LECTURE 24 HALF-LIFE, RADIOACTIVE DATING, AND BINDING ENERGY. Instructor: Kazumi Tolich

Size: px
Start display at page:

Download "LECTURE 24 HALF-LIFE, RADIOACTIVE DATING, AND BINDING ENERGY. Instructor: Kazumi Tolich"

Transcription

1 LECTURE 24 HALF-LIFE, RADIOACTIVE DATING, AND BINDING ENERGY Instructor: Kazumi Tolich

2 Lecture 24 2 Reading chapter 32.3 to 32.4 Half-life Radioactive dating Binding energy

3 Nuclear decay functions 3 If we started out with N " nuclei with a decay constant of λ, the number of nuclei remaining at some later time is N = N " e &'( The activity as a function of time is R = N t = λn = R " e &'( The half-life is defined as the time it takes for N and R to decrease by half. T -. = ln 2 λ = λ T -. 2T -.

4 Quiz: 1 4 You have 400 g of a radioactive sample with a half-life of 20 years. How much in grams is left after 50 years?

5 Quiz: 24-1 answer 5 You have 400 g of a radioactive sample with a half-life of 20 years. How much is left after 50 years? 71 g T -. = <=. ' = ".>?@ ' λ = ".>?@ = ".>?@ A B C." DEFGH = y&- N = N " e &'( = 400 g e & "."@KL DMB N" D = 71 g

6 Quiz: 2 6 A radioactive isotope has a half-life of 10 s. You are observing a sample of this isotope. After approximately one minute of observation, there is only one nucleus of this isotope left in your sample. How many atoms of this isotope will be left in your sample 15 s later? A. Definitely 1. B. Approximately C. Definitely 0. D. Possibly 1 but probably 0. E. Possibly 0 but probably 1.

7 Quiz: 24-2 answer 7 A radioactive isotope has a half-life of 10 s. You are observing a sample of this isotope. After approximately one minute of observation, there is only one nucleus of this isotope left in your sample. How many atoms of this isotope will be left in your sample 15 s later? Possibly 1 but probably 0. As with other quantum processes, the time any particular nucleus will decay cannot be predicted. T -. = <=. = ".>?@ ' ' λ = ".>?@ = ".>?@ = s&- A B C -" H N = N " e &'( = 1 e & ".">?@ HMB -N H = 0.35 But, nuclei are quantized, so you can either have 1 nucleus or 0 nuclei.

8 Quiz: 3 8 You have a radioactive sample A with a half-life of 100 years, and another sample B with a half-life of 1000 years. Both samples have the same number of radioactive nuclei. Which sample has the higher activity? A. sample A B. sample B C. both the same D. impossible to tell

9 Quiz: 24-3 answer 9 Sample A If a sample has a shorter half-life, this means that it decays more quickly (larger decay constant λ): T -. = <=. ' The activity is higher for the sample with a higher decay constant λ: R = Q = λn (

10 Example 1 10 A sample of a radioactive isotope is found to have an activity of Bq immediately after it is pulled from the reactor that formed the isotope. Its activity 2 h 15 min later is measured to be 85.2 Bq. a) Calculate the decay constant and the halflife of the sample. b) How many radioactive nuclei were there in the sample initially?

11 Radioactive dating 11 If you know how much of a radioactive material has decayed, you can read the elapsed time from the decay curve. The half-lives of various nuclei can vary widely. T -. 2T -.

12 Carbon dating 12 -K > C β -decays with a half-life of 5730 years. -K Carbon dating uses > C produced in the upper atmosphere during nuclear reactions caused by cosmic rays. -K > C reacts just like -. C -K -. > chemically, and the ratio of > C to > C in a living organism is the same as the equilibrium ratio in the atmosphere. -K -. After an organism dies, it no longer absorbs carbon, so the ratio of > C to > C -K continually decreases since > C decays. The decay rate per amount of carbon in a sample therefore yields the age of the previously living organism.

13 Quiz: 4 13 Suppose you have a sample of old dead tree that is believed to be 100 thousand years old. Can you use carbon-14 to accurately date this sample? A. Yes. B. No.

14 Quiz: 24-4 answer 14 No The range of dates that can be determined depends on the half-life of the material. If the time is much shorter than the half-life, not enough of the material will have decayed. If the time is much longer than about ten half-lives, too much of the material will have decayed, and it will no longer be detectable.

15 Refining radioactive dating 15 There are also many nonradioactive methods of dating materials, such as tree ring analysis. The radioactive and nonradioactive methods may be used to check each other and refine the procedure, increasing accuracy of dating. -K The > C method gives lifetimes that are too short after about 10,000 years, probably due to fluctuations in the -K -. to C ratio. C > >

16 Age of Earth 16 The age of Earth is measured to be around 4.54 billion years using radioactivity of rocks and meteorites. The type of the rocks used is known to reject lead during its formation. The method uses two series of α and β U (T -. = 4.47 billion years ) to U. Pb = 704 million years ) to Pb.@N?. U (T -..">.."L U.. The age of Earth is determined from the Pb to U ratios.

