17. Radiometric dating and applications to sediment transport

Size: px
Start display at page:

Download "17. Radiometric dating and applications to sediment transport"

Transcription

1 OCEAN/ESS Radiometric dating and applications to sediment transport William Wilcock

2 Lecture/Lab Learning Goals Understand the basic equations of radioactive decay Understand how Potassium-Argon dating is used to estimate the age of lavas Understand how lead-210 dating of sediments works Concept of supported and unsupported lead-210 in sediments Concept of activity Steps to estimate sedimentation rates from a vertical profile of lead-210 activity Application of lead-210 dating to determining sediment accumulation rates on the continental shelf and the interpretation of these rates - LAB

3 Radioactive decay - Basic equation The number or atoms of an unstable isotope elements decreases with time dn dt dn dt N T N = λn dn = N N 0 N 0 N - Number of atoms of an unstable isotope λ - radioactive decay constant is the fraction of the atoms that decay in unit time (e.g., yr -1 ) dn = λ dt N N T T 0

4 Radioactive decay - Basic equation N T dn = N N 0 N 0 dn = λ dt N N T T 0 ln N N 0 = ln N 0 N T N T = λt T = λt 0 Setting N T = ½N 0, the time for half the radioactive atoms to decay is give by T 12 = ln2 λ T 1/2 - half life is the time for half the atoms to decay

5 Potassium-Argon (K-Ar) Dating The isotope 40 K is one of 3 isotopes of Potassium ( 39 K, 40 K and 41 K) and is about 0.01% of the natural potassium found in rocks 40 K is radioactively unstable and decays with a half life T ½ = 1.25 x 10 9 years (λ = 1.76 x s -1 ) to a mixture of 40-Calcium (89.1%) and 40-Argon (10.9%). Because Argon is a gas it escapes from molten lavas. Minerals containing potassium that solidify from the lava will initially contain no argon. Radioactive decay of 40K within creates 40Ar which is trapped in the mineral grains. If the ratio of 40Ar/40K can be measured in a rock sample via mass spectrometry the age of lava can be calculated.

6 K-Ar Dating Formula ln N 0 N T = λt If K f is the amount of 40-Potassium left in the rock and Ar f the amount of 40-Ar created in the mineral then N T = K f N 0 = K f + Ar f / T = 1 K + Ar / λ ln f f K f Note that the factor 1 / accounts for the fact that only 10.9% of the 40 K that decays created 40 Ar (the rest creates 40 Ca)

7 K-Ar dating assumptions Ar concentrations are zero when the lava solidifies (in seafloor basalts which cool quickly Argon can be trapped in the glassy rinds of pillow basalts violating this assumption) No Ar is lost from the lava after formation (this assumption can be violated if the rock heats up during a complex geological history) The sample has not been contaminated by Argon from the atmosphere (samples must be handled carefully).

8 Lead-210 dating 210 Pb or Pb-210 is an isotope of lead that forms as part of a decay sequence of Uranium U è 234 U è 230 Th è 226 Ra Half Life 4.5 Byr Rocks Half life 1600 yrs, eroded to sediments è 222 Rn è 210 Pb è 206 Pb Gas, half life 3.8 days Half life, 22.3 years Stable

9

10 Pb-210 in sediments Supported 210 Pb Sediments contain a background level of 210 Pb that is supported by the decay of 226 Ra (radium is an alkali metal) which is eroded from rocks and incorporated into sediments. As fast as this background 210 Pb is lost by radioactive decay, new 210 Pb is created by the decay of 226 Ra. Excess or Unsupported 210 Pb Young sediments also include an excess of unsupported 210 Pb. Decaying 238 U in continental rocks generates 222 Rn (radon is a gas) some of which escapes into the atmosphere. This 222 Rn decays to 210 Pb which is efficiently washed out of the atmosphere and incorporated into new sediments. This unsupported 210 Pb is not replaced as it decays because the radon that produced it is in the atmosphere.

11 Activity - Definition In order understand how 210 Pb is used to determine sedimentation rates we need to the activity of a sediment A A = cλn Activity is the number of disintegrations in unit time per unit mass (units are decays per unit time per unit mass. For 210 Pb the usual units are dpm/g = decays per minute per gram ) C - detection coefficient, a value between 0 and 1 which reflects the fraction of the disintegrations are detected (electrically or photographically)

12 Activity - Equations We know previously defined the equation for the rate of radioactive decays as dn dt = λn Multiplying both sides by the constant cλ gives an equivalent equation in activity da dt = λ A

13 Pb-210 activity in sediments A B Pb-210 activity Surface mixed layer - bioturbation Measured Pb-210 activity Region of radioactive decay. Excess or unsupported Pb-210 activity (measured minus background) Depth, Z (or age) Background Pb-210 levels from decay of Radon in sediments ( supported Pb-210)

14 Excess Pb-210 concentrations A 2 A 1 Excess Pb-210 activity t 1 t 2 Work with data in this region For a constant sedimentation rate, S (cm/yr), we can replace the depth axis with a time axis z = St Age of sediments, t t = z S

