3 Absolute Dating: A Measure of Time

Size: px
Start display at page:

Download "3 Absolute Dating: A Measure of Time"

Transcription

1 CHAPTER 3 3 Absolute Dating: A Measure of Time SECTION The Rock and Fossil Record BEFORE YOU READ After you read this section, you should be able to answer these questions: How can geologists learn the exact age of a rock? What is radiometric dating? National Science Education Standards ES 2b What Is Radioactive Decay? Geologists can use the methods of relative dating to learn whether a rock is older or younger than another rock. However, they often also need to know exactly how old a rock is. Finding the exact age of an object is called absolute dating. One way to learn the age of a rock is to use unstable atoms. All matter, including rock, is made of atoms. All atoms are made of three kinds of particles: protons, neutrons, and electrons. All of the atoms of an element, such as uranium, have the same number of protons. However, some atoms of an element have different numbers of neutrons. Atoms of an element that have different numbers of neutrons are called isotopes. Many isotopes are stable and are always in the same form. However, other isotopes are unstable and can break down into new isotopes of different elements. An unstable isotope is also called a radioactive isotope. Radioactive decay happens when a radioactive isotope breaks down into a new isotope. STUDY TIP Learn New Words As you read, underline words that you don t understand. When you learn what they mean, write the words and their definitions in your notebook. 1. Define What are isotopes? Proton Neutron This isotope is unstable, or radioactive. Electron Radioactive isotopes can decay in different ways. During one kind of radioactive decay, a neutron becomes a proton and an electron. The electron moves to a different part of the atom. After radioactive decay, an isotope of a new element is left. The new isotope is stable. TAKE A LOOK 2. Compare How is a radioactive isotope different from a stable isotope? Interactive Textbook 45 The Rock and Fossil Record

2 SECTION 3 Absolute Dating: A Measure of Time continued Critical Thinking 3. Infer What happens to the amount of parent isotope in a rock with time? What happens to the amount of daughter isotope? RADIOMETRIC DATING A radioactive isotope is also called a parent isotope. Parent isotopes break down into daughter isotopes. Because of radioactive decay, the amounts of parent and daughter isotopes in a rock are always changing. However, they change at a constant, known rate. Therefore, scientists can learn the age of a rock by studying the amounts of parent and daughter isotopes in it. Radiometric dating is the process of determining the absolute age of a sample based on the ratio of parent isotope to daughter isotope. In order to use radiometric dating, you need to know the half-life of the parent isotope. The half-life of a radioactive isotope is how long it takes for half of a sample of the isotope to decay. For example, imagine that a parent isotope has a half-life of 10,000 years. A sample of this isotope has a mass of 12 mg. After 10,000 years, only one-half, or 6 mg, of the sample will be left. Math Focus 4. Calculate Fill in the blank lines in the figure with the mass of parent isotope that is left at each step. The half-lives of different isotopes can be very different. Some parent isotopes have half-lives of more than 4 billion years. Others have half-lives of only about 6,000 years. Very old rocks can be dated only if isotopes with long half-lives are used. Very young rocks can be dated only if isotopes with short half-lives are used. How do scientists know which isotope to use to find the age of a rock? They use information about the relative age of the rock to guess about how old the rock is. Then, they find its age, using an isotope that is useful for dating rocks of that age. Interactive Textbook 46 The Rock and Fossil Record

3 SECTION 3 Absolute Dating: A Measure of Time continued What Isotopes Can Be Used for Radiometric Dating? Remember that different parent isotopes have different half-lives. Each parent isotope can be used to date rocks of different ages. POTASSIUM-ARGON METHOD Potassium-40 is one isotope that is often used in radiometric dating. It has a half-life of 1.3 billion years. It decays to produce the daughter isotope argon-40. Scientists usually use the potassium-argon method to date rocks that are older than about 1 million years. URANIUM-LEAD METHOD Uranium-238 is also used for radiometric dating. It has a half-life of 4.5 billion years. It decays to produce lead-206. Scientists use the uranium-lead method to date rocks that are older than about 10 million years. 5. Explain Using relative dating, a scientist learns that a rock is about 50,000 years old. Can the scientist use the potassium-argon method to find the exact age of this rock? Explain your answer. RUBIDIUM-STRONTIUM METHOD Rubidium-87 is also used for radiometric dating. It has a half-life of about 48 billion years. It decays to produce the daughter isotope strontium-87. The half-life of rubidium-87 is very long. Therefore, this method is only useful for dating rocks older than about 10 million years. CARBON-14 METHOD Carbon-14 is a radioactive isotope of the element carbon. Carbon-14, along with the other isotopes of carbon, combines with oxygen to form the gas carbon dioxide. Plants use carbon dioxide to make food. Therefore, living plants are always taking in small amounts of carbon-14. Animals that eat plants also take in carbon-14 from the plants. When a plant or animal dies, it stops taking in carbon-14. The carbon-14 already in its body starts to decay to produce nitrogen-14. Carbon-14 has a short half-life: only 5,730 years. Therefore, this method can be used to date the remains of organisms that died in the last 50,000 years. 6. Describe How do animals take in carbon-14? Parent isotope Daughter isotope Half-life Potassium-40 Uranium-238 Rubidium-87 Carbon-14 TAKE A LOOK 7. Identify Fill in the spaces in the chart to show the features of different parent isotopes. Interactive Textbook 47 The Rock and Fossil Record

