 increase electron by 1 Beta β+

More information

Chapter 30 Nuclear Physics and Radioactivity

Chapter 30 Nuclear Physics and Radioactivity Chapter 30 Nuclear Physics and Radioactivity 30.1 Structure and Properties of the Nucleus Nucleus is made of protons and neutrons Proton has positive charge: Neutron is electrically neutral: 30.1 Structure

More information

We completed our discussion of nuclear modeling with a discussion of the liquid drop and shell models We began discussing radioactivity

We completed our discussion of nuclear modeling with a discussion of the liquid drop and shell models We began discussing radioactivity Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Nuclear Physics: Fission and Fusion (11.7) SteveSekula, 19 April 010 (created 1 April 010) Review no tags We completed our

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 18 Modern Physics Nuclear Physics Nuclear properties Binding energy Radioactivity The Decay Process Natural Radioactivity Last lecture: 1. Quantum physics Electron Clouds

More information

A. Incorrect! Do not confuse Nucleus, Neutron and Nucleon. B. Incorrect! Nucleon is the name given to the two particles that make up the nucleus.

A. Incorrect! Do not confuse Nucleus, Neutron and Nucleon. B. Incorrect! Nucleon is the name given to the two particles that make up the nucleus. AP Physics - Problem Drill 24: Nuclear Physics 1. Identify what is being described in each of these statements. Question 01 (1) It is held together by the extremely short range Strong force. (2) The magnitude

More information

Nuclear Chemistry. Mass Defect. E=mc 2. Radioactivity. Types of Radiation. Other Nuclear Particles. Nuclear Reactions vs. Normal Chemical Changes

Nuclear Chemistry. Mass Defect. E=mc 2. Radioactivity. Types of Radiation. Other Nuclear Particles. Nuclear Reactions vs. Normal Chemical Changes 1 Nuclear Chemistry Mass Defect 4 Some of the mass can be converted into energy Shown by a very famous equation! E=mc 2 Energy Mass Speed of light Radioactivity 2 Types of Radiation 5 One of the pieces

More information

Chapter 25. Nuclear Chemistry. Types of Radiation

Chapter 25. Nuclear Chemistry. Types of Radiation Chapter 25 Nuclear Chemistry Chemical Reactions 1. Bonds are broken and formed 2. Atoms may rearrange, but remain unchanged 3. Involve only valence electrons 4. Small energy changes 5. Reaction rate is

More information

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom Basic science A knowledge of basic physics is essential to understanding how radiation originates and behaves. This chapter works through what an atom is; what keeps it stable vs. radioactive and unstable;

More information

Nuclear Physics and Nuclear Reactions

Nuclear Physics and Nuclear Reactions Slide 1 / 33 Nuclear Physics and Nuclear Reactions The Nucleus Slide 2 / 33 Proton: The charge on a proton is +1.6x10-19 C. The mass of a proton is 1.6726x10-27 kg. Neutron: The neutron is neutral. The

More information

Nuclear Medicine Treatments and Clinical Applications

Nuclear Medicine Treatments and Clinical Applications INAYA MEDICAL COLLEGE (IMC) RAD 243- LECTURE 4 Nuclear Medicine Treatments and Clinical Applications DR. MOHAMMED MOSTAFA EMAM References "Advancing Nuclear Medicine Through Innovation". Committee on State

More information

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei.

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei. Nucleus: From the Last Time System of and neutrons bound by the strong force Proton number determines the element. Different isotopes have different # neutrons. Stable isotopes generally have similar number

More information

Nuclear Physics Fundamentals and Application Prof. H.C. Verma Department of Physics Indian Institute of Technology, Kanpur

Nuclear Physics Fundamentals and Application Prof. H.C. Verma Department of Physics Indian Institute of Technology, Kanpur Nuclear Physics Fundamentals and Application Prof. H.C. Verma Department of Physics Indian Institute of Technology, Kanpur Lecture - 34 Nuclear fission of uranium So, we talked about fission reactions