15 Solving the equation - 1 da dt = λ A A 2 da = λ dt A A 1 t 2 t 1 The equation relating activity to the radioactive decay constant Integrating this with the limits of integration set by two points A ln A 2 A1 = λ t t 2 t1 ln A 2 + ln A 1 = ln A 1 ( ) A 2 = λ t 2 t 1 A relationship between age and activity

16 Solving the equation - 2 ( ( ) z = 2 z ) 1 t 2 t 1 ( ) ln A 1 A 2 = λ t 2 t 1 λ ( z S = 2 z ) 1 ln A 1 A 2 S ( ) ln A λ z 1 = 2 z 1 A S 2 Substitute in the relationship between age and depth An expression for the sedimentation rate

17 Pb-210 sedimentation rates Plot depth against natural logarithm of Pb-210 activity ln(a) Ignore data in mixed layer Depth, z Slope = S λ Ignore data with background levels

18 Summary - How to get a sedimentation rate 1. Identify the background ( supported ) activity A B - the value of A at larger depths where it is not changing with depth. 2. Subtract the background activity from the observed activities at shallower depths 3. Take the natural logarithm to get ln(a)=ln(a observed -A B ) 4. Plot depth z against ln(a). 5. Ignore in the points in the surface mixed region where ln(a) does not change with depth. 6. Ignore points in the background region at depth (A observed A B ). 7. Measure the slope in the middle region. It will be negative. 8. Multiply the minus the slope by the radioactive decay constant (λ = yr -1 ) to get the sedimentation rate.

19 Limitations Assumption of uniform sedimentation rates. Cannot use this technique where sedimentation rate varies with time (e.g., turbidites). Assumption of uniform initial and background Pb-210 concentrations (reasonable if composition is constant).

20 Upcoming lab In the lab following this lecture you are going to calculate a sedimentation rate for muds on the continental shelf using radioactive isotope Lead-210 and you are going to interpret a data set of many such measurements obtained off the coast of Washington.

16. Radiometric dating and applications to sediment transport

16. Radiometric dating and applications to sediment transport 16. Radiometric dating and applications to sediment transport William Wilcock OCE/ESS 410 Lecture/Lab Learning Goals Understand the basic equations of radioactive decay Understand how Potassium-rgon dating

More information

Pacific NW Rocks and Minerals GEO143 Activity 5: Radioactive Decay and CRB Ages

Pacific NW Rocks and Minerals GEO143 Activity 5: Radioactive Decay and CRB Ages Name: Date: The Columbia River Flood Basalts (CRB) geologic province is a region of eastern Washington, eastern Oregon, the extreme northwest Nevada, and western Idaho where continental flood basalts erupted

More information

6. Relative and Absolute Dating

6. Relative and Absolute Dating 6. Relative and Absolute Dating Adapted by Sean W. Lacey & Joyce M. McBeth (2018) University of Saskatchewan from Deline B, Harris R, & Tefend K. (2015) "Laboratory Manual for Introductory Geology". First

More information

Table of Isotopic Masses and Natural Abudances

Table of Isotopic Masses and Natural Abudances Table of Isotopic Masses and Natural Abudances in amu, where 1amu = 1/12 mass 12 C Atomic weight element = M i (abun i )+M j (abun j ) + Four types of radioactive decay 1) alpha (α) decay - 4 He nucleus

More information

The Nucleus and Radioactivity

The Nucleus and Radioactivity Chapter 0 The Nucleus and Radioactivity Practice Problem Solutions Student Textbook page 904. Conceptualize the Problem - The mass defect is the difference of the mass of the nucleus and the sum of the

More information

Geology of the Hawaiian Islands

Geology of the Hawaiian Islands Geology of the Hawaiian Islands Class 12 19 February 2004 A B C D F 97 94 92 91 88 87 86 85 85 84 82 77 73 73 mean 66 64 60 69 60 57 51 29 Exam Scores Mean = 71 Median = 82/77 Any Questions? Sedimentary

More information

Lecture 13. Constraints on Melt Models Arising From Disequilibrium in the Th-U Decay System

Lecture 13. Constraints on Melt Models Arising From Disequilibrium in the Th-U Decay System Lecture 13 Constraints on Melt Models Arising From Disequilibrium in the Th-U Decay System (for reference: see Uranium-Series Geochemistry, volume 52 of Reviews in Mineralogy and Geochemistry (Bourdon,

More information

Supplement Nuclear Chemistry. 1. What is the missing particle in the reaction below that results in the formation of 14 C in the atmosphere?

Supplement Nuclear Chemistry. 1. What is the missing particle in the reaction below that results in the formation of 14 C in the atmosphere? Supplement Nuclear Chemistry Additional Practice Problems. What is the missing particle in the reaction below that results in the formation of 4 C in the atmosphere? 4 N +? C + p (a) α-particle (b) electron

More information

Radiometric Dating and the Age of the Earth

Radiometric Dating and the Age of the Earth Radiometric Dating and the Age of the Earth How to tell time: Relative Time: putting events in time order. Law of Superposition Correlation of rock layers using fossils. There is a wonderful order and

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 37 Modern Physics Nuclear Physics Radioactivity Nuclear reactions http://www.physics.wayne.edu/~apetrov/phy2140/ Chapter 29 1 Lightning Review Last lecture: 1. Nuclear

More information

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology

1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology 1) Radioactive Decay, Nucleosynthesis, and Basic Geochronology Reading (all from White s Notes) Lecture 1: Introduction And Physics Of The Nucleus: Skim Lecture 1: Radioactive Decay- Read all Lecture 3:

More information

Unit A (225 m.y. old) Unit B (how old is it?) Unit C (275 m.y. old)

Unit A (225 m.y. old) Unit B (how old is it?) Unit C (275 m.y. old) Radiometric Dating Relative dating techniques are based on principles can be used to differentiate the relative age rock units and landforms. Relative dating techniques by themselves cannot be used to

More information

What we ll learn today:!