4 Section 3 NSES ES 2b SECTION VOCABULARY absolute dating any method of measuring the age of an event or object in years half-life the time required for half of a sample of a radioactive isotope to break down by radioactive decay to form a daughter isotope isotope an atom that has the same number of protons (or the same atomic number) as other atoms of the same element do but that has a different number of neutrons (and thus a different atomic mass) radioactive decay the process in which a radioactive isotope tends to break down into a stable isotope of the same element or another element radiometric dating a method of determining the absolute age of an object by comparing the relative percentages of a radioactive (parent) isotope and a stable (daughter) isotope 1. Describe How is radioactive decay related to radiometric dating? 2. Calculate A parent isotope has a half-life of 1 million years. If a rock contained 20 mg of the parent isotope when it formed, how much parent isotope would be left after 2 million years? Show your work. 3. List What are two radioactive isotopes that are useful for dating rocks that are older than 10 million years? 4. Apply Concepts A geologist uses relative dating methods to guess that a rock is between 1 million and 5 million years old. What is one radioactive isotope the geologist can use to learn the exact age of the rock? Explain your answer. 5. Infer Why can t geologists use the carbon-14 method to date igneous rocks? Why can t they use the carbon-14 method to date dinosaur bones? Interactive Textbook 48 The Rock and Fossil Record

5 F Inside the Restless Earth Answer Key continued 6. igneous rock 7. a break in Earth s crust 8. Possible answers: There was no deposition happening at that time; there was a lot of erosion happening at that time. 9. erosion, nondeposition 10. a place where part of a sequence of parallel rocks is missing 11. Rocks are pushed up and eroded. Later, sediment is deposited on top of the eroded rock. 12. The rock layers below an angular unconformity are tilted and may be any kind of rock. 1. An unconformity can form if no sediment is deposited for a long time. An unconformity can also form if layers of rock are eroded away. 2. an angular unconformity 3. The youngest rock layers are at the top, and the oldest rock layers are at the bottom. 4. to interpret rock sequences and to identify rock layers 5. A sequence of rock layers is uplifted and eroded. Then, sediment is deposited on the exposed rock layers. After a while, the sediment turns into rock. SECTION 3 ABSOLUTE DATING: A MEASURE OF TIME 1. atoms of an element with different numbers of neutrons 2. Radioactive isotopes can break down. Stable isotopes do not break down. 3. The amount of parent isotope decreases, and the amount of daughter isotope increases mg 5. No, because K-Ar dating can be used only for rocks that are older than about 1 million years. 6. by eating plants 7. Parent isotope Daughter isotope Half-life Potassium-40 argon billion years Uranium-238 lead billion years Rubidium-87 strontium billion years Carbon-14 nitrogen-14 5,730 years 1. Radiometric dating uses known rates of radioactive decay to determine the age of a rock sample. 2. After 1 million years, there would be (1/2) (20 mg) 10 mg of parent isotope remaining. After 2 million years, (1/2) (1/2) (20 mg) 5 mg of parent isotope would remain. 3. uranium-238, rubidium Potassium-40, because it can be used to date rocks that are older than about 1 million years. 5. C-14 dating can be used only on the remains of living organisms. Igneous rocks do not contain these remains. C-14 dating can be used only on remains that are less than 50,000 years old. Dinosaur bones are older than this. SECTION 4 LOOKING AT FOSSILS 1. Body fossils are fossilized parts of an organism. Trace fossils are signs that an organism once existed. 2. shells, teeth, bones 3. when minerals replace an organism s tissue 4. They are not made of parts of an organism, but they show that an organism once existed. 5. an impression left in sediment 6. the kinds of organisms that lived in the past; how the environment has changed; how organisms have changed 7. Organisms that had hard parts or lived in certain environments were more likely to be fossilized when they died. 8. They compare fossils. They also compare fossils to living organisms. 9. Answers include: according to their age, by absolute and relative dating methods 10. their shells 1. tracks, burrows, coprolites 2. Only a small fraction of the organisms that have existed in Earth s history have been fossilized. Many fossils have not yet been discovered. 3. A beetle, because fossils in amber are made when an organism gets stuck in tree sap. Smaller organisms that can be found on trees are more likely than other organisms to become fossils in amber. 4. The climate was probably much warmer when the plant was alive. 5. It must be common throughout the world. It must have existed for a relatively short geologic time. It must be easy to identify. Interactive Textbook Answer Key 38 Inside the Restless Earth

Unit 2 Lesson 3 Absolute Dating. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 3 Absolute Dating. Copyright Houghton Mifflin Harcourt Publishing Company It s About Time! How can the absolute age of rock be determined? Determining the actual age of an event or object in years is called absolute dating. Scientists often use radioactive isotopes to find the

More information

Determining Absolute Age

Determining Absolute Age CHAPTER 8 SECTION 2 The Rock Record Determining Absolute Age KEY IDEAS As you read this section, keep these questions in mind: Why can t scientists use rates of erosion and deposition as the only ways

More information

Geologic History Unit Notes. Relative age - general age statement like older, younger more recent

Geologic History Unit Notes. Relative age - general age statement like older, younger more recent Geologic History Unit Notes Relative age - general age statement like older, younger more recent Absolute age - specific age like 4,600 million years old Fundamental Principles of Relative Dating 1. Uniformitarianism

More information

CHAPTER 8 DETERMINING EARTH S AGE RELATIVE AND ABSOLUTE ROCK AGES. Loulousis

CHAPTER 8 DETERMINING EARTH S AGE RELATIVE AND ABSOLUTE ROCK AGES. Loulousis CHAPTER 8 DETERMINING EARTH S AGE RELATIVE AND ABSOLUTE ROCK AGES Loulousis Bellringer What are 5 visual clues that help you determine if someone is older or younger than you? Color of hair Wrinkles in

More information

Geologic Time Test Study Guide

Geologic Time Test Study Guide Geologic Time Test Study Guide Chapter 12 Section 1 The Earth s Story and Those Who First Listened 1. What is the difference between uniformitarianism and catastrophism? Uniformitarianism: the same geologic

More information

Studying The Past. II. Why Do We Study Fossils Found in Rocks?

