Near-Optimal Solutions and Large Integrality Gaps for Almost All Instances of Single-Machine Precedence-Constrained Scheduling

Size: px
Start display at page:

Download "Near-Optimal Solutions and Large Integrality Gaps for Almost All Instances of Single-Machine Precedence-Constrained Scheduling"

Transcription

1 Near-Optimal Solutio ad Large Itegrality Gap for Almot All Itace of Sigle-Machie Precedece-Cotraied Schedulig Adrea S. Schulz a Nelo A. Uha b Jue 200 Abtract We coider the problem of miimizig the weighted um of completio time o a igle machie ubject to bipartite precedece cotrait where all miimal job have uit proceig time ad zero weight, ad all maximal job have zero proceig time ad uit weight. For variou probability ditributio over thee itace icludig the uiform ditributio we how everal almot all -type reult. Firt, we how that almot all itace are prime with repect to a well-tudied decompoitio for thi chedulig problem. Secod, we how that for almot all itace, every feaible chedule i arbitrarily cloe to optimal. Fially, for almot all itace, we give a lower boud o the itegrality gap of variou liear programmig relaxatio of thi problem. a Sloa School of Maagemet ad Operatio Reearch Ceter, Maachuett Ititute of Techology, Cambridge, MA. e- mail: chulz@mit.edu b School of Idutrial Egieerig, Purdue Uiverity, Wet Lafayette, IN. uha@purdue.edu

2 Itroductio We coider the followig claic chedulig problem. We have a et of job N D f; : : : ; g that eed to be cheduled opreemptively o a igle machie, which ca proce at mot oe job at a time. Each job i 2 N ha a proceig time p i 2 R 0 ad weight w i 2 R 0. Precedece cotrait are repreeted by a acyclic, traitively cloed directed graph G D.N; A/: if.i; j / 2 A, the job i mut be proceed before job j. The objective i to chedule thee job i a way that repect the precedece cotrait ad miimize the um of weighted completio time. I the otatio of Graham et al. [0], thi problem i deoted a j prec j P w j C j. The chedulig problem j prec j P w j C j i trogly NP-hard [4, 5]. Curretly, the bet ow approximatio algorithm all have a performace guaratee of 2 [, 4, 3, 9, 6]. O the iapproximability frot, Ambühl et al. [] howed that a PTAS i ot poible, aumig NP-complete problem caot be olved i radomized ub-expoetial time. Baal ad Khot [2] howed that it i NP-hard to compute a.2 "/-approximate chedule for ay " > 0, aumig a troger verio of the Uique Game Cojecture [3] hold. I thi wor, we focu o 0- bipartite itace. I a 0- bipartite itace.n ; N 2 ; A/, the et of job i partitioed ito N D N P[N 2, ad precedece cotrait tae the form of a directed bipartite graph.n P[N 2 ; A/ where.i; j / 2 A implie i 2 N ad j 2 N 2. The job i N have uit proceig time ad zero weight, ad the job i N 2 have zero proceig time ad uit weight. Thi chedulig problem o 0- bipartite itace ca equivaletly be viewed a a liear orderig problem o a mixed bipartite graph, i which there i a udirected edge betwee every pair of ode i 2 N, j 2 N 2, for which.i; j / 62 A. The goal i to fid a orietatio B of the udirected edge, uch that the reultig directed graph.n [ N 2 ; A [ B/ i acyclic ad ha a few arc that are directed from N to N 2 a poible. Thee 0- bipartite itace have further appeal tha their imple combiatorial tructure: it tur out that thee imple itace effectively capture the iheret difficulty of j prec j P w j C j. Cheuri ad Motwai [3] ued a cla of 0- bipartite itace to how that the liear programmig relaxatio i liear orderig variable due to Pott [9] ha a itegrality gap of 2. Moreover, Woegiger [23] howed that a -approximatio algorithm for 0- bipartite itace of j prec j P w j C j implie a. C "/-approximatio algorithm for arbitrary itace of j prec j P w j C j ; that i, the approximability behavior of 0- bipartite itace ad arbitrary itace are virtually idetical. I fact, the previouly metioed iapproximability reult due to Baal ad Khot [2] wa proved uig 0- bipartite itace. We tudy 0- bipartite itace of j prec j P w j C j with a probabilitic le. Oe appealig feature of 0- bipartite itace i that they are completely defied by their precedece cotrait. Sice precedece relatio i bipartite partial order are idepedet, we ca apply the model of Erdö ad Réyi [7] ofte ued i radom graph theory to defie clae of radom 0- bipartite itace. Our aalyi of thee radom 0- bipartite itace yield everal almot all -type reult. We how that almot all 0- bipartite itace are o-sidey-decompoable. Sidey [2] decompoitio techique plit a itace of j prec j P w j C j ito maller itace o that the cocateatio of optimal chedule for the maller part yield a optimal chedule for the etire itace. Together with the wor of Cheuri ad Motwai [3], Margot et al. [6], ad Goema ad Williamo [9], our reult alo implie that for almot all 0- bipartite itace, ay feaible chedule i a 2-approximatio. Uig two-dimeioal Gatt chart, we how that for almot all 0- bipartite itace, all feaible chedule are actually arbitrarily cloe to optimal. I particular, we how that for ay give " > 0, ay feaible chedule i a. C"/-approximatio with high probability, whe the umber of job i ufficietly large. We give a lower boud o the itegrality gap of variou liear programmig relaxatio of j prec j P w j C j for almot all 0- bipartite itace. For the radom model of 0- bipartite itace