What we ll learn today:! Learning Objectives (LO) Lecture 17: Age Dating and Earth History Read: Chapter 12-13 Homework #14 What we ll learn today:! 1. 1. Define the concept of half-life and absolute age dating! 2. 2. List the

More information

An 80 milligram sample of a radioactive isotope decays to 5 milligrams in 32 days. What is the half-life of this element?

An 80 milligram sample of a radioactive isotope decays to 5 milligrams in 32 days. What is the half-life of this element? An 80 milligram sample of a radioactive isotope decays to 5 milligrams in 32 days. What is the half-life of this element? A. 8 days B. 2 days C. 6 days D. 4 days An original sample of a radioisotope had

More information

Geol. 655 Isotope Geochemistry

Geol. 655 Isotope Geochemistry GEOCHRONOLOGY I We have now discussed many of the basic aspects of radiogenic isotope geochemistry and we can now consider how it is applied to solving questions about the Earth. We will begin by discussing

More information

3 Absolute Dating: A Measure of Time

3 Absolute Dating: A Measure of Time CHAPTER 3 3 Absolute Dating: A Measure of Time SECTION The Rock and Fossil Record BEFORE YOU READ After you read this section, you should be able to answer these questions: How can geologists learn the

More information

RADIOACTIVE DECAY - MEASUREMENT OF HALF-LIFE

RADIOACTIVE DECAY - MEASUREMENT OF HALF-LIFE MP9 OBJECT 17 RADIOACTIVE DECAY - MEASUREMENT OF HALF-LIFE The object of this experiment is to measure the half-life of the beta decay of Indium-116. THEORY Reference: Section 29.3, College Physics, Serway

More information

Geologic History Unit Notes. Relative age - general age statement like older, younger more recent

Geologic History Unit Notes. Relative age - general age statement like older, younger more recent Geologic History Unit Notes Relative age - general age statement like older, younger more recent Absolute age - specific age like 4,600 million years old Fundamental Principles of Relative Dating 1. Uniformitarianism

More information

Geochronology. study of 'Earth time' Historical Geology. study of the physical and biological evolution of the Earth & its life

Geochronology. study of 'Earth time' Historical Geology. study of the physical and biological evolution of the Earth & its life http://talc.geo.umn.edu/courses/100i/1001kirkby/ss6.html Page I of II 3/17/2006 Geochronology study of 'Earth time' time scale of geologic processes & methods of measuring time Historical Geology study

More information

Unit 2 Lesson 3 Absolute Dating. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 3 Absolute Dating. Copyright Houghton Mifflin Harcourt Publishing Company It s About Time! How can the absolute age of rock be determined? Determining the actual age of an event or object in years is called absolute dating. Scientists often use radioactive isotopes to find the

More information

Lecture 3 Radioactivity

Lecture 3 Radioactivity Objectives In this lecture you will learn the following We shall begin with a general discussion on the nucleus. Learn about some characteristics of nucleons. Understand some concepts on stability of a

More information

Chemistry 201: General Chemistry II - Lecture

Chemistry 201: General Chemistry II - Lecture Chemistry 201: General Chemistry II - Lecture Dr. Namphol Sinkaset Chapter 21 Study Guide Concepts 1. There are several modes of radioactive decay: (1) alpha (α) decay, (2) beta (β) decay, (3) gamma (γ)

More information

LECTURE 24 HALF-LIFE, RADIOACTIVE DATING, AND BINDING ENERGY. Instructor: Kazumi Tolich

LECTURE 24 HALF-LIFE, RADIOACTIVE DATING, AND BINDING ENERGY. Instructor: Kazumi Tolich LECTURE 24 HALF-LIFE, RADIOACTIVE DATING, AND BINDING ENERGY Instructor: Kazumi Tolich Lecture 24 2 Reading chapter 32.3 to 32.4 Half-life Radioactive dating Binding energy Nuclear decay functions 3 If

More information

Dating. AST111 Lecture 8a. Isotopic composition Radioactive dating

Dating. AST111 Lecture 8a. Isotopic composition Radioactive dating Dating Martian Lafayette Asteroid with patterns caused by the passaged through the atmosphere. Line on the fusion crust were caused by beads of molten rock. AST111 Lecture 8a Isotopic composition Radioactive

More information

Natural Radiation K 40

Natural Radiation K 40 Natural Radiation There are a few radioisotopes that exist in our environment. Isotopes that were present when the earth was formed and isotopes that are continuously produced by cosmic rays can exist

More information

26.6 The theory of radioactive decay Support. AQA Physics. Decay constant and carbon dating. Specification reference. Introduction.