Studying The Past. II. Why Do We Study Fossils Found in Rocks? Studying The Past I. What is a Fossil? A. Definition: The evidence or remains of once-living plants or animals II. Why Do We Study Fossils Found in Rocks? A. To provide evidence of the past existence of

More information

Notepack 19. AIM: How can we tell the age of rocks? Do Now: Regents Question: Put the layers of rock in order from oldest to youngest.

Notepack 19. AIM: How can we tell the age of rocks? Do Now: Regents Question: Put the layers of rock in order from oldest to youngest. Notepack 19 AIM: How can we tell the age of rocks? Do Now: Regents Question: Put the layers of rock in order from oldest to youngest. Geological Time Geological Time refers to time as it relates to the

More information

8. GEOLOGIC TIME LAST NAME (ALL IN CAPS): FIRST NAME: Instructions

8. GEOLOGIC TIME LAST NAME (ALL IN CAPS): FIRST NAME: Instructions LAST NAME (ALL IN CAPS): FIRST NAME: Instructions 8. GEOLOGIC TIME Refer to Exercise 6 in your Lab Manual on pages 151-168 to answer the questions in this work sheet. Your work will be graded on the basis

More information

TRACE FOSSIL FOSSIL ICE CORE RELATIVE DATING SUPERPOSITION ABSOLUTE DATING GEOLOGIC COLUMN UNIFORMITARIANISM HALF-LIFE RADIOACTIVE DECAY

TRACE FOSSIL FOSSIL ICE CORE RELATIVE DATING SUPERPOSITION ABSOLUTE DATING GEOLOGIC COLUMN UNIFORMITARIANISM HALF-LIFE RADIOACTIVE DECAY THIS IS NOT THE SAME TEST. YOU MUST ANSWER ALL QUESTIONS. NAME: Bubble the circle below U3L1 Write the letter next to the vocab term VOCAB MATCH 1 A. O B. O C. O D. O 1 2 A. O B. O C. O D. O 2 3 A. O B.

More information

Clues to Earth s Past. Fossils and Geologic Time

Clues to Earth s Past. Fossils and Geologic Time Clues to Earth s Past Fossils and Geologic Time Fossils A. Paleontologists study fossils and reconstruct the appearance of animals. Fossils B. Fossils remains, imprints, or traces of prehistoric organisms

More information

Lesson Learning Goal

Lesson Learning Goal Rock Dating Lesson Learning Goal 4/12 n I can identify current methods for measuring the age of Earth and its parts, including the law of superposition and radioactive dating. Think About It... How old

More information

Directed Reading. Section: Determining Relative Age. conclusions? UNIFORMITARIANISM. geology? of Earth? Skills Worksheet

Directed Reading. Section: Determining Relative Age. conclusions? UNIFORMITARIANISM. geology? of Earth? Skills Worksheet Skills Worksheet Directed Reading Section: Determining Relative Age 1. How old is Earth estimated to be? 2. Who originated the idea that Earth is billions of years old? 3. On what did the 18th-century

More information

6. Relative and Absolute Dating

6. Relative and Absolute Dating 6. Relative and Absolute Dating Adapted by Sean W. Lacey & Joyce M. McBeth (2018) University of Saskatchewan from Deline B, Harris R, & Tefend K. (2015) "Laboratory Manual for Introductory Geology". First

More information

Clues to Earth s Past

Clues to Earth s Past chapter 3 3 Clues to Earth s Past section 3 Absolute Ages of Rocks What You ll Learn how absolute age differs from relative age how the half-lives of isotopes are used to tell a rock s age Before You Read

More information

Chapter 09 Geologic Time

Chapter 09 Geologic Time Physical Geology 1330 116-S&R 1 Chapter 09 Geologic Time Lectures 12 & 13 Dr. Mike Murphy mmurphy@mail.uh.edu 333-S&R-1 www.uh.edu/~mamurph2/homepage.html Two Ways to Date Geologic Events 1. Relative Dating

More information

What we will learn about Fossils?

What we will learn about Fossils? The fossil Record What we will learn about Fossils? We will learn how fossils form? What types of fossils exist? How do scientists determine the age of fossils? What do fossils reveal to scientists? What

More information

Name Class Date. 1. In your own words, write a definition for each of the following terms: superposition, geologic column, and geologic time scale.

Name Class Date. 1. In your own words, write a definition for each of the following terms: superposition, geologic column, and geologic time scale. Skills Worksheet Chapter Review USING KEY TERMS 1. In your own words, write a definition for each of the following terms: superposition, geologic column, and geologic time scale. For each pair of terms,

More information

Geologic Time. What is Age? Absolute Age The number of years since the rock formed. (150 million years old, 10 thousand years old.