3 that we tudy, thi lower boud approache 2 a the precedece cotrait become parer i expectatio. Thi reult geeralize a reult of Cheuri ad Motwai [3]. 2 Model for radom 0- bipartite itace We form a model for radom 0- bipartite itace a follow. Let 2 Z >0 ad q 2.0; /. I additio, let 2 R C 0 be a probability vector; that i, P D0 D. We defie B.; ; q/ a the probability pace of 0- bipartite itace.n ; N 2 ; A/ with job uch that P.jN j D ; jn 2 j D / D for D 0; : : : ; ad each arc.i; j / 2 N N 2 appear i A idepedetly with probability q. I thi wor, we coider radom model of balaced 0- bipartite itace.n ; N 2 ; A/, i the ee that the ratio betwee the ize of N ad the ize of N 2 i ot too far from./ with high probability. I particular, we loo at model B.; ; q/ with probability vector 2 R C 0 that atify D0 c c 2 2 ad C c 3 c 4 2 (2.) for ome fuctio W Z >0 Z >0 uch that 2.log / for ome fixed, ad for ome cotat c ; c 2 ; c 3 ; c 4 2 R >0, whe i ufficietly large. Thee coditio o the probability vector are atified for two atural model of radom 0- bipartite itace i particular. Firt, coider B.; N; q/, where N D.=2/ for D 0; : : : ; : job are aiged to N ad N 2 with equal probability. Note that B.; N; =2/ i the uiform ditributio over all 0- bipartite itace. There exit cotat c ; c 2 ; c 3 ; c 4 2 R >0 o that the probability vector N atifie (2.) for ay 2.log / with, ice D0 C N D N D D0 2 2 ; 2 D C C 2 2 : Secod, coider B.; O; q/ where O D if D, ad O D 0 otherwie, for ome fixed 2.0; / uch that 2 Z >0 ad. / 2 Z >0. For ay itace.n ; N 2 ; A/ from B.; O; q/, the proportio betwee the umber of job i N ad the umber of job i N 2 i alway fixed. Clearly, there exit cotat c ; c 2 ; c 3 ; c 4 2 R >0 o that the probability vector O atifie (2.) for ay 2.log / with, whe i ufficietly large. 3 Sidey-decompoability ad 0- bipartite itace Sidey [2] itroduced a very ueful characterizatio of optimal chedule to j prec j P w j C j. We defie ( P j 2S w j = P j 2S p j for ay ubet of job S N uch that P j 2S p j > 0,.S/ WD C otherwie. A et of job I N i called iitial if j 2 I ad.i; j / 2 A imply i 2 I. A iitial et I i aid to be -maximal if I 2 arg maxf.i / W I i a oempty iitial etg. Sidey howed that there exit a optimal chedule i which all job i a -maximal iitial et S are cheduled before thoe i N S. By recurively applyig thi reult, we aturally obtai a partitio of job.s ; : : : ; S / with.s /.S /. Such 2

4 a partitio i called a Sidey decompoitio. Sidey decompoitio theory ca be ee a a geeralizatio of Smith [22] rule for the problem without precedece cotrait. A itace of j prec j P w j C j i o-sidey-decompoable if the oly -maximal iitial et i N ; otherwie the itace i called Sideydecompoable. A itace i called tiff if.n /.I / for all oempty iitial et I ; ote that tiffe i a eceary coditio for a itace to be o-sidey-decompoable. A Sidey decompoitio ca be computed i polyomial time [4, 8, 8, 6]. Idepedetly, Cheuri ad Motwai [3] ad Margot et al. [6] howed that for tiff itace, every feaible chedule i already a 2-approximatio. A geometric proof of thi reult wa ubequetly give by Goema ad Williamo [9]. I thi ectio, we how that almot all 0- bipartite itace are o-sidey-decompoable. We begi by givig the followig characterizatio of Sidey-decompoability for 0- bipartite itace. For ay directed graph.n; A/ ad ay ubet of vertice N, we defie./ WD fi 2 N W.i; j / 2 A or.j; i/ 2 A for ome j 2 g; i word,./ i the et of eighbor of. Lemma 3.. A 0- bipartite itace.n ; N 2 ; A/ of j prec j P w j C j with jn j D, jn 2 j D 2, ad C 2 2 i Sidey-decompoable if ad oly if oe of the followig three coditio hold: (SD) D 0; (SD2) 2 D 0; (SD3) (i) there exit a ubet Y N 2 uch that Y ;; N 2 ad 2 j.y /j jy j, (ii) or j.n 2 /j. Proof. Firt, ote that a 0- bipartite itace with C 2 2 i Sidey-decompoable whe D 0 or 2 D 0, ice ay oempty ubet of job I i iitial ad atifie.i / D.N /. Now uppoe a 0- bipartite itace with > 0 ad 2 > 0 i Sidey-decompoable. By defiitio, thi occur if ad oly if there exit a -maximal iitial et I N uch that.i / 2 =. (3.) Recall that by defiitio, a -maximal iitial et i oempty. Suppoe (3.) i atified with a iitial et I uch that I N [ N 2, but I 6 N. Sice I i -maximal, I D.Y / [ Y for ome Y N 2 uch that Y ;. We coider the followig cae. If Y N 2, the (3.) hold if ad oly if jy j=j.y /j 2 =. Otherwie, we have Y D N 2. I thi cae, (3.) hold if ad oly if j.n 2 /j. Note that (3.) caot be atified if I N, ice i thi cae,.i / D 0 < 2 = D.N /. Note that (SD3) implie that a 0- bipartite itace.n ; N 2 ; A/ with jn j D jn 2 j i o-sideydecompoable if ad oly if j.n 2 /j D jn j D jn 2 j ad j.y /j > jy j for all Y N 2 uch that Y ;; N 2. Thi i very imilar to Hall [2] marriage theorem, which ay that a udirected bipartite graph.n P[N 2 ; A/ with jn j D jn 2 j ha a perfect matchig if ad oly if j.y /j jy j for all Y N 2. We ow give a aalogou characterizatio of Sidey-decompoable 0- bipartite itace that coider ubet of N itead. Lemma 3.2. The coditio (SD3) i Lemma 3. hold if ad oly if the followig coditio hold: (SD3 0 ) (i) There exit a ubet N uch that ;; N ad j./j 2 jj, or (ii) j.n /j 2. Proof. We how that (SD3) implie (SD3 0 ). Suppoe that (SD3) hold becaue there exit a ubet Y N 2 uch that Y ;; N 2 ad 2 j.y /j jy j. Let D N.Y /. We coider the followig cae:.y / D ;. I thi cae, D N. Sice Y ;, thi implie that j.n /j D j./j 2..Y / ;; N. I thi cae, ;; N. I additio, we have that jj D j.y /j, ad j./j 2 jy j. Thee two obervatio, i additio to the aumptio that 2 j.y /j jy j, implie that j./j 2 jj. 3