17 Quiz: 5 17 If a stable nucleus breaks into its constituent nucleons, was energy added to the nucleus, or was energy released by the nucleus? A. Energy was added to the nucleus. B. Energy was released by the nucleus.

18 Quiz: 24-5 answer 18 Energy was added to the nucleus. The mass of the stable nucleus is less than the sum of the masses of the nucleons. This reduction in mass, m, multiplied by c., is called the binding energy. E = m c. If a nucleus could break apart spontaneously by releasing energy, it would not be stable.

19 Binding energy per nucleon 19 The flat curve around the nuclei with 50 A 75 indicates that these nuclei are the most stable.

20 Quiz: 6 20 One way to think about the low binding energy per nucleon for low A numbers is A. that there are few protons, hence there is less electrostatic repulsion. B. that there are few electrons to provide the electrostatic attraction. C. at low A, the number of nearest neighbors per nucleon is small compared to higher A numbers. D. at low A, the nucleus is less spherical, hence there is less surface tension. E. None of the above statements is correct.

21 Quiz: 24-6 answer 21 at low A, the number of nearest neighbors per nucleon is small compared to higher A numbers. For elements with low A, adding more nucleons mean there are more particles for strong force to act on, making it harder to break apart. The shallow slope for large A indicates that nucleons interact only with their neighboring nucleons because the range of strong nuclear force is short.

LECTURE 26 RADIATION AND RADIOACTIVITY

LECTURE 26 RADIATION AND RADIOACTIVITY LECTURE 26 RADIATION AND RADIOACTIVITY 30.4 Radiation and radioactivity Decay series Nuclear radiation is a form of ionizing radiation 30.5 Nuclear decay and half-lives Activity Radioactive dating Radiocarbon

More information

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich LECTURE 25 NUCLEAR STRUCTURE AND STABILITY Instructor: Kazumi Tolich Lecture 25 2 30.1 Nuclear structure Isotopes Atomic mass 30.2 Nuclear stability Biding energy 30.3 Forces and energy in the nucleus

More information

LECTURE 26 RADIATION AND RADIOACTIVITY. Instructor: Kazumi Tolich

LECTURE 26 RADIATION AND RADIOACTIVITY. Instructor: Kazumi Tolich LECTURE 26 RADIATION AND RADIOACTIVITY Instructor: Kazumi Tolich Lecture 26 2 30.4 Radiation and radioactivity Alpha decay Beta decay Gamma decay Decay series Nuclear radiation is a form of ionizing radiation

More information

Nuclear Powe. Bronze Buddha at Hiroshima

Nuclear Powe. Bronze Buddha at Hiroshima Nuclear Powe Bronze Buddha at Hiroshima Nuclear Weapons Nuclear Power Is it Green & Safe? Nuclear Waste 250,000 tons of Spent Fuel 10,000 tons made per year Health Effects of Ionizing Radiation Radiocarbon

More information

Nuclear forces and Radioactivity. Two forces are at work inside the nucleus of an atom

Nuclear forces and Radioactivity. Two forces are at work inside the nucleus of an atom Nuclear forces and Radioactivity Two forces are at work inside the nucleus of an atom Forces act in opposing directions Electrostatic repulsion: pushes protons apart Strong nuclear force: pulls protons

More information

LECTURE 23 NUCLEI. Instructor: Kazumi Tolich

LECTURE 23 NUCLEI. Instructor: Kazumi Tolich LECTURE 23 NUCLEI Instructor: Kazumi Tolich Lecture 23 2 Reading chapter 32.1 to 32.2 Nucleus Radioactivity Mass and energy 3 The famous equation by Einstein tells us that mass is a form of energy. E =

More information

The Atomic Nucleus & Radioactive Decay. Major Constituents of an Atom 4/28/2016. Student Learning Outcomes. Analyze radioactive decay and its results

The Atomic Nucleus & Radioactive Decay. Major Constituents of an Atom 4/28/2016. Student Learning Outcomes. Analyze radioactive decay and its results The Atomic Nucleus & Radioactive Decay ( Chapter 10) Student Learning Outcomes Analyze radioactive decay and its results Differentiate between nuclear fission and fusion Major Constituents of an Atom U=unified

More information

Particles involved proton neutron electron positron gamma ray 1

Particles involved proton neutron electron positron gamma ray 1 TOPIC : Nuclear and radiation chemistry Nuclide - an atom with a particular mass number and atomic number Isotopes - nuclides with the same atomic number (Z) but different mass numbers (A) Notation A Element

More information

Radioactivity is the spontaneous disintegration of nuclei. The first radioactive. elements discovered were the heavy atoms thorium and uranium.