Geologic Time. What is Age? Absolute Age The number of years since the rock formed. (150 million years old, 10 thousand years old. Geologic Time There are 2 kinds: What is Age? Absolute Age The number of years since the rock formed. (150 million years old, 10 thousand years old.) Relative Age The age compared to the ages of other

More information

NOTES: The Fossil Record and Geologic Time

NOTES: The Fossil Record and Geologic Time NOTES: The Fossil Record and Geologic Time Vocabulary: Paleontologist Fossil record extinct Relative dating Absolute dating Geologic time scale Objectives: What are fossils? How are they made? How do scientists

More information

9. RELATIVE AND RADIOMETRIC AGES

9. RELATIVE AND RADIOMETRIC AGES LAST NAME (IN CAPS): FIRST NAME: Instructions: 9. RELATIVE AND RADIOMETRIC AGES Your work will be graded on the basis of its accuracy, completion, clarity, neatness, legibility, and correct spelling of

More information

Guided Notes Geologic History

Guided Notes Geologic History Guided Notes Geologic History Relative Age Sequence of Events Correlation Techniques Volcanic Ash Markers Index Fossils Geologic Time Scale Evolution Radioactive Dating 9) How has Earth changed over time?

More information

Station Look at the fossil labeled # 16. Identify each of the following: a. Kingdom b. Phylum c. Class d. Genus

Station Look at the fossil labeled # 16. Identify each of the following: a. Kingdom b. Phylum c. Class d. Genus Station 1 1. Look at the fossil labeled # 16. Identify each of the following: a. Kingdom b. Phylum c. Class d. Genus 2. Look at the fossil labeled #7. Identify each of the following: a. Kingdom b. Phylum

More information

Earth s Changing Surface Chapter 4

Earth s Changing Surface Chapter 4 Name Hour Due Date Earth s Changing Surface Chapter (You do not need your book) Page 1 Fossils Summary Page 2 Traces of Tracks Page 3 Finding the Relative Age of Rocks Summary. Page - Finding the Relative

More information

Studying The Past. II. Why Do We Study Fossils Found in Rocks?

Studying The Past. II. Why Do We Study Fossils Found in Rocks? Studying The Past I. What is a Fossil? A. Definition: The evidence or remains of once-living plants or animals II. Why Do We Study Fossils Found in Rocks? A. To provide evidence of the past existence of

More information

geologic age of Earth - about 4.6 billion years

geologic age of Earth - about 4.6 billion years Geologic Time Geologic Time geologic age of Earth - about 4.6 billion years Geologic Time very difficult to appreciate from our human perspective necessary to understand history of Earth two basic ways

More information

The Geology of Pacific Northwest Rocks & Minerals Activity 1: Geologic Time

The Geology of Pacific Northwest Rocks & Minerals Activity 1: Geologic Time Name: Age: I. Introduction There are two types of geologic time, relative and absolute. In the case of relative time geologic events are arranged in their order of occurrence. No attempt is made to determine

More information

1 Looking at Fossils. What are fossils? How are fossils formed? What can fossils tell us about the history of life on earth?

1 Looking at Fossils. What are fossils? How are fossils formed? What can fossils tell us about the history of life on earth? CHAPTER 9 SECTION The History of Life on Earth 1 Looking at Fossils California Science Standards 7.3.c, 7.4.c, 7.4.e BEFORE YOU READ After you read this section, you should be able to answer these questions:

More information

GEOLOGIC EVENTS SEDIMENTARY ROCKS FAULTING FOLDING TILTING

GEOLOGIC EVENTS SEDIMENTARY ROCKS FAULTING FOLDING TILTING RELATIVE TIME (DATING) ABSOLUTE TIME (DATING) GEOLOGIC TIME List the order in which events occurred, without regard to the amount of time separating them. Refers to the age of a rock in relation to other

More information

Name Class Date. What are fossils? How are fossils formed? What can fossils tell us about the history of life on earth?

Name Class Date. What are fossils? How are fossils formed? What can fossils tell us about the history of life on earth? CHAPTER 5 2 Looking at Fossils SECTION The Fossil Record BEFORE YOU READ After you read this section, you should be able to answer these questions: What are fossils? How are fossils formed? What can fossils

More information

2. Can you name earth s three eras and explain why they are divided that way?

2. Can you name earth s three eras and explain why they are divided that way? Unit: 3 Earth s History LT 3.1 Earth s History: I can map out a basic history of the earth, including key events. 1. Can you place the key events of earth s history in order? #1 Yes I can: 2. Can you name

More information

II. Knowing and Understanding the Six Principles of Stratigraphy:

II. Knowing and Understanding the Six Principles of Stratigraphy: Student Name(s): Physical Geology 101 Laboratory Relative Dating of Rocks Using Stratigraphic Principles Grade: I. Introduction & Purpose: The purpose of this lab is to learn and apply the concepts of

More information

Earth s History. The principle of states that geologic processes that happened in the past can be explained by current geologic processes.

Earth s History. The principle of states that geologic processes that happened in the past can be explained by current geologic processes. Earth s History Date: Been There, Done That What is the principle of uniformitarianism? The principle of states that geologic processes that happened in the past can be explained by current geologic processes.

More information

Absolute Ages of Rocks

Absolute Ages of Rocks Benchmarks SC.A..3.5 (pp. 269 273); SC.A.2.3.2 (pp. 269 273); SC.D..3.2 Annually Assessed (pp. 273 276): knows that over the whole Earth, organisms are growing, dying, and decaying ; SC.D..3.3 (pp. 273

More information

FOSSILS. Book G Chapter 4 Section 1

FOSSILS. Book G Chapter 4 Section 1 FOSSILS Book G Chapter 4 Section 1 OVERVIEW Explain what fossils are and how most fossils form. Describe what fossils tell about how organisms have changed over time. Identify and describe different types

More information

Geologic Time: Concepts and Principles

Geologic Time: Concepts and Principles Geologic Time: Concepts and Principles Introduction - An appreciation for the immensity of geologic time is essential for understanding the history of our planet - Geologists use two references for time

More information

Objectives. Vocabulary. Describe the geologic time scale. Distinguish among the following geologic time scale divisions: eon, era, period, and epoch.