5 .Y / D N. I thi cae, ice 2 j.y /j jy j, we have that jy j 2, which i a cotradictio, ice Y N 2. Now uppoe that (SD3) hold becaue j.n 2 /j. Let D N.N 2 /. Note that ice j.n 2 /j, we have that ;. I additio, ice \.N 2 / D ;, we have that j./j D ;. We coider the followig cae..n 2 / ;. The ;; N, ad j./j D 0 2 jj..n 2 / D ;. The D N, ad j.n /j D j./j D 0 2. Showig the revere directio wor i a imilar maer. Uig the characterizatio of Sidey-decompoability i Lemma 3. ad Lemma 3.2, we ca how that almot all 0- bipartite itace are o-sidey-decompoable. Theorem 3.3. Fix q 2.0; /, >, ad 2.log /. Let 2 R C 0 be a probability vector that atifie (2.) for ad ome cotat c ; c 2 ; c 3 ; c 4 2 R >0, whe i ufficietly large. The, lim P B 2 B.; ; q/ i o-sidey-decompoable D : Proof. Let B D.N ; N 2 ; A/ be a radom 0- bipartite itace from B.; ; q/ with probability vector that atifie (2.) for ad for ome cotat c ; c 2 ; c 3 ; c 4 2 R >0, whe i ufficietly large. We how that the probability that B atifie ay of the coditio (SD)-(SD3) goe to zero a approache ifiity. For the remaider of thi proof, we coider ufficietly large o that 2 ad b=2c. Firt, we coider (SD). We have that P B 2 B.; ; q/ atifie (SD) D P B 2 B.; ; q/ ha D 0 D 0 c c 2 2 ; ad o lim P.B 2 B.; ; q/ atifie (SD)/ D 0. Similarly, for (SD2), we have that P B 2 B.; ; q/ atifie (SD2) D P B 2 B.; ; q/ ha 2 D 0 D c 3 c 4 2 ; ad therefore lim P.B 2 B.; ; q/ atifie (SD2)/ D 0. Now we coider (SD3). Oberve that ay bipartite graph.n [N 2 ; A/ with jn j D ad jn 2 j D with a ubet Y of N 2 of ize uch that j.y /j ca be cotructed a follow. Chooe a ubet Y of N 2 of ize, ad a ubet of N of ize b c, ad forbid all edge betwee Y ad N. Ay bipartite graph.n [ N 2 ; A/ with jn j D ad jn 2 j D with a ubet of N of ize uch that j./j ca be cotructed imilarly. Therefore, by coditioig o the ize of N ad N 2 ad uig a uio boud, we have P B 2 B.; ; q/ atifie (SD3/ D P B 2 B.; ; q/ atifie (SD3) j jn j D ; jn 2 j D b=2c D b=2c D C B 2 B.; ; q/ P atifie (SD3) Dd=2e D D ˇ D jn j D ; jn 2 j D b c b c C Dd=2e B 2 B.; ; q/ P atifie (SD3 0 ). q/. b c/ C. q/. q/. b c/ C. /. q/ : 4 ˇ jn j D ; jn 2 j D

6 o that We defie D WD D b c. q/. b c/ for D ; : : : ; b=2c; E WD. q/ for D ; : : : ; b=2c; F WD c. q/. b c/ for D d=2e; : : : ; ; D b G WD. /. q/ for D d=2e; : : : ; ; P B 2 B.; ; q/ atifie (SD3/ b=2c D b=2c D C D E C Dd=2e F C Dd=2e For the remaider of thi proof, let r D. q/. Note that r >. Firt, we coider the expreio F i the regime D d=2e; : : : ;. By Lemma A. i Appedix A (lettig a D ), for all D d=2e; : : : ;, we have that G : F D 2. q/. b c/ D 2. q/. / : For all D d=2e; : : : ; ad D ; : : : ;, defie H ; WD 2. q/. / ; ad ote that H ; D H ;. We would lie to how that H ; H ;C for all D d=2e; : : : ; ad D ; : : : ; b=2c, or equivaletly, 2 log r C. 2 / for D ; : : : ; b=2c ad D d=2e; : : : ; : (3.2) Defie.x/ WD. 2x / 2 log r. x/ C 2 log r.x C /: Taig derivative, D 2. / C 2 log r x C ; x 2 D 2 log r. x/ 2.x C / 2 Note that for x 2 Œ0;. /=2, we have 2 =@x 2 0, o.x/ i cocave o Œ0;. /=2. We have that.0/ 0 for all D d=2e; : : : ;, ice.0/ D. / 2 log r C 2 log r D 2 log r 2 log r (ice ad ) 5 :

7 2 log r (ice ) 0 (ice 2.log / ad > ): I additio, we have that.. /=2/ D 0. Sice.x/ i cocave o Œ0;. /=2, it follow that whe D d=2e; : : : ;,.x/ 0 for all x 2 Œ0;. /=2, which etablihe (3.2). Therefore, H ; H ;C for D d=2e; : : : ; ad D ; : : : ; b=2c. Sice H ; D H ;, it follow that H ; H ; for D d=2e; : : : ; ad D ; : : : ;. So, for D d=2e; : : : ;, we have that Therefore, F D 2. q/. / 2. q/. / D 3. q/. / 3. q/ 2 (ice 2 for 2). Dd=2e F Dd=2e 3. q/ 2 Dd=2e 3. q/ 2 4. q/ =2 : Now we coider F i the regime D C ; : : : ;. Note that F D b c. q/. b c/ 2. q/ 2.2 q/ : D It follow that D C F We alo have that C 2.2 q/ C 2.2 q/ c 3.2 c 4 / q : 2 Dd=2e G D Dd=2e Dd=2e. /. q/ Dd=2e 2. q/= q/=2 : l 2 m. q/ d=2e Uig imilar techique to above, we ca alo how that D D c.2 c 2 / q ; 2 b=2c D D 4. q/ =2 ; b=2c D E 2 2. q/=2 : Therefore, P B 2 B.; ; q/ atifie (SD3/ b=2c D b=2c D C 6 D E C Dd=2e F C Dd=2e G