Radioactivity is the spontaneous disintegration of nuclei. The first radioactive. elements discovered were the heavy atoms thorium and uranium. Chapter 16 What is radioactivity? Radioactivity is the spontaneous disintegration of nuclei. The first radioactive elements discovered were the heavy atoms thorium and uranium. These heavy atoms and others

More information

Absolute Dating. Using half-lives to study past-lives. Notes #26

Absolute Dating. Using half-lives to study past-lives. Notes #26 Absolute Dating Using half-lives to study past-lives Notes #26 What is radioactivity? (notes) Some atoms have an unstable nucleus Over time, these nuclei* fall apart, creating two smaller atoms (radioactive

More information

Radioactivity and energy levels

Radioactivity and energy levels Radioactivity and energy levels Book page 497-503 Review of radioactivity β ; Free neutron proton β- decay is continuous β : Proton in nucleus neutron antineutrino neutrino Summary of useful equations

More information

Phys 102 Lecture 27 The strong & weak nuclear forces

Phys 102 Lecture 27 The strong & weak nuclear forces Phys 102 Lecture 27 The strong & weak nuclear forces 1 4 Fundamental forces of Nature Today Gravitational force (solar system, galaxies) Electromagnetic force (atoms, molecules) Strong force (atomic nuclei)

More information

PHL424: 4 fundamental forces in nature

PHL424: 4 fundamental forces in nature PHL424: 4 fundamental forces in nature The familiar force of gravity pulls you down into your seat, toward the Earth's center. You feel it as your weight. Why don't you fall through your seat? Well, another

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 30 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 140) Lecture 18 Modern Physics Nuclear Physics Nuclear properties Binding energy Radioactivity The Decay Process Natural Radioactivity Last lecture: 1. Quantum physics Electron Clouds

More information

Physics 1C. Lecture 29A. "Nuclear powered vacuum cleaners will probably be a reality within 10 years. " --Alex Lewyt, 1955

Physics 1C. Lecture 29A. Nuclear powered vacuum cleaners will probably be a reality within 10 years.  --Alex Lewyt, 1955 Physics 1C Lecture 29A "Nuclear powered vacuum cleaners will probably be a reality within 10 years. " --Alex Lewyt, 1955 The Nucleus All nuclei are composed of protons and neutrons (they can also be called

More information

Page 1. ConcepTest Clicker Questions Chapter 32. Physics, 4 th Edition James S. Walker

Page 1. ConcepTest Clicker Questions Chapter 32. Physics, 4 th Edition James S. Walker ConcepTest Clicker Questions Chapter 32 Physics, 4 th Edition James S. Walker There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? Question 32.1 The Nucleus a) Coulomb repulsive

More information

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology 1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology Reading (all from White s Notes) Lecture 1: Introduction And Physics Of The Nucleus: Skim Lecture 1: Radioactive Decay- Read all Lecture 3:

More information

NUCLEAR PHYSICS AND RADIOACTIVITY

NUCLEAR PHYSICS AND RADIOACTIVITY CHAPTER 31 NUCLEAR PHYSICS AND RADIOACTIVITY CONCEPTUAL QUESTIONS 1. REASONING AND SOLUTION Isotopes are nuclei that contain the same number of protons, but a different number of neutrons. A material is

More information

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart?

There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? Question 32.1 The Nucleus There are 82 protons in a lead nucleus. Why doesn t the lead nucleus burst apart? a) Coulomb repulsive force doesn t act inside the nucleus b) gravity overpowers the Coulomb repulsive

More information

The strong & weak nuclear forces

The strong & weak nuclear forces Phys 102 Lecture 27 The strong & weak nuclear forces 1 4 Fundamental forces of Nature Today Gravitational force (solar system, galaxies) Electromagnetic force (atoms, molecules) Strong force (atomic nuclei)

More information

The Nucleus and Radioactivity

The Nucleus and Radioactivity Chapter 0 The Nucleus and Radioactivity Practice Problem Solutions Student Textbook page 904. Conceptualize the Problem - The mass defect is the difference of the mass of the nucleus and the sum of the

More information

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity Physics 1161: Lecture 25 Nuclear Binding, Radioactivity Sections 32-1 32-9 Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel

More information

Radioactivity. Radioactivity

Radioactivity. Radioactivity The Law of Radioactive Decay. 72 The law of radioactive decay. It turns out that the probability per unit time for any radioactive nucleus to decay is a constant, called the decay constant, lambda, ".

More information

Chapter 30 Nuclear Physics and Radioactivity

Chapter 30 Nuclear Physics and Radioactivity Chapter 30 Nuclear Physics and Radioactivity 30.1 Structure and Properties of the Nucleus Nucleus is made of protons and neutrons Proton has positive charge: Neutron is electrically neutral: 30.1 Structure

More information

Liquid Drop Model From the definition of Binding Energy we can write the mass of a nucleus X Z

Liquid Drop Model From the definition of Binding Energy we can write the mass of a nucleus X Z Our first model of nuclei. The motivation is to describe the masses and binding energy of nuclei. It is called the Liquid Drop Model because nuclei are assumed to behave in a similar way to a liquid (at

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 37 Modern Physics Nuclear Physics Radioactivity Nuclear reactions http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 29 1 Lightning Review Last lecture: 1. Nuclear