Objectives. Vocabulary. Describe the geologic time scale. Distinguish among the following geologic time scale divisions: eon, era, period, and epoch. The Geologic Time Scale Objectives Describe the geologic time scale. Distinguish among the following geologic time scale divisions: eon, era, period, and epoch. Vocabulary geologic time scale eon era period

More information

Clues to Earth s Past

Clues to Earth s Past Chapter Review Clues to Earth s Past Part A. Vocabulary Review Directions: Use the clues below to complete the crossword puzzle. 1 2 3 4 5 6 7 8 9 Across 2. Element found in tissues of most organisms 4.

More information

Geologic Time Essentials of Geology, 11th edition, Chapter 18 Geologic Time: summary in haiku form Key Concepts Determining geological ages

Geologic Time Essentials of Geology, 11th edition, Chapter 18 Geologic Time: summary in haiku form Key Concepts Determining geological ages 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Geologic Time Essentials of Geology, 11 th edition, Chapter 18 Geologic Time: summary in haiku form Superposition and horizontality tell stories in rocks. Key

More information

2. How do igneous rocks form? 3. How do sedimentary rocks form? 4. How do metamorphic rocks form?

2. How do igneous rocks form? 3. How do sedimentary rocks form? 4. How do metamorphic rocks form? Name: Class: Earth s History Test Review Packet Test: Monday, February 13, 2017 The Rock Cycle 1. Explain why it is called the rock CYCLE. Does it truly have a starting point or end point? 2. How do igneous

More information

HISTORICAL NOTES. Catastrophism. James Usher, mid-1600s, concluded Earth was only a few thousand years old

HISTORICAL NOTES. Catastrophism. James Usher, mid-1600s, concluded Earth was only a few thousand years old 1 GEOLOGIC TIME HISTORICAL NOTES Catastrophism James Usher, mid-1600s, concluded Earth was only a few thousand years old Uniformitarianism Charles Lyell published Principles of Geology 1830. 3 HOW DO WE

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 12 Geologic Time 12.1 Discovering Earth s History Rocks Record Earth History Rocks record geological events and changing life forms of the past. We have

More information

Studying The Past. Why Do We Study Fossils Found in Rocks?

Studying The Past. Why Do We Study Fossils Found in Rocks? I. What is a Fossil? Studying The Past A. Definition: The evidence or remains of once-living plants or animals Why Do We Study Fossils Found in Rocks? QQ#1 what is a fossil? Why are they important? A.

More information

Chapter 3 Time and Geology

Chapter 3 Time and Geology Chapter 3 Time and Geology Methods of Dating Rocks 1. Relative dating - Using fundamental principles of geology (Steno's Laws, Fossil Succession, etc.) to determine the relative ages of rocks (which rocks

More information

11/5/2015. Creating a Time Scale - Relative Dating Principles. Creating a Time Scale - Relative Dating Principles. The Geologic Time Scale

11/5/2015. Creating a Time Scale - Relative Dating Principles. Creating a Time Scale - Relative Dating Principles. The Geologic Time Scale GEOL 110: PHYSICAL GEOLOGY Why is the Geologic Time Scale important? Rocks record geologic and evolutionary changes throughout Earth s history Without a time perspective, events have little meaning Chapter

More information

9. DATING OF ROCKS, FOSSILS, AND GEOLOGIC EVENTS

9. DATING OF ROCKS, FOSSILS, AND GEOLOGIC EVENTS LAST NAME (IN CAPS): FIRST NAME: Instructions: 9. DATING OF ROCKS, FOSSILS, AND GEOLOGIC EVENTS Refer to Laboratory 8 in your Lab Manual on pages 207-226 to answer the questions in this work sheet. Your

More information

6/30/2018. Geologic Time. Earth, Chapter 9 Chapter 9 Geologic Time

6/30/2018. Geologic Time. Earth, Chapter 9 Chapter 9 Geologic Time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Geologic Time Earth, Chapter 9 Chapter 9 Geologic Time The Importance of a Time Scale Interpreting Earth s history is an important goal of the science of

More information

Determining Earth's History Rocks and Ice Cores

Determining Earth's History Rocks and Ice Cores Earths History Reu2.notebook November 14, 2013 Determining Earth's History Rocks and Ice Cores One goal of geology is to develop a timeline of Earth's past, including both geological and biological events.

More information

Geologic Time: Hutton s Outcrop at Siccar Point. How do we determine age (relative & absolute) What is the age of the earth? How do we know?

Geologic Time: Hutton s Outcrop at Siccar Point. How do we determine age (relative & absolute) What is the age of the earth? How do we know? Geologic Time: How do we determine age (relative & absolute) What is the age of the earth? How do we know? What is the age of the Earth? A. 4.44 million years B. 1 million years C. 4.55 billion years D.