26.6 The theory of radioactive decay Support. AQA Physics. Decay constant and carbon dating. Specification reference. Introduction. 6.6 The theory of radioactive Decay constant and carbon dating Specification reference 3.8.1.3 MS 0.1, 0., 0.3, 0.5,.,.3,.4 Introduction You have already studied half-life, the definition and various means

More information

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Lecture 10 Radioactive Decay of Nuclei 1 Some naturally occurring substances have the property

More information

Experiment Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Experiment Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Experiment 10 1 Introduction Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Some radioactive isotopes formed billions of years ago have half- lives so long

More information

crater density: number of craters per unit area on a surface

crater density: number of craters per unit area on a surface Reading for this week: Chap. 9, Sect. 9.4-9.5, Chap. 10, Sect. 10.1-10.5 Homework 6: due in recitation Friday/Monday (Oct. 13, 16) Midterm grade estimates posted on Blackboard this week Astro 120 Fall

More information

Topics: The Layers of the Earth and its Formation Sources of Heat Volcanos and Earthquakes Rock Cycle Rock Types Carbon Tax

Topics: The Layers of the Earth and its Formation Sources of Heat Volcanos and Earthquakes Rock Cycle Rock Types Carbon Tax Topics: The Layers of the Earth and its Formation Sources of Heat Volcanos and Earthquakes Rock Cycle Rock Types Carbon Tax Essay Question on Carbon Tax 1. Drilling 2. Volcanic Activity 3. Laboratory experiments

More information

Radiogenic Isotopes. W. F. McDonough 1 1 Department of Earth Sciences and Research Center for

Radiogenic Isotopes. W. F. McDonough 1 1 Department of Earth Sciences and Research Center for Radiogenic Isotopes W. F. McDonough 1 1 Department of Earth Sciences and Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan (Dated: May 17, 2018) I. SUMMRY Isotope systems

More information

How Old is the Solar System?

How Old is the Solar System? How Old is the Solar System? Earth s crust is constantly changing due to volcanoes, erosion, and plate tectonics. So Earth rocks do not preserve a record of the early days of the Solar System. Instead,

More information

Geol. 655 Isotope Geochemistry

Geol. 655 Isotope Geochemistry GEOCHRONOLOGY I We have now discussed many of the basic aspects of radiogenic isotope geochemistry and we can now consider how it is applied to solving questions about the Earth. We will begin by discussing

More information

Bishop Ussher (1650) Absolute Age Dating. Early attempts at the age of the Earth

Bishop Ussher (1650) Absolute Age Dating. Early attempts at the age of the Earth Absolute Age Dating Relative age dating just says that one rock unit or geologic event is younger or older than another Dave is older than Steve Absolute age dating gives a number to the age Dave is 89

More information

ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION

ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION ATOMIC PHYSICS Practical 11 STUDY OF DECOMPOSITION OF RADIOACTIVE RADON 1. INTRODUCTION I. People usually receive radiation mainly from natural sources. About one-third of the natural radiation is related

More information

KISS Resources for NSW Syllabuses & Australian Curriculum.

KISS Resources for NSW Syllabuses & Australian Curriculum. Discusssion / Activity 1 Structure of the Earth Student Name... 1. Outline how we think the Sun & planets formed. The solar system formed from a cloud of gas & dust. Part of the cloud collapsed under gravity

More information

Geologic Time. Absolute versus relative time. Absolute time. Absolute time: time in specific units (hours, days, years, etc.)

Geologic Time. Absolute versus relative time. Absolute time. Absolute time: time in specific units (hours, days, years, etc.) Absolute versus relative time Absolute time: time in specific units (hours, days, years, etc.) Absolute versus Relative Time Early estimates of the age of the Earth Basic Atomic Chemistry Radiometric Dating

More information

The Earth. February 26, 2013

The Earth. February 26, 2013 The Earth February 26, 2013 The Planets 2 How long ago did the solar system form? Definition: Cosmic Rays High-energy particles that constantly bombard objects in space Mostly they are hydrogen nuclei

More information

To get you thinking What natural process is responsible for the appearance of these rocks? Rocks and the Rock Cycle

To get you thinking What natural process is responsible for the appearance of these rocks? Rocks and the Rock Cycle To get you thinking What natural process is responsible for the appearance of these rocks? Rocks and the Rock Cycle Bell Ringer Name the 3 types of rock. Is one type of rock able to change into a different

More information

GEOL 562 Notes: U-Series and Th-series nuclides. Guide Questions: Reading: White, Lecture 10

GEOL 562 Notes: U-Series and Th-series nuclides. Guide Questions: Reading: White, Lecture 10 GEOL 562 Notes: U-Series and Th-series nuclides Reading: White, Lecture 10 Motivation: Up to now we have dealt with long half-life nuclides (all left over from the birth of the solar system). What are

More information

The Geiger Counter. Gavin Cheung. April 10, 2011

The Geiger Counter. Gavin Cheung. April 10, 2011 The Geiger Counter Gavin Cheung 0938173 April 10, 011 Abstract The half life of indium-116 was found using a Geiger counter. The half life was found to be 3300 ± 50s. The dead time of the Geiger counter