More information

UNIT 13: NUCLEAR CHEMISTRY

UNIT 13: NUCLEAR CHEMISTRY UNIT 13: NUCLEAR CHEMISTRY REVIEW: ISOTOPE NOTATION An isotope notation is written as Z A X, where X is the element, A is the mass number (sum of protons and neutrons), and Z is the atomic number. For

More information

Radioactive Decay and Radiometric Dating

Radioactive Decay and Radiometric Dating Radioactive Decay and Radiometric Dating Radioactivity and radiometric dating Atomic structure Radioactivity Allows us to put numerical ages on geologic events Atomic structure reviewed Nucleus composed

More information

Radioactive Decay and Radiometric Dating

Radioactive Decay and Radiometric Dating Radioactive Decay and Radiometric Dating Radioactivity and radiometric dating Atomic structure Radioactivity Allows us to put numerical ages on geologic events Atomic structure reviewed Atom model Nucleus

More information

Nuclear Chemistry Lecture Notes: I Radioactive Decay A. Type of decay: See table. B. Predicting Atomic Stability

Nuclear Chemistry Lecture Notes: I Radioactive Decay A. Type of decay: See table. B. Predicting Atomic Stability Nuclear Chemistry Lecture Notes: I Radioactive Decay A. Type of decay: See table Type Symbol Charge Mass (AMU) Effect on Atomic # Alpha α +2 4 decrease by 2 Beta β- -1 0 increase electron by 1 Beta β+

More information

Nuclear Physics and Radioactivity

Nuclear Physics and Radioactivity Nuclear Physics and Radioactivity Structure and Properties of the Nucleus Nucleus is made of protons and neutrons Proton has positive charge: Neutron is electrically neutral: Neutrons and protons are collectively

More information

A is called the mass number gives, roughly, the mass of the nucleus or atom in atomic mass units = amu = u

A is called the mass number gives, roughly, the mass of the nucleus or atom in atomic mass units = amu = u 5/5 A is called the mass number gives, roughly, the mass of the nucleus or atom in atomic mass units = amu = u The number of neutrons in the nucleus is given by the symbol N. Clearly, N = A Z. Isotope:

More information

16.5 Coulomb s Law Types of Forces in Nature. 6.1 Newton s Law of Gravitation Coulomb s Law

16.5 Coulomb s Law Types of Forces in Nature. 6.1 Newton s Law of Gravitation Coulomb s Law 5-10 Types of Forces in Nature Modern physics now recognizes four fundamental forces: 1. Gravity 2. Electromagnetism 3. Weak nuclear force (responsible for some types of radioactive decay) 4. Strong nuclear

More information

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences King Saud University College of Applied Studies and Community Service Department of Natural Sciences Radioactivity General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Radioactive Decay

More information

Nuclear Spectroscopy: Radioactivity and Half Life

Nuclear Spectroscopy: Radioactivity and Half Life Particle and Spectroscopy: and Half Life 02/08/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 4 5 Some nuclei are unstable and decay spontaneously into two or more particles.

More information

The diagram below shows a radioactive isotope going through several half-lives as it decays.

The diagram below shows a radioactive isotope going through several half-lives as it decays. By what process do most stars release energy? A. Electromagnetic induction resulting from strong magnetic fields B. Radioactivity in the interior of the star C. Nuclear fusion in the interior of the star

More information

Half Life Introduction

Half Life Introduction Name: Date: Period: Half Life Introduction The half-life of an element is the time it will take half of the parent atoms to transmutate into different atoms (through alpha or beta decays, or another process).

More information

Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building.

Nuclear Physics. PHY232 Remco Zegers Room W109 cyclotron building. Nuclear Physics PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html Periodic table of elements We saw that the periodic table of elements can

More information

Chem 481 Lecture Material 1/23/09

Chem 481 Lecture Material 1/23/09 Chem 481 Lecture Material 1/23/09 Nature of Radioactive Decay Radiochemistry Nomenclature nuclide - This refers to a nucleus with a specific number of protons and neutrons. The composition of a nuclide

More information

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983)

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983) Fundamental Forces Force Relative Strength Range Carrier Observed? Gravity 10-39 Infinite Graviton No Weak 10-6 Nuclear W+ W- Z Yes (1983) Electromagnetic 10-2 Infinite Photon Yes (1923) Strong 1 Nuclear

More information

Fission and Fusion Book pg cgrahamphysics.com 2016

Fission and Fusion Book pg cgrahamphysics.com 2016 Fission and Fusion Book pg 286-287 cgrahamphysics.com 2016 Review BE is the energy that holds a nucleus together. This is equal to the mass defect of the nucleus. Also called separation energy. The energy

More information

You have two samples of water each made up of different isotopes of hydrogen: one contains

You have two samples of water each made up of different isotopes of hydrogen: one contains Chapter 2 Nuclear Chemistry Concept Check 2. You have two samples of water each made up of different isotopes of hydrogen: one contains H2O and the other, H2O. a. Would you expect these two water samples

More information

Introduction to Nuclear Engineering. Ahmad Al Khatibeh

Introduction to Nuclear Engineering. Ahmad Al Khatibeh Introduction to Nuclear Engineering Ahmad Al Khatibeh CONTENTS INTRODUCTION (Revision) RADIOACTIVITY Radioactive Decay Rates Units of Measurement for Radioactivity Variation of Radioactivity Over Time.