More information

Unit 6: Interpreting Earth s History

Unit 6: Interpreting Earth s History Unit 6: Interpreting Earth s History How do we know that the Earth has changed over time? Regent s Earth Science Name: Topics Relative Dating Uniformitarianism Superposition Original Horizontality Igneous

More information

Name: Period: Half-life and Radiometric Dating

Name: Period: Half-life and Radiometric Dating Name: Period: Half-life and Radiometric Dating Purpose: The purpose of this lab is to understand half-life and how it is used in determining the age of materials. Students will also understand the limitations

More information

Lecture Title ( Fossils ) & Date. Main Ideas/Lecture Topics/Questions. Big Ideas or Chunking the Lecture

Lecture Title ( Fossils ) & Date. Main Ideas/Lecture Topics/Questions. Big Ideas or Chunking the Lecture Lecture Title ( Fossils ) & Date Main Ideas/Lecture Topics/Questions Big Ideas or Chunking the Lecture Fossil Trilobites Point of View #1 Natural selection provides a scientific explanation for the fossil

More information

Law of Superposition Law of Superposition

Law of Superposition Law of Superposition History of Earth Relative Dating In the same way that a history book shows an order of events, layers of rock (called strata) show the sequence of events that took place in the past. Using a few basic

More information

Geohistory Review. Things you need to know:

Geohistory Review. Things you need to know: Geohistory Review Things you need to know: a) The earth and the solar system are 4.5 billion years old (4.5 X 10 9 ) b) Law of original horizontality: Sedimentary rock layers are always deposited as horizontal

More information

A Trip Through Geologic Time

A Trip Through Geologic Time Date Class _ A Trip Through Geologic Time Chapter Test A Multiple Choice Write the letter of the correct answer on the line at the left. 1. Late in the Paleozoic Era, the supercontinent Pangaea formed.

More information

Chapter 17. Geologic Time: Concepts and Principles

Chapter 17. Geologic Time: Concepts and Principles Chapter 17 Geologic Time: Concepts and Principles Introduction The Grand Canyon - Major John Wesley Powell, in 1869, led a group of explorers down the Colorado River. Powell was impressed with the geology

More information

Read It! Station Directions

Read It! Station Directions Read It! Station Directions Each member of the group will read the passage and answer the questions from the task cards on the lab sheet in the Read It! section. It is important to remember that the answers

More information

Geologic Time: Hutton s Outcrop at Siccar Point

Geologic Time: Hutton s Outcrop at Siccar Point Geologic Time: How do we determine age (relative & absolute) What is the age of the earth? How do we know? Hutton s Outcrop at Siccar Point Hutton looked at this outcrop and reasoned that the Earth was

More information

Earth Science 11: Geologic Time Unit

Earth Science 11: Geologic Time Unit Earth Science 11: Geologic Time Unit Text: Chapters 8 Lab: Exercise 6 Name Earth Science 11: Geologic Time Page 1 Geology 12: Geologic Time 8.1: The Geologic Time Scale Today, we know that Earth is approximately

More information

Fossils. Ch. 29 and 30 Overview

Fossils. Ch. 29 and 30 Overview Ch. 29 and 30 Overview What you need to know: Chapter 29: Fossils, Relative Time, Absolute Time Chapter 30: Geologic Time Fossils Study of fossils called paleontology Original remains rare usually dead

More information

Vocabulary and Section Summary B

Vocabulary and Section Summary B The Study of Earth s History After you finish reading the section, try this puzzle! Use the clues given to fill in the blanks below. Then, copy the numbered letters into the corresponding boxes below to

More information

1. What is the definition of uniformitarianism? 2. What is the definition of organic? 4. What is the definition of inorganic?

1. What is the definition of uniformitarianism? 2. What is the definition of organic? 4. What is the definition of inorganic? Earth Science Unit 3- History of the Earth Knowledge Packet Learning Target 3B: Have you ever thought about the history of the Earth? No, well you should have because it s pretty cool. Things like mountain

More information

The Environment and Change Over Time

The Environment and Change Over Time The Environment and Change Over Time Fossil Evidence of Evolution What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if

More information

Lecture 10 Constructing the geological timescale

Lecture 10 Constructing the geological timescale Lecture 10 Constructing the geological timescale Geologic Time Discovering the magnitude of the Earth s past was a momentous development in the history of humanity This discovery forever altered our perception

More information

Exploring Geology Chapter 9 Geologic Time

Exploring Geology Chapter 9 Geologic Time Exploring Geology Chapter 9 Geologic Time Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 9: Geologic Time Stratigraphic Principles Relative Age Dating

More information

Lecture Outline Friday Feb. 21 Wednesday Feb. 28, 2018

Lecture Outline Friday Feb. 21 Wednesday Feb. 28, 2018 Lecture Outline Friday Feb. 21 Wednesday Feb. 28, 2018 Questions? Key Points for today What are the 5 relative age dating principles and how do you apply the principles to determine a geologic history

More information

Integrated Science. Geologic Time Notes. Section 1: Geologic Time

Integrated Science. Geologic Time Notes. Section 1: Geologic Time Integrated Science Geologic Time Notes Section 1: Geologic Time To help in the analysis of Earth s rocks, geologists have divided the history of Earth into time units based upon the fossils contained in

More information

Principle of Uniformitarianism: Laws of nature don t change with time

Principle of Uniformitarianism: Laws of nature don t change with time G e o l o g i c T i m e Principle of Uniformitarianism: Laws of nature don t change with time Radical idea proposed by Hutton in 1780 s Proposed that past events could be explained by modern processes

More information

Earth Science - Lab #11 Geologic Time

Earth Science - Lab #11 Geologic Time Earth Science - Lab #11 Geologic Time Page # Below are standard geologic symbols for the 3 main categories of rocks. Although these symbols are not universal, they are generally accepted by most geologists

More information

Topic 7: Historical Geology

Topic 7: Historical Geology Topic 7: Historical Geology (ES. 8 b, 9 a-e, 10 a-d, 12 a, b, e) ES.8 The student will investigate and understand geologic processes including plate tectonics. Key concepts include: b) processes (faulting,

More information

How Old is the Solar System?