More information

Science 10. Unit 4:Physics. Block: Name: Book 3: radioactivty

Science 10. Unit 4:Physics. Block: Name: Book 3: radioactivty Science 10 Unit 4:Physics Book 3: radioactivty Name: Block: 1 5.1 : Radioactivity & Nuclear Equations Isotopes are versions of an element with the same but Because the number of protons is the same for,

More information

1. This question is about the Rutherford model of the atom.

1. This question is about the Rutherford model of the atom. 1. This question is about the Rutherford model of the atom. (a) Most alpha particles used to bombard a thin gold foil pass through the foil without a significant change in direction. A few alpha particles

More information

Nuclear Powe. Bronze Buddha at Hiroshima

Nuclear Powe. Bronze Buddha at Hiroshima Nuclear Powe Bronze Buddha at Hiroshima Nuclear Weapons Nuclear Power Is it Green & Safe? Nuclear Waste 250,000 tons of Spent Fuel 10,000 tons made per year Health Effects of Ionizing Radiation Radiocarbon

More information

Geologic Time: Hutton s Outcrop at Siccar Point. How do we determine age (relative & absolute) What is the age of the earth? How do we know?

Geologic Time: Hutton s Outcrop at Siccar Point. How do we determine age (relative & absolute) What is the age of the earth? How do we know? Geologic Time: How do we determine age (relative & absolute) What is the age of the earth? How do we know? What is the age of the Earth? A. 4.44 million years B. 1 million years C. 4.55 billion years D.

More information

Radioactivity and energy levels

Radioactivity and energy levels Radioactivity and energy levels Book page 497-503 Review of radioactivity β ; Free neutron proton β- decay is continuous β : Proton in nucleus neutron antineutrino neutrino Summary of useful equations

More information

Chapter 6A Solving Exponential and Logarithmic Equations. Solve x+5 = x = 9 x x 2 = x 4. 5 x = 18

Chapter 6A Solving Exponential and Logarithmic Equations. Solve x+5 = x = 9 x x 2 = x 4. 5 x = 18 Fry Texas A&M University!! Math 150!! Chapter 6!! Fall 2014! 1 Chapter 6A Solving Exponential and Logarithmic Equations Solve 1. 4 3x+5 = 16 2. 3 x = 9 x+5 3. 8 x 2 = 1 4 5 9 x 4. 5 x = 18 Fry Texas A&M

More information

Nuclear Reactions Homework Unit 13 - Topic 4

Nuclear Reactions Homework Unit 13 - Topic 4 Nuclear Reactions Homework Unit 13 - Topic 4 Use the laws of conservation of mass number and charge to determine the identity of X in the equations below. Refer to a periodic table as needed. 222 a. Rn

More information

G-100 Lectures 12 & 13 Clocks in Rocks

G-100 Lectures 12 & 13 Clocks in Rocks A riddle: G-100 Lectures 12 & 13 Clocks in Rocks This thing all things devours: Birds, beasts, trees, flowers; Gnaws iron, bites steel, Grinds hard stones to meal; Slays king, ruins town, And beats high

More information

Guided Notes Geologic History

Guided Notes Geologic History Guided Notes Geologic History Relative Age Sequence of Events Correlation Techniques Volcanic Ash Markers Index Fossils Geologic Time Scale Evolution Radioactive Dating 9) How has Earth changed over time?

More information

HISTORICAL NOTES. Catastrophism. James Usher, mid-1600s, concluded Earth was only a few thousand years old

HISTORICAL NOTES. Catastrophism. James Usher, mid-1600s, concluded Earth was only a few thousand years old 1 GEOLOGIC TIME HISTORICAL NOTES Catastrophism James Usher, mid-1600s, concluded Earth was only a few thousand years old Uniformitarianism Charles Lyell published Principles of Geology 1830. 3 HOW DO WE

More information

Radioactivity Solutions - Lecture 28B (PHY315)

Radioactivity Solutions - Lecture 28B (PHY315) Radioactivity s - Lecture 8B (PHY35) Problem solutions.strategy In beta-minus decay, the atomic number Z increases by while the mass number A remains constant. Use Eq. (9-). 4 For the parent 9 K Z 9, so

More information

Isotope Geochemistry

Isotope Geochemistry Introduction BASICS OF RADIOACTIVE ISOTOPE GEOCHEMISTRY We can broadly define two principal applications of radiogenic isotope geochemistry. The first is geochronology. Geochronology makes use of the constancy

More information

Introduction to Archaeology: Notes 9 Chronology, part 2 Copyright Bruce Owen 2009 Trapped-charge dating methods Several different kinds, one basic

Introduction to Archaeology: Notes 9 Chronology, part 2 Copyright Bruce Owen 2009 Trapped-charge dating methods Several different kinds, one basic Introduction to Archaeology: Notes 9 Chronology, part 2 Copyright Bruce Owen 2009 Trapped-charge dating methods Several different kinds, one basic principle All measure the accumulated damage (displaced