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 21 Study Guide Concepts 1. There are several modes of radioactive decay: (1) alpha (α) decay, (2) beta (β) decay, (3) gamma (γ)

More information

Nuclear Physics Part 1: Nuclear Structure & Reactions

Nuclear Physics Part 1: Nuclear Structure & Reactions Nuclear Physics Part 1: Nuclear Structure & Reactions Last modified: 25/01/2018 Links The Atomic Nucleus Nucleons Strong Nuclear Force Nuclei Are Quantum Systems Atomic Number & Atomic Mass Number Nuclides

More information

Measuring the Age of things (Astro 202 2/12/08) Nomenclature. Different Elements. Three Types of Nuclear Decay. Carbon 14 Decay.

Measuring the Age of things (Astro 202 2/12/08) Nomenclature. Different Elements. Three Types of Nuclear Decay. Carbon 14 Decay. Measuring the Age of things (Astro 202 2/12/08) Nomenclature + Proton Different Elements Neutron Electron Element: Number of Protons Carbon 12 6 protons 6 neutrons 6 electrons Nitrogen 14 7 protons 7 neutrons

More information

Nuclear Binding, Radioactivity

Nuclear Binding, Radioactivity Physics 102: Lecture 28 Nuclear Binding, Radioactivity Physics 102: Lecture 27, Slide 1 Nuclear Physics A Z 6 3 Li 7 Li 3 Physics 102: Lecture 26, Slide 2 Z = proton number ( atomic number ) Gives chemical

More information

Nuclear Physics: Models of the Nucleus and Radioactivity ( ) SteveSekula, 8 April 2010 (created 7 April 2010)

Nuclear Physics: Models of the Nucleus and Radioactivity ( ) SteveSekula, 8 April 2010 (created 7 April 2010) Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Nuclear Physics: Models of the Nucleus and Radioactivity (11.3-11.5) SteveSekula, 8 April 2010 (created 7 April 2010) Review

More information

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences

Radioactivity. General Physics II PHYS 111. King Saud University College of Applied Studies and Community Service Department of Natural Sciences King Saud University College of Applied Studies and Community Service Department of Natural Sciences Radioactivity General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Radioactive Decay

More information

Radioisotopes. alpha. Unstable isotope. stable. beta. gamma

Radioisotopes. alpha. Unstable isotope. stable. beta. gamma Nuclear Chemistry Nuclear Chemistry Nucleus of an atom contains protons and neutrons Strong forces (nuclear force) hold nucleus together Protons in nucleus have electrostatic repulsion however, strong

More information

Radioactive Decay and Radiometric Dating

Radioactive Decay and Radiometric Dating Radioactive Decay and Radiometric Dating STM Chapters 7 and 8 Pages 135-142 And 157-166 Radioactivity and radiometric dating Atomic structure Radioactivity Allows us to put numerical ages on geologic events

More information

RADIOACTIVITY & HALF-LIFE Part 2

RADIOACTIVITY & HALF-LIFE Part 2 RADIOACTIVITY & HALF-LIFE Part 2 Radioactivity Radioactivity: Results from radioactive decay, which is the process whereby unstable atomic nuclei transform and emit radiation. Has existed longer than the

More information

Instead, the probability to find an electron is given by a 3D standing wave.

Instead, the probability to find an electron is given by a 3D standing wave. Lecture 24-1 The Hydrogen Atom According to the Uncertainty Principle, we cannot know both the position and momentum of any particle precisely at the same time. The electron in a hydrogen atom cannot orbit

More information

Radioactivity is the emission of high energy released when the of atoms change. Radioactivity can be or.

Radioactivity is the emission of high energy released when the of atoms change. Radioactivity can be or. Chapter 19 1 RADIOACTIVITY Radioactivity is the emission of high energy released when the of atoms change. Radioactivity can be or. TYPES OF RADIATION OR EMITTED ENERGY IN NUCLEAR CHANGES Radiation is

More information

Chapter 42. Nuclear Physics

Chapter 42. Nuclear Physics Chapter 42 Nuclear Physics In the previous chapters we have looked at the quantum behavior of electrons in various potentials (quantum wells, atoms, etc) but have neglected what happens at the center of

More information

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N.