How Old is the Solar System? How Old is the Solar System? Earth s crust is constantly changing due to volcanoes, erosion, and plate tectonics. So Earth rocks do not preserve a record of the early days of the Solar System. Instead,

More information

Fossils: evidence of past life

Fossils: evidence of past life Fossils: evidence of past life Remains or traces of prehistoric life Petrified Cavities and pores are filled with precipitated mineral matter Petrified Formed by replacement Cell material is removed and

More information

Geochronology. study of 'Earth time' Historical Geology. study of the physical and biological evolution of the Earth & its life

Geochronology. study of 'Earth time' Historical Geology. study of the physical and biological evolution of the Earth & its life http://talc.geo.umn.edu/courses/100i/1001kirkby/ss6.html Page I of II 3/17/2006 Geochronology study of 'Earth time' time scale of geologic processes & methods of measuring time Historical Geology study

More information

Geologic Time. Earth s History

Geologic Time. Earth s History Geologic Time Chapter 12 Earth s History Earth s history is recorded in rocks Rocks record geological events and changing life forms of the past. We have learned that Earth is much older than anyone had

More information

Radiometric Dating and the Age of the Earth

Radiometric Dating and the Age of the Earth Radiometric Dating and the Age of the Earth How to tell time: Relative Time: putting events in time order. Law of Superposition Correlation of rock layers using fossils. There is a wonderful order and

More information

GEOLOGIC TIME. Smith and Pun, Chapter 7 DETERMINING THE ORDER OF EVENTS

GEOLOGIC TIME. Smith and Pun, Chapter 7 DETERMINING THE ORDER OF EVENTS GEOLOGIC TIME Smith and Pun, Chapter 7 DETERMINING THE ORDER OF EVENTS Examination of ancient rocks reveals the history of our planet. Sedimentary and volcanic rocks record processes that occur on the

More information

STUDY GUIDE CHAPTERS 12 & 13 GEOLOGIC TIME CHAPTER 12 SECTION 12.1

STUDY GUIDE CHAPTERS 12 & 13 GEOLOGIC TIME CHAPTER 12 SECTION 12.1 NAME PERIOD DATE STUDY GUIDE CHAPTERS 12 & 13 GEOLOGIC TIME CHAPTER 12 SECTION 12.1 1. WHAT IS THE PRINCIPLE OF UNIFORMITARIANISM PUT FORWARD BY JAMES HUTTON IN THE LATE 1700 s? 2. HOW DID UNIFORMITARIANISM

More information

Unit A (225 m.y. old) Unit B (how old is it?) Unit C (275 m.y. old)

Unit A (225 m.y. old) Unit B (how old is it?) Unit C (275 m.y. old) Radiometric Dating Relative dating techniques are based on principles can be used to differentiate the relative age rock units and landforms. Relative dating techniques by themselves cannot be used to

More information

Looking at Fossils. Fossilized Organisms. Fossils in Rocks. Fossils in Amber

Looking at Fossils. Fossilized Organisms. Fossils in Rocks. Fossils in Amber 1 Looking at Fossils Key Concept Fossils provide evidence of how life and environmental conditions have changed. What You Will Learn Evidence of past life is preserved as fossils in sedimentary rock and

More information

Geologic Time. Decoding the Age of our Planet & North Carolina

Geologic Time. Decoding the Age of our Planet & North Carolina Geologic Time Decoding the Age of our Planet & North Carolina The Geologic Time Scale Objectives Describe the geologic time scale. Distinguish among the following geologic time scale divisions: eon, era,

More information

Your quiz will have some multiple-choice questions, matching, fill-in-the-blank questions, and short answer. To review, study DQs, notes from class,

Your quiz will have some multiple-choice questions, matching, fill-in-the-blank questions, and short answer. To review, study DQs, notes from class, Review for Strata & Fossil Quiz Name: Quiz Date: Your quiz will have some multiple-choice questions, matching, fill-in-the-blank questions, and short answer. To review, study DQs, notes from class, labs,

More information

A Trip Through Geologic Time

A Trip Through Geologic Time A Trip Through Geologic Time A Trip Through Geologic Time Review In: Have the same animals that live today always been on Earth? Illustrate and JUSTIFY. When finished with this In Question, show Ms. Johnson

More information

Remains or traces of prehistoric life

Remains or traces of prehistoric life Fossils: evidence of past life Remains or traces of prehistoric life Petrified Cavities and pores are filled with precipitated p mineral matter Petrified Formed by replacement Cell material is removed

More information

ENVI.2030L Geologic Time

ENVI.2030L Geologic Time Name ENVI.2030L Geologic Time I. Introduction There are two types of geologic time, relative and absolute. In the case of relative time geologic events are arranged in their order of occurrence. No attempt

More information

CHAPTER 2: EVOLUTION- CHANGE ACROSS TIME. Examining the evidence of change across time.