More information

Describe the structure of the nucleus Calculate nuclear binding energies Identify factors affecting nuclear stability

Describe the structure of the nucleus Calculate nuclear binding energies Identify factors affecting nuclear stability Atomic and Nuclear Structure George Starkschall, Ph.D. Lecture Objectives Describe the atom using the Bohr model Identify the various electronic shells and their quantum numbers Recall the relationship

More information

LECTURE 23 NUCLEI. Instructor: Kazumi Tolich

LECTURE 23 NUCLEI. Instructor: Kazumi Tolich LECTURE 23 NUCLEI Instructor: Kazumi Tolich Lecture 23 2 Reading chapter 32.1 to 32.2 Nucleus Radioactivity Mass and energy 3 The famous equation by Einstein tells us that mass is a form of energy. E =

More information

Nuclear forces and Radioactivity. Two forces are at work inside the nucleus of an atom

Nuclear forces and Radioactivity. Two forces are at work inside the nucleus of an atom Nuclear forces and Radioactivity Two forces are at work inside the nucleus of an atom Forces act in opposing directions Electrostatic repulsion: pushes protons apart Strong nuclear force: pulls protons

More information

Introduction to Ionizing Radiation

Introduction to Ionizing Radiation Introduction to Ionizing Radiation Bob Curtis OSHA Salt Lake Technical Center Supplement to Lecture Outline V. 10.02 Basic Model of a Neutral Atom Electrons(-) orbiting nucleus of protons(+) and neutrons.

More information

Chapter IV: Radioactive decay

Chapter IV: Radioactive decay Chapter IV: Radioactive decay 1 Summary 1. Law of radioactive decay 2. Decay chain/radioactive filiation 3. Quantum description 4. Types of radioactive decay 2 History Radioactivity was discover in 1896

More information

Atoms have two separate parts. The nucleus and the electron cloud.

Atoms have two separate parts. The nucleus and the electron cloud. Name Ch. 5 - Atomic Structure Pre-AP Modern Atomic Theory All atoms are made of three subatomic (smaller than the atom) particles: the protons, the electrons and the neutrons. (P.E.N. s) There are particles

More information

Chapter 28 Lecture. Nuclear Physics Pearson Education, Inc.

Chapter 28 Lecture. Nuclear Physics Pearson Education, Inc. Chapter 28 Lecture Nuclear Physics Nuclear Physics How are new elements created? What are the natural sources of ionizing radiation? How does carbon dating work? Be sure you know how to: Use the right-hand

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 37 Modern Physics Nuclear Physics Radioactivity Nuclear reactions http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 29 1 Lightning Review Last lecture: 1. Nuclear

More information

The number of protons in the nucleus is known as the atomic number Z, and determines the chemical properties of the element.

The number of protons in the nucleus is known as the atomic number Z, and determines the chemical properties of the element. I. NUCLEAR PHYSICS I.1 Atomic Nucleus Very briefly, an atom is formed by a nucleus made up of nucleons (neutrons and protons) and electrons in external orbits. The number of electrons and protons is equal

More information

Thursday, April 23, 15. Nuclear Physics

Thursday, April 23, 15. Nuclear Physics Nuclear Physics Some Properties of Nuclei! All nuclei are composed of protons and neutrons! Exception is ordinary hydrogen with just a proton! The atomic number, Z, equals the number of protons in the

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 21 Study Guide Concepts 1. There are several modes of radioactive decay: (1) alpha (α) decay, (2) beta (β) decay, (3) gamma (γ)

More information

NUCLEAR PHYSICS AND RADIOACTIVITY

NUCLEAR PHYSICS AND RADIOACTIVITY CHAPTER 31 NUCLEAR PHYSICS AND RADIOACTIVITY CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION Isotopes are nuclei that contain the same number of protons, but a different number of neutrons. A material is

More information

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences King Saud University College of Applied Studies and Community Service Department of Natural Sciences Radioactivity General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Radioactive Decay

More information

Dr. Claudia Benitez-Nelson. University of South Carolina

Dr. Claudia Benitez-Nelson. University of South Carolina Dr. Claudia Benitez-Nelson University of South Carolina cbnelson@geol.sc.edu Understanding The Basics of Radioactivity In order to understand how radionuclides can be used in our environment, we must first

More information

Unit 6 Nuclear Radiation Parent Guide. What is radioactivity and why are things radioactive?