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N. Lecture : The nucleus and nuclear instability Nuclei are described using the following nomenclature: A Z Element N Z is the atomic number, the number of protons: this defines the element. A is called the

More information

Chapter 28: Nuclear Chemistry Part 1: Notes The Basics of Nuclear Radiation and Nuclear Decay

Chapter 28: Nuclear Chemistry Part 1: Notes The Basics of Nuclear Radiation and Nuclear Decay Part 1: Notes The Basics of Nuclear Radiation and Nuclear Decay Objectives: Differentiate between nuclear and chemical reactions. Define: spontaneous nuclear decay, nuclear reaction, parent nuclide, daughter

More information

Nuclear Binding, Radioactivity

Nuclear Binding, Radioactivity Physics 102: Lecture 28 Nuclear Binding, Radioactivity Physics 102: Lecture 27, Slide 1 Recall: Nuclear Physics A Z 6 3 Li Nucleus = Protons+ Neutrons nucleons Z = proton number (atomic number) Gives chemical

More information

Supplement Nuclear Chemistry. 1. What is the missing particle in the reaction below that results in the formation of 14 C in the atmosphere?

Supplement Nuclear Chemistry. 1. What is the missing particle in the reaction below that results in the formation of 14 C in the atmosphere? Supplement Nuclear Chemistry Additional Practice Problems. What is the missing particle in the reaction below that results in the formation of 4 C in the atmosphere? 4 N +? C + p (a) α-particle (b) electron

More information

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes

Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes St Ninian s High School Chemistry Department National 5 Chemistry Unit 3: Chemistry in Society Nuclear Chemistry Summary Notes Name Learning Outcomes After completing this topic you should be able to :

More information

[2] State in what form the energy is released in such a reaction.... [1]

[2] State in what form the energy is released in such a reaction.... [1] (a) The following nuclear reaction occurs when a slow-moving neutron is absorbed by an isotope of uranium-35. 0n + 35 9 U 4 56 Ba + 9 36Kr + 3 0 n Explain how this reaction is able to produce energy....

More information

Nuclear Decays. Alpha Decay

Nuclear Decays. Alpha Decay Nuclear Decays The first evidence of radioactivity was a photographic plate, wrapped in black paper and placed under a piece of uranium salt by Henri Becquerel on February 26, 1896. Like many events in

More information

HOMEWORK 22-1 (pp )

HOMEWORK 22-1 (pp ) CHAPTER 22 HOMEWORK 22-1 (pp. 701 702) Define. 1. nucleons 2. nuclide 3. mass defect 4. nuclear binding energy Solve. Use masses of 1.0087 amu for the neutron, 1.00728 amu for the proton, and 5.486 x 10

More information

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability Basic Nuclear Theory Lecture 1 The Atom and Nuclear Stability Introduction Nuclear power is made possible by energy emitted from either nuclear fission or nuclear fusion. Current nuclear power plants utilize

More information

Fisika Inti Nuclear Physics 5/14/2010 1

Fisika Inti Nuclear Physics 5/14/2010 1 Fisika Inti Nuclear Physics 5/14/2010 1 Pengertian Modern: Gambar onion Modern understanding: the ``onion picture Atom Let s see what s inside! 5/14/2010 2 Pengertian Modern: Gambar onion Modern understanding:

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY teacher version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

Subatomic Particles. proton. neutron. electron. positron. particle. 1 H or 1 p. 4 α or 4 He. 0 e or 0 β

Subatomic Particles. proton. neutron. electron. positron. particle. 1 H or 1 p. 4 α or 4 He. 0 e or 0 β Nuclear Chemistry Subatomic Particles proton neutron 1n 0 1 H or 1 p 1 1 positron electron 0 e or 0 β +1 +1 0 e or 0 β 1 1 particle 4 α or 4 He 2 2 Nuclear Reactions A balanced nuclear equation has the

More information

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY

UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY UNIT 10 RADIOACTIVITY AND NUCLEAR CHEMISTRY student version www.toppr.com Contents (a) Types of Radiation (b) Properties of Radiation (c) Dangers of Radiation (d) Rates of radioactive decay (e) Nuclear

More information

6. Atomic and Nuclear Physics

6. Atomic and Nuclear Physics 6. Atomic and Nuclear Physics Chapter 6.2 Radioactivity From IB OCC, prepared by J. Domingues based on Tsokos Physics book Warm Up Define: nucleon atomic number mass number isotope. Radioactivity In 1896,

More information

12.744/ The Basic Rules, Nuclear Stability, Radioactive Decay and Radioactive Dating

12.744/ The Basic Rules, Nuclear Stability, Radioactive Decay and Radioactive Dating 12.744/12.754 The Basic Rules, Nuclear Stability, Radioactive Decay and Radioactive Dating What we see in the earth and oceans is the product of the "cosmic" abundance (i.e. the original) pattern of elements,

More information

Chapter 10. Answers to examination-style questions. Answers Marks Examiner s tips. 1 (a) (i) 238. (ii) β particle(s) 1 Electron antineutrinos 1

Chapter 10. Answers to examination-style questions. Answers Marks Examiner s tips. 1 (a) (i) 238. (ii) β particle(s) 1 Electron antineutrinos 1 (a) (i) 238 92 U + 0 n 239 92 U (ii) β particle(s) Electron antineutrinos (b) For: Natural uranium is 98% uranium-238 which would be otherwise unused. Plutonium-239 would not need to be stored long-term

More information

Radioactivity pp Topic 9: Nuclear Physics Ch. 10. Radioactivity. Radioactivity

Radioactivity pp Topic 9: Nuclear Physics Ch. 10. Radioactivity. Radioactivity Topic 9: Nuclear Physics Ch. 10 pp.244-249 results from radioactive decay, which is the process in which unstable atomic nuclei transform and emit radiation. has existed longer than the human race. Unstable

More information

The number of protons in the nucleus is known as the atomic number Z, and determines the chemical properties of the element.