More information

Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado

Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Experiment 10 1 Introduction Radioactive Decay of 220 Rn and 232 Th Physics 2150 Experiment No. 10 University of Colorado Some radioactive isotopes formed billions of years ago have half-lives so long

More information

1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA PLUS DECAY 1.5 NEUTRON EMISSION 1.6 SPONTANEOUS FISSION

1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA PLUS DECAY 1.5 NEUTRON EMISSION 1.6 SPONTANEOUS FISSION Chapter NP-3 Nuclear Physics Decay Modes and Decay Rates TABLE OF CONTENTS INTRODUCTION OBJECTIVES 1.0 RADIOACTIVE DECAY 1.1 ALPHA DECAY 1.2 BETA MINUS DECAY 1.3 GAMMA EMISSION 1.4 ELECTRON CAPTURE/BETA

More information

Earth Science 11: Earth Materials: Rock Cycle

Earth Science 11: Earth Materials: Rock Cycle Name: Date: Earth Science 11: Earth Materials: Rock Cycle Chapter 2, pages 44 to 46 2.1: Rock Cycle What is a Rock? A solid mass of mineral or mineral-like matter that occurs naturally as part of our planet

More information

II. Knowing and Understanding the Six Principles of Stratigraphy:

II. Knowing and Understanding the Six Principles of Stratigraphy: Student Name(s): Physical Geology 101 Laboratory Relative Dating of Rocks Using Stratigraphic Principles Grade: I. Introduction & Purpose: The purpose of this lab is to learn and apply the concepts of

More information

Rocks: Stony Stalwarts: Adapted from:

Rocks: Stony Stalwarts: Adapted from: Rocks: Stony Stalwarts: Adapted from: http://science.nationalgeographic.com/science/earth/inside-the-earth/rocks-article/ Rocks are so common that most of us take them for granted cursing when we hit them

More information

The Geology of Pacific Northwest Rocks & Minerals Activity 1: Geologic Time

The Geology of Pacific Northwest Rocks & Minerals Activity 1: Geologic Time Name: Age: I. Introduction There are two types of geologic time, relative and absolute. In the case of relative time geologic events are arranged in their order of occurrence. No attempt is made to determine

More information

Physical Geography Lab Activity #07

Physical Geography Lab Activity #07 Physical Geography Lab Activity #07 Due date Name Rocks & Minerals COR Objective 8 7.1. Introduction One part of being a physical geographer is having a basic knowledge of the rocks around us. In this

More information

Chapter 11 (Geologic Time)

Chapter 11 (Geologic Time) Chapter 11 (Geologic Time) Knowing the chronology of events is crucial for interpreting geologic history. One of the early figures in geology, James Hutton, observed of geologic time that there is "No

More information

5. Chronostratigraphy and Geological Time

5. Chronostratigraphy and Geological Time 5. Chronostratigraphy and Geological Time Chronostratigraphy is the unifying construct that defines (ideally by international agreement) boundaries for systems, series, and stages. Chronostratigraphy is

More information

Earth Science - Lab #11 Geologic Time

Earth Science - Lab #11 Geologic Time Earth Science - Lab #11 Geologic Time Page # Below are standard geologic symbols for the 3 main categories of rocks. Although these symbols are not universal, they are generally accepted by most geologists

More information

Phys 214. Planets and Life

Phys 214. Planets and Life Phys 214. Planets and Life Dr. Cristina Buzea Department of Physics Room 259 E-mail: cristi@physics.queensu.ca (Please use PHYS214 in e-mail subject) Lecture 10. Geology and life. Part 1 (Page 99-123)

More information

Lecture Outline Friday Feb. 21 Wednesday Feb. 28, 2018

Lecture Outline Friday Feb. 21 Wednesday Feb. 28, 2018 Lecture Outline Friday Feb. 21 Wednesday Feb. 28, 2018 Questions? Key Points for today What are the 5 relative age dating principles and how do you apply the principles to determine a geologic history

More information

Radioactive Clocks or Radiometric Dating

Radioactive Clocks or Radiometric Dating Radioactive Clocks or Radiometric Dating The time span of relevant events varies from a few centuries to billions of years historians archeologists, anthropologists, geologists, astrophysicists Radioactive

More information

How old is Earth? Bishop of Ireland James Ussher

How old is Earth? Bishop of Ireland James Ussher Geologic Time How old is Earth? Bishop of Ireland James Ussher Not so long ago, the Bible was regarded as the ultimate source of truth. Through the 18th and 19th centuries it was believed that the world

More information

Chapter 3 Radioactivity

Chapter 3 Radioactivity Chapter 3 Radioactivity Marie Curie 1867 1934 Discovered new radioactive elements Shared Nobel Prize in physics in 1903 Nobel Prize in Chemistry in 1911 Radioactivity Radioactivity is the spontaneous emission

More information

Determining Absolute Age

Determining Absolute Age CHAPTER 8 SECTION 2 The Rock Record Determining Absolute Age KEY IDEAS As you read this section, keep these questions in mind: Why can t scientists use rates of erosion and deposition as the only ways

More information

Clues to Earth s Past. Fossils and Geologic Time

Clues to Earth s Past. Fossils and Geologic Time Clues to Earth s Past Fossils and Geologic Time Fossils A. Paleontologists study fossils and reconstruct the appearance of animals. Fossils B. Fossils remains, imprints, or traces of prehistoric organisms

More information

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity

Radiation and Radioactivity. PHYS 0219 Radiation and Radioactivity Radiation and Radioactivity 1 Radiation and Radioactivity This experiment has four parts: 1. Counting Statistics 2. Gamma (g) Ray Absorption Half-length and shielding 3. 137 Ba Decay Half-life 4. Dosimetry

More information

Notepack 19. AIM: How can we tell the age of rocks? Do Now: Regents Question: Put the layers of rock in order from oldest to youngest.