8 c.2 c 2 / q C c3.2 c 4 / 2 Sice 2.log / for ome fixed >, it follow that Fially, we put all the piece together: lim P.B 2 B.; ; q/ atifie (SD3)/ D 0: q C 2 4. q/ =2 C 2. q/ =2 : 2 lim P B 2 B.; ; q/ i Sidey decompoable D lim P B 2 B.; ; q/ atifie (SD/ C lim P B 2 B.; ; q/ atifie (SD2/ C lim P B 2 B.; ; q/ atifie (SD3/ D 0: I radom model of balaced 0- bipartite itace, the umber of job i N ad the umber of job i N 2 grow together a the total umber of job grow. Thi pheomeo i importat for the validity of Theorem 3.3. For example, coider B.; Q; q/ with Q D if D ad Q D 0 otherwie: the cla of itace i which N coit of oe job, ad N 2 coit of job. I thi cae, a itace B 2 B.; Q; q/ i o-sidey-decompoable if ad oly if the job i N mut precede all job i N 2. Thi occur with probability q, which goe to zero a the total umber of job grow. Fially, we ote that Theorem 3.3 till hold for parer precedece cotrait. It i traightforward to how that if the probability q of a precedece cotrait appearig i a fuctio of the umber of job o that q 2.= log /, the the aalyi i the proof of Theorem 3.3 hold. 4 Two-dimeioal Gatt chart ad 0- bipartite itace Two-dimeioal (2D) Gatt chart [6] provide a elegat, geometric way of udertadig igle-machie completio-time-objective chedulig problem. I a traditioal Gatt chart, the horizotal axi correpod to proceig time. I a 2D Gatt chart, the horizotal axi correpod to proceig time, ad the vertical axi correpod to weight. Suppoe we have a itace.n; A;.p i / i2n ;.w i / i2n / of j prec j P w j C j. The 2D Gatt chart i cotructed for a permutatio chedule.; : : : ; / a follow. Each job j 2 N i repreeted by a rectagle of width p j ad height w j, whoe poitio i the chart i defied by a tartpoit ad a edpoit. The tartpoit of the firt job (job ) i the chedule i.0; P j 2N w j /, ad it edpoit i.p ; P j 2N w j w /. For all ubequet job i the chedule, the tartpoit.t; w/ of job j i the edpoit of the previou job j, ad it edpoit i.t C p j ; w w j /. The completio time of a job i thi chedule i the time compoet of it edpoit. The wor curve W.t/ formed by the upper ide of each rectagle i the total weight of job that have ot bee completed by time t. The area uder the wor curve i equal to the um of weighted completio time for the chedule repreeted by the 2D Gatt chart. It tur out that the area uder the optimal wor curve for almot all 0- bipartite itace i large. We formalize thi otio ow. Coider the 2D Gatt chart for a optimal chedule of a 0- bipartite itace B D.N ; N 2 ; A/ with jn j D ad jn 2 j D 2. Note that ay 2D Gatt chart for uch a itace tart at.0; 2 / ad ed at. ; 0/. Alo oberve that all job i N are repreeted by a horizotal lie egmet of legth, ad that all job i N 2 are repreeted by a vertical lie egmet of legth. We defie R B to be the regio betwee the optimal wor curve ad the frotier formed by the lie f.t; w/ W t D g ad f.t; w/ W w D 2 g. See Figure for a example. We defie the followig parametrized coditio o a 0- bipartite itace B, for ay 2.0; /: (R- ) A rectagle of width ad height 2 caot fit i R B. 7

9 weight wor curve W.t/ 2 2 R B proceig time Figure : A example of a 2D Gatt chart for a 0- bipartite itace. We ow how that for ay fixed 2.0; /, the coditio (R- ) i atified for almot all 0- bipartite itace. Theorem 4.. Fix q 2.0; /, 2.0; /,, ad 2.log /. Let 2 R C 0 be a probability vector that atifie (2.) for ad ome cotat c ; c 2 ; c 3 ; c 4 2 R >0, whe i ufficietly large. The, lim P B 2 B.; ; q/ atifie (R- ) D : Proof. Fix a 0- bipartite itace B D.N ; N 2 ; A/ with jn j D ad jn 2 j D 2. If B doe ot atify (R- ), that i, a rectagle of width ad height 2 ca fit i R B, the there exit a et of d 2 e job from N 2 that ha at mot d e predeceor i N. I other word, if a rectagle of width ad height 2 ca fit i R B, the there exit a et of d 2 e job from N 2 ad a et of d e job from N with o precedece cotrait betwee them. Therefore, we have that P B 2 B.; ; q/ doe ot atify (R- ) j jn j D ; jn 2 j D 0 jj D d e; jy j D d. /e; 9 N ; Y N 2 W o precedece cotrait betwee ad Y ˇ jn j D ; jn 2 j D A. q/ d ed. /e. q/ 2. / : d e d. /e d e d. /e So, by coditioig o the ize of N ad N 2, P B 2 B.; ; q/ doe ot atify (R- ) B 2 B.; ; q/ D P jn j D ; doe ot atify (R- ) ˇ jn 2 j D Let o that D D D d e d. /e D. q/ 2. / d e d. for D ; : : : ; P B 2 B.; ; q/ doe ot atify (R- ) D : 8 D. q/ 2. / : /e