The number of protons in the nucleus is known as the atomic number Z, and determines the chemical properties of the element. I. NUCLEAR PHYSICS I.1 Atomic Nucleus Very briefly, an atom is formed by a nucleus made up of nucleons (neutrons and protons) and electrons in external orbits. The number of electrons and protons is equal

More information

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. A. Nuclear Structure. 2b. Nomenclature. 2. Isotopes. AstroPhysics Notes

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. A. Nuclear Structure. 2b. Nomenclature. 2. Isotopes. AstroPhysics Notes AstroPhysics Notes Nuclear Physics Dr. Bill Pezzaglia Nuclear Physics A. Nuclear Structure B. Nuclear Decay C. Nuclear Reactions Updated: 0Feb07 Rough draft A. Nuclear Structure. Parts of Atom. Parts of

More information

[1] (c) Some fruits, such as bananas, are naturally radioactive because they contain the unstable isotope of potassium-40 ( K.

[1] (c) Some fruits, such as bananas, are naturally radioactive because they contain the unstable isotope of potassium-40 ( K. (a) State, with a reason, whether or not protons and neutrons are fundamental particles....... [] (b) State two fundamental particles that can be classified as leptons.... [] (c) Some fruits, such as bananas,

More information

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons

Nuclear Physics. Radioactivity. # protons = # neutrons. Strong Nuclear Force. Checkpoint 4/17/2013. A Z Nucleus = Protons+ Neutrons Marie Curie 1867-1934 Radioactivity Spontaneous emission of radiation from the nucleus of an unstable isotope. Antoine Henri Becquerel 1852-1908 Wilhelm Roentgen 1845-1923 Nuclear Physics A Z Nucleus =

More information

Preview. Subatomic Physics Section 1. Section 1 The Nucleus. Section 2 Nuclear Decay. Section 3 Nuclear Reactions. Section 4 Particle Physics

Preview. Subatomic Physics Section 1. Section 1 The Nucleus. Section 2 Nuclear Decay. Section 3 Nuclear Reactions. Section 4 Particle Physics Subatomic Physics Section 1 Preview Section 1 The Nucleus Section 2 Nuclear Decay Section 3 Nuclear Reactions Section 4 Particle Physics Subatomic Physics Section 1 TEKS The student is expected to: 5A

More information

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei.

Populating nucleon states. From the Last Time. Other(less stable) helium isotopes. Radioactivity. Radioactive nuclei. Stability of nuclei. Nucleus: From the Last Time System of and neutrons bound by the strong force Proton number determines the element. Different isotopes have different # neutrons. Stable isotopes generally have similar number

More information

Nuclear Physics. Milestones in development of nuclear physics

Nuclear Physics. Milestones in development of nuclear physics Nuclear Physics Nuclear Physics Henri Becquerel (185-1908) accidentally discovered radioactivity in uranium compounds in 1896. Uranium salt crystals darkened a light-tight photographic plate. Nuclear Physics

More information

Lecture Outlines Chapter 32. Physics, 3 rd Edition James S. Walker

Lecture Outlines Chapter 32. Physics, 3 rd Edition James S. Walker Lecture Outlines Chapter 32 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in

More information

Chapter 44. Nuclear Structure

Chapter 44. Nuclear Structure Chapter 44 Nuclear Structure Milestones in the Development of Nuclear Physics 1896: the birth of nuclear physics Becquerel discovered radioactivity in uranium compounds Rutherford showed the radiation

More information

Half Life Practice Problems #3

Half Life Practice Problems #3 Half Life Practice Problems #3 1. The half life of Cs-137 is 30.2 years. If the initial mass of the sample is 1.00kg, how much will remain after 151 years? 2. Carbon-14 has a half life of 5730 years. Consider

More information

From Last Time. Stronger than coulomb force, But much shorter range than coulomb force.

From Last Time. Stronger than coulomb force, But much shorter range than coulomb force. From Last Time Nucleus is small, tightly bound system of protons & neutrons. Proton number determines the element. Different isotopes have different # neutrons. Some isotopes unstable, radioactively decay

More information

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e +

β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Final Exam Surveys New material Example of β-decay Beta decay Y + e # Y'+e + β and γ decays, Radiation Therapies and Diagnostic, Fusion and Fission Last Lecture: Radioactivity, Nuclear decay Radiation damage This lecture: nuclear physics in medicine and fusion and fission Final

More information

College Physics B - PHY2054C

College Physics B - PHY2054C College - PHY2054C Physics - Radioactivity 11/24/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Review Question 1 Isotopes of an element A have the same number of protons and electrons,

More information

L 37 Modern Physics [3] The atom and the nucleus. Structure of the nucleus. Terminology of nuclear physics SYMBOL FOR A NUCLEUS FOR A CHEMICAL X

L 37 Modern Physics [3] The atom and the nucleus. Structure of the nucleus. Terminology of nuclear physics SYMBOL FOR A NUCLEUS FOR A CHEMICAL X L 37 Modern Physics [3] [L37] Nuclear physics what s inside the nucleus and what holds it together what is radioactivity carbon dating [L38] Nuclear energy nuclear fission nuclear fusion nuclear reactors

More information

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. 2. Isotopes. AstroPhysics Notes. Dr. Bill Pezzaglia. Rough draft. A.