CHAPTER 2: EVOLUTION- CHANGE ACROSS TIME. Examining the evidence of change across time. CHAPTER 2: EVOLUTION- CHANGE ACROSS TIME Examining the evidence of change across time. WHERE DID THE THEORY OF EVOLUTION COME FROM? The theory of evolution was created in response to observations and discoveries

More information

Name Date EARTH S HISTORY VOCABULARY

Name Date EARTH S HISTORY VOCABULARY Name Date EARTH S HISTORY VOCABULARY Use Figure 2 to answer the following two questions. 10. Interpreting Graphics Which is older the sandstone layer or Dike A? Explain your answer. Conglomerate Sandstone

More information

Strata Sample. 1. Make a drawing of the strata sample (beaker) in your fold. Be sure to add color :)

Strata Sample. 1. Make a drawing of the strata sample (beaker) in your fold. Be sure to add color :) strata: layer of sedimentary rock/soil Strata Sample 1. Make a drawing of the strata sample (beaker) in your fold. Be sure to add color :) 2. Identify which layer is the OLDEST and which layer is the YOUNGEST

More information

HISTORICAL GEOLOGY. Relative & Absolute age, fossils and geologic time

HISTORICAL GEOLOGY. Relative & Absolute age, fossils and geologic time HISTORICAL GEOLOGY Relative & Absolute age, fossils and geologic time Historical Geology A. Measuring Time 1. Relative Time (Relative Age) Measurement of time using comparison. No numbers used; uses words

More information

GEOLOGICAL TIME / DATING TECHNIQUES

GEOLOGICAL TIME / DATING TECHNIQUES DATE DUE: INSTRUCTOR: TERRY J. BOROUGHS Geology 305 NAME: SECTION: GEOLOGICAL TIME / DATING TECHNIQUES Instructions: Read each question carefully before selecting the BEST answer. Provide specific and

More information

Before the 1700 s, scientists thought that the Earth was only 6,000 years old. This mindset was based on biblical references.

Before the 1700 s, scientists thought that the Earth was only 6,000 years old. This mindset was based on biblical references. Before the 1700 s, scientists thought that the Earth was only 6,000 years old. This mindset was based on biblical references. However, as scientists began to better understand the processes that shape

More information

Before the 1700 s, scientists thought that the Earth was only 6,000 years old. This mindset was based on biblical references.

Before the 1700 s, scientists thought that the Earth was only 6,000 years old. This mindset was based on biblical references. Before the 1700 s, scientists thought that the Earth was only 6,000 years old. This mindset was based on biblical references. However, as scientists began to better understand the processes that shape

More information

Geologic History. Earth is very, very old

Geologic History. Earth is very, very old Geologic History Earth is very, very old Earth s History The history of Earth and the ages of rocks can be investigated and understood by studying rocks and fossils. Evidence of ancient, often extinct

More information

Determining geological ages

Determining geological ages Determining geological ages Relative ages placing rocks and geologic events in their proper sequence, oldest to youngest. Absolute dates define the actual numerical age of a particular geologic event.

More information

test date Name date Review: Geologic Time & Geologic Procesess-: You will record 1-38 answers on the scan sheet! These are worth 1.

test date Name date Review: Geologic Time & Geologic Procesess-: You will record 1-38 answers on the scan sheet! These are worth 1. Review: Geologic Time & Geologic Procesess-: You will record 1-38 answers on the scan sheet! These are worth 1.5 points each Use your EARTH HISTORY CHART Part I. Matching All of the statements match to

More information

Fossils. Presented by Kesler Science

Fossils. Presented by Kesler Science Presented by Kesler Science Essential Questions: 1. What are fossils? 2. What are some different types of fossilization? 3. What is the difference between relative and absolute age? 4. What does the fossil

More information

Chapter 3 Time and Geology

Chapter 3 Time and Geology Chapter 3 Time and Geology Finding the age of rocks: Relative versus Actual Dating The science that deals with determining the ages of rocks is called geochronology. Methods of Dating Rocks 1. Relative

More information

Rock cycle diagram. Principle of Original Horizontality. Sediment is deposited horizontally

Rock cycle diagram. Principle of Original Horizontality. Sediment is deposited horizontally Geologic Time Rock cycle diagram Leaves of History Chapter 21 Lateral Continuity Principle of Original Horizontality Sediment is deposited horizontally Principle of Superposition Oldest rock A Younger

More information

Fossils. Name Date Class. A Trip Through Geologic Time Section Summary

Fossils. Name Date Class. A Trip Through Geologic Time Section Summary Name Date Class A Trip Through Geologic Time Section Summary Fossils Guide for Reading How do fossils form? What are the different kinds of fossils? What does the fossil record tell about organisms and

More information

Unit 2 Lesson 1 Geologic Change over Time. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 2 Lesson 1 Geologic Change over Time. Copyright Houghton Mifflin Harcourt Publishing Company Been There, Done That What is the principle of uniformitarianism? The principle of uniformitarianism states that geologic processes that happened in the past can be explained by current geologic processes.

More information

Science 20. Unit C: The Changing Earth. Assignment Booklet C1

Science 20. Unit C: The Changing Earth. Assignment Booklet C1 Science 20 Unit C: The Changing Earth Assignment Booklet C FOR TEACHER S USE ONLY Summary Teacher s Comments Chapter Assignment Total Possible Marks 60 Your Mark Science 20 Unit C: The Changing Earth Assignment

More information

Dating the age of the Earth

Dating the age of the Earth Dating the age of the Earth What is the age of the Earth? A. 4.44 million years B. 1 million years C. 4.55 billion years D. 10000 years Discuss this with your neighbor: How do we know the age of the Earth?

More information