10 Firt, for the regime D ; : : : ;, we have that D D. q/ 2. / d e d. /e D D D Similarly, we ca how that For the regime D ; : : : ; Therefore, D D 2. q/ 2. / c c 2. q/ 2. / : D D C, we have that d e D D D c 3 c 4. q/ 2. / : d. P B 2 B.; ; q/ doe ot atify (R- ) /e. q/ 2. / 2. q/ 2. / 2. q/ 2. / : D D 2. q/ 2. / c c 2. q/ 2. / C c 3 c 4. q/ 2. / C 2. q/ 2. / : Sice 2.log / for a fixed, it follow that lim P.B 2 B.; ; q/ doe ot atify (R- )/ D 0: A with the o-sidey-decompoability reult i Sectio 3, the balacede of the radom 0- bipartite itace we coider play a ey role i the validity of the theorem above. To illutrate thi, a before, fix q 2.0; / ad coider B.; Q; q/ with Q D if D ad Q D 0 otherwie: the cla of itace i which N coit of oe job, ad N 2 coit of job. Tae to be arbitrarily mall: i particular, < q. I thi cae, a itace B 2 B.; Q; q/ doe ot atify (R- ) if ad oly if there exit at leat d. /e job i N 2 that do ot have ay predeceor i N. Let Z be a biomial radom variable with trial ad probability of ucce q. The, by the lower tail Cheroff boud i Lemma A.2(b), P.B 2 B.; Q; q/ doe ot atify (R- )/ D P.Z d. D P.Z d. /e / P.Z. // D P Z. q/. / exp q 2 /e/ 2. q/. / : q Therefore, P.B 2 B.; Q; q/ atifie (R- )/ goe to zero a the total umber of job grow. With Theorem 4. i had, we ca how that for almot all 0- bipartite itace, all feaible chedule are arbitrarily cloe to optimal. Let opt.b/ deote the optimal value of itace B, ad let val.b; S/ deote the objective value of (feaible) chedule S for itace B. 9

11 Theorem 4.2. Fix q 2.0; /, 2.0; /,, ad 2.log /. Let 2 R C 0 be a probability vector that atifie (2.) for ad ome cotat c ; c 2 ; c 3 ; c 4 2 R >0, whe i ufficietly large. The, lim P val.b; S/ B 2 B.; ; q/ atifie. / 2 for all feaible chedule S D : opt.b/ Proof. Coider ome 0- bipartite itace B with jn j D ad jn 2 j D 2. If (R- ) i atified that i, if a rectagle of width ad height 2 caot fit i the regio R B the opt.b/ > 2. / 2. Sice the objective value of ay feaible chedule of a itace B i at mot 2, thi implie that if (R- ) i atified, val.b;s/ opt.b/ 2 2. / 2 D. / 2, which implie the claim. I additio, Theorem 4. alo implie a o-trivial lower boud o the itegrality gap of variou liear programmig relaxatio of j prec j P w j C j, for almot all 0- bipartite itace. Pott [9] propoed the followig iteger programmig formulatio. Defie the deciio variable.ı ij / i;j 2N Wi j a follow: for all i; j 2 N uch that i j, ı ij i equal to if job i i proceed before job j, ad 0 otherwie. The j prec j P w j C j ca be formulated a [P] miimize p j w j C p i w j ı ij (4.a) j 2N i;j 2N Wi j ubject to ı ij C ı j i D for all i; j 2 N W i j; (4.b) ı ij C ı j C ı i 2 for all i; j; 2 N W i j i; (4.c) ı ij D for all.i; j / 2 A; (4.d) ı ij 2 f0; g for all i; j 2 N W i j: (4.e) It i traightforward to chec that [P] i a correct formulatio of j prec j P w j C j. We deote the LP relaxatio of [P] obtaied by replacig the biary cotrait (4.e) with oegativity cotrait ı ij 0 for all i; j 2 N a [P-LP]. Let lp.b/ deote the optimal value of [P-LP]. Theorem 4.3. Fix q 2.0; /, 2.0; /, ı 2.0; /,, ad 2.log /. Let 2 R C 0 be a probability vector that atifie (2.) for ad ome cotat c ; c 2 ; c 3 ; c 4 2 R >0, whe i ufficietly large. The, lim P B 2 B.; ; q/ atifie opt.b/ 2. /2 > D : lp.b/ C. C ı/q Proof. Coider a 0- bipartite itace B D.N ; N 2 ; A/ with jn j D ad jn 2 j D 2. It i traightforward to how that ettig ı ij D if.i; j / 2 A, ad ı ij D 2 otherwie, i a feaible olutio to [P-LP], ad that thi olutio ha objective value 2. 2 C jaj/. Therefore, lp.b/ 2. 2 C jaj/. I the proof of Theorem 4.2, we howed that if B atifie (R- ), the opt.b/ > 2. / 2. Therefore, if B atifie (R- ) ad jaj <. C ı/q 2, the ad o opt.b/ lp.b/ > 2. / C jaj/ > 2. / C. C ı/q 2 / P B 2 B.; ; q/ atifie opt.b/ lp.b/ 2. /2 C. C ı/q D 2. /2 C. C ı/q ; P B 2 B.; ; q/ doe ot atify (R- ) C P B 2 B.; ; q/ atifie jaj. C ı/q 2 : 0