H 1. Nuclear Physics. Nuclear Physics. 1. Parts of Atom. 2. Isotopes. AstroPhysics Notes. Dr. Bill Pezzaglia. Rough draft. A. AstroPhysics Notes Tom Lehrer: Elements Dr. Bill Pezzaglia Nuclear Physics Updated: 0Feb Rough draft Nuclear Physics A. Nuclear Structure A. Nuclear Structure B. Nuclear Decay C. Nuclear Reactions. Parts

More information

Chapter 10 - Nuclear Physics

Chapter 10 - Nuclear Physics The release of atomic energy has not created a new problem. It has merely made more urgent the necessity of solving an existing one. -Albert Einstein David J. Starling Penn State Hazleton PHYS 214 Ernest

More information

Chemistry 1000 Lecture 3: Nuclear stability. Marc R. Roussel

Chemistry 1000 Lecture 3: Nuclear stability. Marc R. Roussel Chemistry 1000 Lecture 3: Nuclear stability Marc R. Roussel Radioactive decay series Source: Wikimedia commons, http://commons.wikimedia.org/wiki/file: Decay_Chain_Thorium.svg Forces between nucleons Electrostatic

More information

Friday, 05/06/16 6) HW QUIZ MONDAY Learning Target (NEW)

Friday, 05/06/16 6) HW QUIZ MONDAY Learning Target (NEW) Friday, 05/06/16 1) Warm-up: If you start with 100g of a radioactive substance, how much will be left after 3 half-lives? 2) Review HW & Nuclear Notes 3) Complete Modeling Energy Investigation 4) Complete:

More information

Unit 12: Nuclear Chemistry

Unit 12: Nuclear Chemistry Unit 12: Nuclear Chemistry 1. Stability of isotopes is based on the ratio of neutrons and protons in its nucleus. Although most nuclei are stable, some are unstable and spontaneously decay, emitting radiation.

More information

Physics 142 Modern Physics 2 Page 1. Nuclear Physics

Physics 142 Modern Physics 2 Page 1. Nuclear Physics Physics 142 Modern Physics 2 Page 1 Nuclear Physics The Creation of the Universe was made possible by a grant from Texas Instruments. Credit on a PBS Program Overview: the elements are not elementary The

More information

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N.

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N. Lecture : The nucleus and nuclear instability Nuclei are described using the following nomenclature: A Z Element N Z is the atomic number, the number of protons: this defines the element. A is called the

More information

Period 8 Activity Solutions: Mass and Energy

Period 8 Activity Solutions: Mass and Energy Period 8 Activity Solutions: Mass and Energy 8.1 What is the Relationship between Energy and Mass? Your instructor will discuss Einstein s equation, E = Mc 2, which is probably the most important equation

More information

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS Instructor: Kazumi Tolich Lecture 23 2 29.1 Spectroscopy 29.2 Atoms The first nuclear physics experiment Using the nuclear model 29.3 Bohr s model of atomic quantization

More information

u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig [1]

u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig [1] 1 (a) Fig. 6.1 shows the quark composition of some particles. proton neutron A B u u d u d d u d u u u u d Fig. 6.1 (i) Identify the anti-proton from the table of particles shown in Fig. 6.1. (ii) State

More information

Page 17a. Objective: We will identify different types of radioactive decay. Warm-up:

Page 17a. Objective: We will identify different types of radioactive decay. Warm-up: Page 17a Objective: We will identify different types of radioactive decay. Warm-up: What are the three subatomic particles? Where is each particle located in the atom? What is an isotope? Page 17a (again)

More information

Year 12 Notes Radioactivity 1/5

Year 12 Notes Radioactivity 1/5 Year Notes Radioactivity /5 Radioactivity Stable and Unstable Nuclei Radioactivity is the spontaneous disintegration of certain nuclei, a random process in which particles and/or high-energy photons are

More information

Physics 219 Help Session. Date: Wed 12/07, Time: 6:00-8:00 pm. Location: Physics 331

Physics 219 Help Session. Date: Wed 12/07, Time: 6:00-8:00 pm. Location: Physics 331 Lecture 25-1 Physics 219 Help Session Date: Wed 12/07, 2016. Time: 6:00-8:00 pm Location: Physics 331 Lecture 25-2 Final Exam Dec. 14. 2016. 1:00-3:00pm in Phys. 112 Bring your ID card, your calculator

More information