Notepack 19. AIM: How can we tell the age of rocks? Do Now: Regents Question: Put the layers of rock in order from oldest to youngest. Notepack 19 AIM: How can we tell the age of rocks? Do Now: Regents Question: Put the layers of rock in order from oldest to youngest. Geological Time Geological Time refers to time as it relates to the

More information

GEOLOGY 1--Physical Geology Lecture #2, 2/9/2006

GEOLOGY 1--Physical Geology Lecture #2, 2/9/2006 Topics: GEOLOGY 1--Physical Geology Lecture #2, 2/9/2006 Lithospheric plates and their motions Types of plate boundaries or margins The present is the key to the past Relative Time Numerical Age Age of

More information

Diffusion in minerals and melts

Diffusion in minerals and melts Diffusion in minerals and melts There are three types of diffusion in a rock Surface diffusion essentially over a 2 dimensional area Grain-boundary diffusion along grain boundaries, slower than surface

More information

The previous images display some of our hopes and fears associated with nuclear radiation. We know the images, and some of the uses, but what is Nuclear Radiation and where does it come from? Nuclide In

More information

Answers. Rocks. Year 8 Science Chapter 8

Answers. Rocks. Year 8 Science Chapter 8 Answers Rocks Year 8 Science Chapter 8 p171 1 Rocks are made up of minerals such as quartz, feldspars, micas, and calcite. Different rocks are made up of different combinations of minerals. 2 Igneous,

More information

Introduction to Nuclear Engineering. Ahmad Al Khatibeh

Introduction to Nuclear Engineering. Ahmad Al Khatibeh Introduction to Nuclear Engineering Ahmad Al Khatibeh CONTENTS INTRODUCTION (Revision) RADIOACTIVITY Radioactive Decay Rates Units of Measurement for Radioactivity Variation of Radioactivity Over Time.

More information

Geology 101 Lab Worksheet: Geologic Time

Geology 101 Lab Worksheet: Geologic Time Geology 101 Lab Worksheet: Geologic Time Name: Refer to the Geologic Time Lab for the information you need to complete this worksheet (http://commons.wvc.edu/rdawes/g101ocl/labs/geotimelab.html). All calculations

More information

GEOL 562 Notes: U-Series and Th-series nuclides. Guide Questions: Reading: White, Lecture 10 Faure and Mensing Ch. 20

GEOL 562 Notes: U-Series and Th-series nuclides. Guide Questions: Reading: White, Lecture 10 Faure and Mensing Ch. 20 GEOL 562 Notes: U-Series and Th-series nuclides Reading: White, Lecture 0 Faure and Mensing Ch. 20 Motivation: Up to now we have dealt with long half-life nuclides (all left over from the birth of the

More information

Environmental Applications

Environmental Applications Environmental Applications Gamma ray Spectrometry Paul Nolan University of Liverpool Gamma ray spectrometry of environmental samples is a standard technique Germanium detector Programs available for spectrum

More information

7.1 Atomic Theory and Radioactive Decay

7.1 Atomic Theory and Radioactive Decay 7.1 Atomic Theory and Radioactive Decay exists all around us. This radiation consists of high energy particles or waves being emitted from a variety of materials. is the release of high energy particles

More information

Plate tectonics, rock cycle

Plate tectonics, rock cycle Dikes, Antarctica Rock Cycle Plate tectonics, rock cycle The Rock Cycle A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals The rock cycle shows how one

More information

GEOLOGIC EVENTS SEDIMENTARY ROCKS FAULTING FOLDING TILTING

GEOLOGIC EVENTS SEDIMENTARY ROCKS FAULTING FOLDING TILTING RELATIVE TIME (DATING) ABSOLUTE TIME (DATING) GEOLOGIC TIME List the order in which events occurred, without regard to the amount of time separating them. Refers to the age of a rock in relation to other

More information

Radioactivity is the spontaneous disintegration of nuclei. The first radioactive. elements discovered were the heavy atoms thorium and uranium.