12 By coditioig o the ize of N ad N 2, ad uig the upper tail Cheroff boud from Lemma A.2(a), we obtai P B 2 B.; ; q/ atifie jaj. C ı/q 2 B 2 B.; ; q/ atifie D P jaj. C ı/q 2 D e q. D /ı2 =3 ˇ D ; 2 D e q. /ı2 =3 e q. /ı2 =3 : D Therefore, lim P B 2 B.; ; q/ atifie jaj. C ı/q 2 D 0. By Theorem 4., we have that lim P B 2 B.; ; q/ doe ot atify (R- ) D 0. It follow that lim P B 2 B.; ; q/ atifie opt.b/ 2. /2 D 0: lp.b/ C. C ı/q We ote that the above reult alo applie to other formulatio of j prec j P w j C j, icludig the further relaxatio of [P] due to Chuda ad Hochbaum [4] ad Correa ad Schulz [5], ad the LP relaxatio of j prec j P w j C j baed o completio-time variable due to Queyrae ad Wag [20], ice all thee relaxatio are o troger tha [P-LP]. Fially, we ote that Theorem 4.2 ad Theorem 4.3 remai valid a log a the probability q of a precedece cotrait appearig i a fuctio of the umber of job o that q 2.= log /. Acowledgemet The author would lie to tha the aociate editor, three aoymou referee, a well a David Gamari, Moaldo Matrolilli, ad Maurice Queyrae for their helpful commet. A Ueful lemma Lemma A.. For ay a 2.0; uch that a 2 Z >0 ad D ; : : : ;, Proof. Note that x x for ay x D ; : : : ;. It follow that for ay x D ; : : : ;. Sice x x a bac. Cbac bac. Alo ote that C bac D C ba a. /c C ba. /c D C a. / D a; the claim follow. Lemma A.2 (Cheroff boud, ee Mitzemacher ad Upfal [7]). Let ; : : : ; m be idepedet radom variable uch that for i D ; : : : ; m, P. i D / D q ad P. i D 0/ D q with q 2.0; /. The for S D P m id i, D E.S/ D qm, ad ay ı 2.0; /, (a) P.S. C ı// e ı2 =3 ; (b) P.S. ı// e ı2 =2.

13 Referece [] C. Ambühl, M. Matrolilli, O. Sveo Iapproximability reult for paret cut, optimal liear arragemet, ad precedece cotraied chedulig. I Proceedig of the 48th Aual IEEE Sympoium o Foudatio of Computer Sciece (FOCS 2007), pp [2] N. Baal, S. Khot Optimal log code tet with oe free bit. I Proceedig of the 50th Aual IEEE Sympoium o Foudatio of Computer Sciece (FOCS 2009), pp [3] C. Cheuri, R. Motwai Precedece cotraied chedulig to miimize um of weighted completio time o a igle machie. Dicrete Applied Mathematic 98: [4] F. A. Chuda, D. S. Hochbaum A half-itegral liear programmig relaxatio for chedulig precedece-cotraied job o a igle machie. Operatio Reearch Letter 25: [5] J. R. Correa, A. S. Schulz Sigle-machie chedulig with precedece cotrait. Mathematic of Operatio Reearch 30: [6] W. L. Eatma, S. Eve, I. M. Iaac Boud for the optimal chedulig of job o m proceor. Maagemet Sciece : [7] P. Erdö, A. Réyi O radom graph. Publicatioe Mathematicae 6: [8] G. Gallo, M. D. Grigoriadi, R. E. Tarja A fat parametric maximum flow algorithm ad applicatio. SIAM Joural o Computig 8: [9] M.. Goema, D. P. Williamo Two-dimeioal Gatt chart ad a chedulig algorithm of Lawler. SIAM Joural o Dicrete Mathematic 3: [0] R. L. Graham, E. L. Lawler, J. K. Letra, A. H. G. Riooy Ka Optimizatio ad approximatio i determiitic equecig ad chedulig: a urvey. Aal of Dicrete Mathematic 5: [] L. A. Hall, A. S. Schulz, D. B. Shmoy, J. Wei Schedulig to miimize average completio time: off-lie ad o-lie approximatio algorithm. Mathematic of Operatio Reearch 22: [2] P. Hall O repreetative of ubet. Joural of the Lodo Mathematical Society 0: [3] S. Khot O the power of uique 2-prover -roud game. I Proceedig of the 34th Aual ACM Sympoium o Theory of Computig (STOC 2002), pp [4] E. L. Lawler Sequecig job to miimize total weighted completio time ubject to precedece cotrait. Aal of Dicrete Mathematic 2: [5] J. K. Letra, A. H. G. Riooy Ka Complexity of chedulig uder precedece cotrait. Operatio Reearch 26: [6] F. Margot, M. Queyrae, Y. Wag Decompoitio, etwor flow, ad a precedece cotraied igle-machie chedulig problem. Operatio Reearch 5: [7] M. Mitzemacher, E. Upfal Probability ad Computig: Radomized Algorithm ad Probabilitic Aalyi. Cambridge Uiverity Pre. 2

14 [8] J.-C. Picard, M. Queyrae O the tructure of all miimum cut i a etwor ad applicatio. Mathematical Programmig Study 3:8 6. [9] C. N. Pott A algorithm for the igle machie equecig problem with precedece cotrait. Mathematical Programmig Study 3: [20] M. Queyrae, Y. Wag. 99. Sigle-machie chedulig polyhedra with precedece cotrait. Mathematic of Operatio Reearch 6: 20. [2] J. B. Sidey Decompoitio algorithm for igle-machie equecig with precedece cotrait ad deferral cot. Operatio Reearch 23: [22] W. E. Smith Variou optimizer for igle-tage productio. Naval Reearch Logitic Quarterly 3: [23] G. J. Woegiger O the approximability of average completio time chedulig uder precedece cotrait. Dicrete Applied Mathematic 3:

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles Ope Joural of Dicrete Mathematic, 205, 5, 54-64 Publihed Olie July 205 i SciRe http://wwwcirporg/oural/odm http://dxdoiorg/0426/odm2055005 O the Siged Domiatio Number of the Carteia Product of Two Directed

More information

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd, Applied Mathematical Sciece Vol 9 5 o 3 7 - HIKARI Ltd wwwm-hiaricom http://dxdoiorg/988/am54884 O Poitive Defiite Solutio of the Noliear Matrix Equatio * A A I Saa'a A Zarea* Mathematical Sciece Departmet

More information

Preemptive online scheduling with rejection of unit jobs on two uniformly related machines

Preemptive online scheduling with rejection of unit jobs on two uniformly related machines J Sched (04) 7:87 93 DOI 0007/095-03-036-0 Preemptive olie chedulig with rejectio of uit job o two uiformly related machie Leah Eptei Haa Zebedat-Haider Received: November 0 / Accepted: March 03 / Publihed