Unit 6 Nuclear Radiation Parent Guide. What is radioactivity and why are things radioactive? Unit 6 Nuclear Radiation Parent Guide What is radioactivity and why are things radioactive? The nucleus of an atom is comprised of subatomic particles called protons and neutrons. Protons have a positive

More information

Year 12 Notes Radioactivity 1/5

Year 12 Notes Radioactivity 1/5 Year Notes Radioactivity /5 Radioactivity Stable and Unstable Nuclei Radioactivity is the spontaneous disintegration of certain nuclei, a random process in which particles and/or high-energy photons are

More information

CHAPTER 19 THE ATOMIC NUCLEUS NUCLEAR STRUCTURE The nucleus consists of protons and neutrons. A protonis a positively charged particle having mass 1.6726 x 10(-27) kg and charge 1.6 x 10(-19) coulomb.

More information

Nuclear Spectroscopy: Radioactivity and Half Life

Nuclear Spectroscopy: Radioactivity and Half Life Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.

More information

A is called the mass number gives, roughly, the mass of the nucleus or atom in atomic mass units = amu = u

A is called the mass number gives, roughly, the mass of the nucleus or atom in atomic mass units = amu = u 5/5 A is called the mass number gives, roughly, the mass of the nucleus or atom in atomic mass units = amu = u The number of neutrons in the nucleus is given by the symbol N. Clearly, N = A Z. Isotope:

More information

Chapter 12: Nuclear Reaction

Chapter 12: Nuclear Reaction Chapter 12: Nuclear Reaction A nuclear reaction occurs when a nucleus is unstable or is being bombarded by a nuclear particle. The product of a nuclear reaction is a new nuclide with an emission of a nuclear

More information

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. In this chapter we will look at two types of nuclear reactions. 1 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building.

Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building. Nuclear Physics PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html Periodic table of elements We saw that the periodic table of elements can

More information

Radioactivity pp Topic 9: Nuclear Physics Ch. 10. Radioactivity. Radioactivity

Radioactivity pp Topic 9: Nuclear Physics Ch. 10. Radioactivity. Radioactivity Topic 9: Nuclear Physics Ch. 10 pp.244-249 results from radioactive decay, which is the process in which unstable atomic nuclei transform and emit radiation. has existed longer than the human race. Unstable

More information

Nuclear Binding Energy

Nuclear Binding Energy Nuclear Energy Nuclei contain Z number of protons and (A - Z) number of neutrons, with A the number of nucleons (mass number) Isotopes have a common Z and different A The masses of the nucleons and the

More information

Atoms and Nuclear Chemistry. Atoms Isotopes Calculating Average Atomic Mass Radioactivity

Atoms and Nuclear Chemistry. Atoms Isotopes Calculating Average Atomic Mass Radioactivity Atoms and Nuclear Chemistry Atoms Isotopes Calculating Average Atomic Mass Radioactivity Atoms An atom is the smallest particle of an element that has all of the properties of that element. Composition

More information

Chapter 4. Atomic Structure

Chapter 4. Atomic Structure Chapter 4 Atomic Structure Warm Up We have not discussed this material, what do you know already?? What is an atom? What are electron, neutrons, and protons? Draw a picture of an atom from what you know

More information

Introduction to Nuclear Reactor Physics

Introduction to Nuclear Reactor Physics Introduction to Nuclear Reactor Physics J. Frýbort, L. Heraltová Department of Nuclear Reactors 19 th October 2017 J. Frýbort, L. Heraltová (CTU in Prague) Introduction to Nuclear Reactor Physics 19 th