Radioactivity is the spontaneous disintegration of nuclei. The first radioactive. elements discovered were the heavy atoms thorium and uranium. Chapter 16 What is radioactivity? Radioactivity is the spontaneous disintegration of nuclei. The first radioactive elements discovered were the heavy atoms thorium and uranium. These heavy atoms and others

More information

CHAPTER 8 DETERMINING EARTH S AGE RELATIVE AND ABSOLUTE ROCK AGES. Loulousis

CHAPTER 8 DETERMINING EARTH S AGE RELATIVE AND ABSOLUTE ROCK AGES. Loulousis CHAPTER 8 DETERMINING EARTH S AGE RELATIVE AND ABSOLUTE ROCK AGES Loulousis Bellringer What are 5 visual clues that help you determine if someone is older or younger than you? Color of hair Wrinkles in

More information

Earth s Structure and Surface

Earth s Structure and Surface Earth s Structure and Surface Structure of the Earth The earth is thought have originated about 4.5 billion years ago from a cloud or clouds of dust. The dust was the remains of a huge cosmic explosion

More information

Radioactive Decay and Radiometric Dating

Radioactive Decay and Radiometric Dating Radioactive Decay and Radiometric Dating Extra credit: chapter 7 in Bryson See online (link fixed) or moodle Radioactivity and radiometric dating Atomic nucleus Radioactivity Allows us to put numerical

More information

Quiz Three (9:30-9:35 AM)

Quiz Three (9:30-9:35 AM) Quiz Three (9:30-9:35 AM) UNIVERSITY OF SOUTH ALABAMA GY 112: Earth History Lecture 7 & 8: Dating Instructor: Dr. Douglas W. Haywick Last Time 1. William Smith and Water 2. Stratigraphic Principles 3.

More information

Chapter 44 Solutions. So protons and neutrons are nearly equally numerous in your body, each contributing mass (say) 35 kg:

Chapter 44 Solutions. So protons and neutrons are nearly equally numerous in your body, each contributing mass (say) 35 kg: Chapter 44 Solutions *44. An iron nucleus (in hemoglobin) has a few more neutrons than protons, but in a typical water molecule there are eight neutrons and ten protons. So protons and neutrons are nearly

More information

ESS 312 Geochemistry Simulating Earth degassing using radionuclides

ESS 312 Geochemistry Simulating Earth degassing using radionuclides ESS 312 Geochemistry Simulating Earth degassing using radionuclides CHEMICAL AND ISOTOPIC EVOLUTION OF A TWO-RESERVOIR SYSTEM In lectures we discussed radioactive decay and build-up of a daughter isotope

More information

CHAPTER 2: EVOLUTION- CHANGE ACROSS TIME. Examining the evidence of change across time.

CHAPTER 2: EVOLUTION- CHANGE ACROSS TIME. Examining the evidence of change across time. CHAPTER 2: EVOLUTION- CHANGE ACROSS TIME Examining the evidence of change across time. WHERE DID THE THEORY OF EVOLUTION COME FROM? The theory of evolution was created in response to observations and discoveries

More information

Chem 100 Section Experiment 12 Name Partner s Name. Radioactivity

Chem 100 Section Experiment 12 Name Partner s Name. Radioactivity Chem 100 Section Experiment 12 Name Partner s Name Introduction Radioactivity This experiment is designed to enhance your understanding of the process known as radioactivity. In this exercise you will

More information

Dating the age of the Earth

Dating the age of the Earth Dating the age of the Earth What is the age of the Earth? A. 4.44 million years B. 1 million years C. 4.55 billion years D. 10000 years Discuss this with your neighbor: How do we know the age of the Earth?

More information

Measuring the Age of things (Astro 202 2/12/08) Nomenclature. Different Elements. Three Types of Nuclear Decay. Carbon 14 Decay.

Measuring the Age of things (Astro 202 2/12/08) Nomenclature. Different Elements. Three Types of Nuclear Decay. Carbon 14 Decay. Measuring the Age of things (Astro 202 2/12/08) Nomenclature + Proton Different Elements Neutron Electron Element: Number of Protons Carbon 12 6 protons 6 neutrons 6 electrons Nitrogen 14 7 protons 7 neutrons

More information

EARTH S ENERGY SOURCES

EARTH S ENERGY SOURCES EARTH S ENERGY SOURCES The geological processes that shape the Earth s surface are powered by two major sources of energy; geothermal heat from the Earth s interior and external energy from the sun. The

More information

Telling Geologic Time

Telling Geologic Time Telling Geologic Time Trilobite fossils these arthropods went extinct during the great extinction at the end of the Permian Period ~250 Ma ka = kilo-annum Ma = Mega-annum Ga = Giga-annum Relative dating

More information

10.4 Half-Life. Investigation. 290 Unit C Radioactivity

10.4 Half-Life. Investigation. 290 Unit C Radioactivity .4 Half-Life Figure Pitchblende, the major uranium ore, is a heavy mineral that contains uranium oxides, lead, and trace amounts of other radioactive elements. Pierre and Marie Curie found radium and polonium

More information

Geologic Time. How old is Earth?

Geologic Time. How old is Earth? Geologic Time How old is Earth? Not so long ago, the Bible was regarded as the ultimate source of truth. Bishop of Ireland James Ussher Through the 18th and 19th centuries it was believed that the world

More information

Produced Water Radioactivity

Produced Water Radioactivity Produced Water Radioactivity Regulation Lax as Gas Wells Tainted Water Hits Rivers, Ian Urbina, NYT, 2/26/11 Tad Patzek, (Petroleum), UT Austin February 28, 2011, PGE Summary of Conclusions The total alpha

More information