More information

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing

Comments on Discussion Sheet 18 and Worksheet 18 ( ) An Introduction to Hypothesis Testing Commet o Dicuio Sheet 18 ad Workheet 18 ( 9.5-9.7) A Itroductio to Hypothei Tetig Dicuio Sheet 18 A Itroductio to Hypothei Tetig We have tudied cofidece iterval for a while ow. Thee are method that allow

More information

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation

Société de Calcul Mathématique, S. A. Algorithmes et Optimisation Société de Calcul Mathématique S A Algorithme et Optimiatio Radom amplig of proportio Berard Beauzamy Jue 2008 From time to time we fid a problem i which we do ot deal with value but with proportio For

More information

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution Applied Mathematic E-Note, 9009, 300-306 c ISSN 1607-510 Available free at mirror ite of http://wwwmaththuedutw/ ame/ A Tail Boud For Sum Of Idepedet Radom Variable Ad Applicatio To The Pareto Ditributio

More information

On the 2-Domination Number of Complete Grid Graphs

On the 2-Domination Number of Complete Grid Graphs Ope Joural of Dicrete Mathematic, 0,, -0 http://wwwcirporg/oural/odm ISSN Olie: - ISSN Prit: - O the -Domiatio Number of Complete Grid Graph Ramy Shahee, Suhail Mahfud, Khame Almaea Departmet of Mathematic,

More information

LECTURE 13 SIMULTANEOUS EQUATIONS

LECTURE 13 SIMULTANEOUS EQUATIONS NOVEMBER 5, 26 Demad-upply ytem LETURE 3 SIMULTNEOUS EQUTIONS I thi lecture, we dicu edogeeity problem that arie due to imultaeity, i.e. the left-had ide variable ad ome of the right-had ide variable are

More information

10-716: Advanced Machine Learning Spring Lecture 13: March 5

10-716: Advanced Machine Learning Spring Lecture 13: March 5 10-716: Advaced Machie Learig Sprig 019 Lecture 13: March 5 Lecturer: Pradeep Ravikumar Scribe: Charvi Ratogi, Hele Zhou, Nicholay opi Note: Lae template courtey of UC Berkeley EECS dept. Diclaimer: hee

More information

Generalized Likelihood Functions and Random Measures

Generalized Likelihood Functions and Random Measures Pure Mathematical Sciece, Vol. 3, 2014, o. 2, 87-95 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/pm.2014.437 Geeralized Likelihood Fuctio ad Radom Meaure Chrito E. Koutzaki Departmet of Mathematic

More information

A tail bound for sums of independent random variables : application to the symmetric Pareto distribution

A tail bound for sums of independent random variables : application to the symmetric Pareto distribution A tail boud for um of idepedet radom variable : applicatio to the ymmetric Pareto ditributio Chritophe Cheeau To cite thi verio: Chritophe Cheeau. A tail boud for um of idepedet radom variable : applicatio

More information

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed.

x z Increasing the size of the sample increases the power (reduces the probability of a Type II error) when the significance level remains fixed. ] z-tet for the mea, μ If the P-value i a mall or maller tha a pecified value, the data are tatitically igificat at igificace level. Sigificace tet for the hypothei H 0: = 0 cocerig the ukow mea of a populatio

More information

Heat Equation: Maximum Principles

Heat Equation: Maximum Principles Heat Equatio: Maximum Priciple Nov. 9, 0 I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Isolated Word Recogniser

Isolated Word Recogniser Lecture 5 Iolated Word Recogitio Hidde Markov Model of peech State traitio ad aligmet probabilitie Searchig all poible aligmet Dyamic Programmig Viterbi Aligmet Iolated Word Recogitio 8. Iolated Word Recogier

More information

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49 C22.0103 Sprig 2011 Homework 7 olutio 1. Baed o a ample of 50 x-value havig mea 35.36 ad tadard deviatio 4.26, fid a 95% cofidece iterval for the populatio mea. SOLUTION: The 95% cofidece iterval for the

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ.

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ. 2 5. Weighted umber of late jobs 5.1. Release dates ad due dates: maximimizig the weight of o-time jobs Oce we add release dates, miimizig the umber of late jobs becomes a sigificatly harder problem. For

More information

On Random Line Segments in the Unit Square

On Random Line Segments in the Unit Square O Radom Lie Segmets i the Uit Square Thomas A. Courtade Departmet of Electrical Egieerig Uiversity of Califoria Los Ageles, Califoria 90095 Email: tacourta@ee.ucla.edu I. INTRODUCTION Let Q = [0, 1] [0,

More information

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

Chapter 9. Key Ideas Hypothesis Test (Two Populations) Chapter 9 Key Idea Hypothei Tet (Two Populatio) Sectio 9-: Overview I Chapter 8, dicuio cetered aroud hypothei tet for the proportio, mea, ad tadard deviatio/variace of a igle populatio. However, ofte

More information

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences

Generalized Fibonacci Like Sequence Associated with Fibonacci and Lucas Sequences Turkih Joural of Aalyi ad Number Theory, 4, Vol., No. 6, 33-38 Available olie at http://pub.ciepub.com/tjat//6/9 Sciece ad Educatio Publihig DOI:.69/tjat--6-9 Geeralized Fiboacci Like Sequece Aociated

More information

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE

20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE 20. CONFIDENCE INTERVALS FOR THE MEAN, UNKNOWN VARIANCE If the populatio tadard deviatio σ i ukow, a it uually will be i practice, we will have to etimate it by the ample tadard deviatio. Sice σ i ukow,

More information

Fig. 1: Streamline coordinates

Fig. 1: Streamline coordinates 1 Equatio of Motio i Streamlie Coordiate Ai A. Soi, MIT 2.25 Advaced Fluid Mechaic Euler equatio expree the relatiohip betwee the velocity ad the preure field i ivicid flow. Writte i term of treamlie coordiate,