More information

SOURCES of RADIOACTIVITY

SOURCES of RADIOACTIVITY Section 9: SOURCES of RADIOACTIVITY This section briefly describes various sources of radioactive nuclei, both naturally occurring and those produced artificially (man-made) in, for example, reactors or

More information

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 2.3 to 2.6

CHEMISTRY Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 2.3 to 2.6 CHEMISTRY 1000 Topic #1: Atomic Structure and Nuclear Chemistry Fall 2017 Dr. Susan Findlay See Exercises 2.3 to 2.6 Balancing Nuclear Reactions mass number (A) atomic number (Z) 12 6 C In an ordinary

More information

Nuclear Binding, Radioactivity

Nuclear Binding, Radioactivity Physics 102: Lecture 28 Nuclear Binding, Radioactivity Physics 102: Lecture 27, Slide 1 Recall: Nuclear Physics A Z 6 3 Li Nucleus = Protons+ Neutrons nucleons Z = proton number (atomic number) Gives chemical

More information

and have low penetrating power) Alpha particles are released through alpha decay. Beta Particles: An electron that comes from a nucleus through

and have low penetrating power) Alpha particles are released through alpha decay. Beta Particles: An electron that comes from a nucleus through TOPIC 13: Nuclear Chemistry 1. When the atomic nucleus of one element is changed into the nucleus of a different element, the reaction is called transmutation. Stability of a Nucleus: Any element containing

More information

Decay Mechanisms. The laws of conservation of charge and of nucleons require that for alpha decay, He + Q 3.1

Decay Mechanisms. The laws of conservation of charge and of nucleons require that for alpha decay, He + Q 3.1 Decay Mechanisms 1. Alpha Decay An alpha particle is a helium-4 nucleus. This is a very stable entity and alpha emission was, historically, the first decay process to be studied in detail. Almost all naturally

More information

Unit 2 Exam - Atomic Structure and Nuclear

Unit 2 Exam - Atomic Structure and Nuclear 1. The atomic number of an atom is always equal to the total number of. neutrons in the nucleus. protons in the nucleus 5. The mass number of an atom is equal to the number of. neutrons, only. protons,

More information

NOTES: 25.2 Nuclear Stability and Radioactive Decay

NOTES: 25.2 Nuclear Stability and Radioactive Decay NOTES: 25.2 Nuclear Stability and Radioactive Decay Why does the nucleus stay together? STRONG NUCLEAR FORCE Short range, attractive force that acts among nuclear particles Nuclear particles attract one

More information

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions.

Nuclear Chemistry. Radioactivity. In this chapter we will look at two types of nuclear reactions. 1 Nuclear Chemistry In this chapter we will look at two types of nuclear reactions. Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off radiation. Nuclear bombardment

More information

Nuclear Chemistry Notes

Nuclear Chemistry Notes Nuclear Chemistry Notes Definitions Nucleons: Subatomic particles in the nucleus : protons and neutrons Radionuclides: Radioactive nuclei. Unstable nuclei that spontaneously emit particles and electromagnetic

More information

Chapter 21

Chapter 21 Chapter 21 http://youtu.be/kwasz59f8ga Nuclear reactions involve the nucleus The nucleus opens, and protons and neutrons are rearranged. The opening of the nucleus releases a tremendous amount of energy

More information

D) g. 2. In which pair do the particles have approximately the same mass?

D) g. 2. In which pair do the particles have approximately the same mass? 1. A student constructs a model for comparing the masses of subatomic particles. The student selects a small, metal sphere with a mass of gram to represent an electron. A sphere with which mass would be

More information

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved.

Chapter 37. Nuclear Chemistry. Copyright (c) 2011 by Michael A. Janusa, PhD. All rights reserved. Chapter 37 Nuclear Chemistry Copyright (c) 2 by Michael A. Janusa, PhD. All rights reserved. 37. Radioactivity Radioactive decay is the process in which a nucleus spontaneously disintegrates, giving off

More information

Structure of the Nuclear Atom

Structure of the Nuclear Atom Structure of the Nuclear Atom I. The II. A. The is the smallest particle of an element that retains its of the element. History of the Atom A. Democritus 1. Democritus (460 B.C. 370 B.C) was the first

More information

SAVE PAPER AND INK!!!

SAVE PAPER AND INK!!! SAVE PAPER AND INK!!! When you print out the notes on PowerPoint, print "Handouts" instead of "Slides" in the print setup. Also, turn off the backgrounds (Tools>Options>Print>UNcheck "Background Printing")!

More information

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences King Saud University College of Applied Studies and Community Service Department of Natural Sciences Radioactivity General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Radioactive Decay

More information

THE NUCLEUS OF AN ATOM

THE NUCLEUS OF AN ATOM VISUAL PHYSICS ONLINE THE NUCLEUS OF AN ATOM Models of the atom positive charge uniformly distributed over a sphere J. J. Thomson model of the atom (1907) ~2x10-10 m plum-pudding model: positive charge

More information

Unit 1 Atomic Structure

Unit 1 Atomic Structure Unit 1 Atomic Structure Defining the Atom I. Atomic Theory A. Modern Atomic Theory 1. All matter is made up of very tiny particles called atoms 2. Atoms of the same element are chemically alike 3. Individual

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 2 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 2 1 / 44 Outline 1 Introduction 2 Standard Model 3 Nucleus 4 Electron István Szalai

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Nuclear Reactions in Stellar Interiors Binding Energy Coulomb Barrier Penetration Hydrogen Burning Reactions

More information

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus Section 1 The Nucleus Preview Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem Section 1 The Nucleus Objectives Identify the properties of the nucleus of an atom. Explain

More information

L-35 Modern Physics-3 Nuclear Physics 29:006 FINAL EXAM. Structure of the nucleus. The atom and the nucleus. Nuclear Terminology

L-35 Modern Physics-3 Nuclear Physics 29:006 FINAL EXAM. Structure of the nucleus. The atom and the nucleus. Nuclear Terminology 9:006 FINAL EXAM L-5 Modern Physics- Nuclear Physics The final exam is on Monday MAY 7:0 AM - 9:0 AM in W90 CB The FE is not cumulative, and will cover lectures through 6. (50 questions) The last regular

More information

Binding Energy. Bởi: OpenStaxCollege

Binding Energy. Bởi: OpenStaxCollege Binding Energy Bởi: OpenStaxCollege The more tightly bound a system is, the stronger the forces that hold it together and the greater the energy required to pull it apart. We can therefore learn about

More information

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of?

Nuclear Physics Questions. 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? Nuclear Physics Questions 1. What particles make up the nucleus? What is the general term for them? What are those particles composed of? 2. What is the definition of the atomic number? What is its symbol?

More information

Atomic Quantum number summary. From last time. Na Optical spectrum. Another possibility: Stimulated emission. How do atomic transitions occur?

Atomic Quantum number summary. From last time. Na Optical spectrum. Another possibility: Stimulated emission. How do atomic transitions occur? From last time Hydrogen atom Multi-electron atoms This week s honors lecture: Prof. Brad Christian, Positron Emission Tomography Course evaluations next week Tues. Prof Montaruli Thurs. Prof. Rzchowski

More information

Nuclear Chemistry. The Nucleus. Isotopes. Slide 1 / 43. Slide 2 / 43. Slide 3 / 43

Nuclear Chemistry. The Nucleus. Isotopes. Slide 1 / 43. Slide 2 / 43. Slide 3 / 43 Slide 1 / 43 Nuclear Chemistry The Nucleus Slide 2 / 43 Remember that the nucleus is comprised of the two nucleons, protons and neutrons. The number of protons is the atomic number. The number of protons

More information