More information

STA 4032 Final Exam Formula Sheet

STA 4032 Final Exam Formula Sheet Chapter 2. Probability STA 4032 Fial Eam Formula Sheet Some Baic Probability Formula: (1) P (A B) = P (A) + P (B) P (A B). (2) P (A ) = 1 P (A) ( A i the complemet of A). (3) If S i a fiite ample pace

More information

Assignment 1 - Solutions. ECSE 420 Parallel Computing Fall November 2, 2014

Assignment 1 - Solutions. ECSE 420 Parallel Computing Fall November 2, 2014 Aigmet - Solutio ECSE 420 Parallel Computig Fall 204 ovember 2, 204. (%) Decribe briefly the followig term, expoe their caue, ad work-aroud the idutry ha udertake to overcome their coequece: (i) Memory

More information

Further Investigation of alternative Formulation of RP Model with Response Error. Ed Stanek

Further Investigation of alternative Formulation of RP Model with Response Error. Ed Stanek Further vetigatio of alterative Formulatio of RP odel with Repoe Error Ed Staek TRODCTO We explore the predictor that will reult i a imple radom ample with repoe error whe a differet model i potulated

More information

TESTS OF SIGNIFICANCE

TESTS OF SIGNIFICANCE TESTS OF SIGNIFICANCE Seema Jaggi I.A.S.R.I., Library Aveue, New Delhi eema@iari.re.i I applied ivetigatio, oe i ofte itereted i comparig ome characteritic (uch a the mea, the variace or a meaure of aociatio

More information

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former)

Erick L. Oberstar Fall 2001 Project: Sidelobe Canceller & GSC 1. Advanced Digital Signal Processing Sidelobe Canceller (Beam Former) Erick L. Obertar Fall 001 Project: Sidelobe Caceller & GSC 1 Advaced Digital Sigal Proceig Sidelobe Caceller (Beam Former) Erick L. Obertar 001 Erick L. Obertar Fall 001 Project: Sidelobe Caceller & GSC

More information

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry

Zeta-reciprocal Extended reciprocal zeta function and an alternate formulation of the Riemann hypothesis By M. Aslam Chaudhry Zeta-reciprocal Eteded reciprocal zeta fuctio ad a alterate formulatio of the Riema hypothei By. Alam Chaudhry Departmet of athematical Sciece, Kig Fahd Uiverity of Petroleum ad ieral Dhahra 36, Saudi

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

State space systems analysis

State space systems analysis State pace ytem aalyi Repreetatio of a ytem i tate-pace (tate-pace model of a ytem To itroduce the tate pace formalim let u tart with a eample i which the ytem i dicuio i a imple electrical circuit with

More information

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions

M227 Chapter 9 Section 1 Testing Two Parameters: Means, Variances, Proportions M7 Chapter 9 Sectio 1 OBJECTIVES Tet two mea with idepedet ample whe populatio variace are kow. Tet two variace with idepedet ample. Tet two mea with idepedet ample whe populatio variace are equal Tet

More information

Fractional parts and their relations to the values of the Riemann zeta function

Fractional parts and their relations to the values of the Riemann zeta function Arab. J. Math. (08) 7: 8 http://doi.org/0.007/40065-07-084- Arabia Joural of Mathematic Ibrahim M. Alabdulmohi Fractioal part ad their relatio to the value of the Riema zeta fuctio Received: 4 Jauary 07

More information

Solutions for the Exam 9 January 2012

Solutions for the Exam 9 January 2012 Mastermath ad LNMB Course: Discrete Optimizatio Solutios for the Exam 9 Jauary 2012 Utrecht Uiversity, Educatorium, 15:15 18:15 The examiatio lasts 3 hours. Gradig will be doe before Jauary 23, 2012. Studets

More information

AN APPLICATION OF HYPERHARMONIC NUMBERS IN MATRICES

AN APPLICATION OF HYPERHARMONIC NUMBERS IN MATRICES Hacettepe Joural of Mathematic ad Statitic Volume 4 4 03, 387 393 AN APPLICATION OF HYPERHARMONIC NUMBERS IN MATRICES Mutafa Bahşi ad Süleyma Solak Received 9 : 06 : 0 : Accepted 8 : 0 : 03 Abtract I thi

More information

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes

Explicit scheme. Fully implicit scheme Notes. Fully implicit scheme Notes. Fully implicit scheme Notes. Notes Explicit cheme So far coidered a fully explicit cheme to umerically olve the diffuio equatio: T + = ( )T + (T+ + T ) () with = κ ( x) Oly table for < / Thi cheme i ometime referred to a FTCS (forward time

More information

100(1 α)% confidence interval: ( x z ( sample size needed to construct a 100(1 α)% confidence interval with a margin of error of w:

100(1 α)% confidence interval: ( x z ( sample size needed to construct a 100(1 α)% confidence interval with a margin of error of w: Stat 400, ectio 7. Large Sample Cofidece Iterval ote by Tim Pilachowki a Large-Sample Two-ided Cofidece Iterval for a Populatio Mea ectio 7.1 redux The poit etimate for a populatio mea µ will be a ample

More information

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i

a 1 = 1 a a a a n n s f() s = Σ log a 1 + a a n log n sup log a n+1 + a n+2 + a n+3 log n sup () s = an /n s s = + t i 0 Dirichlet Serie & Logarithmic Power Serie. Defiitio & Theorem Defiitio.. (Ordiary Dirichlet Serie) Whe,a,,3, are complex umber, we call the followig Ordiary Dirichlet Serie. f() a a a a 3 3 a 4 4 Note

More information

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION

ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Review of the Air Force Academy No. (34)/7 ON THE SCALE PARAMETER OF EXPONENTIAL DISTRIBUTION Aca Ileaa LUPAŞ Military Techical Academy, Bucharet, Romaia (lua_a@yahoo.com) DOI:.96/84-938.7.5..6 Abtract:

More information

Production Scheduling with Genetic Algorithm

Production Scheduling with Genetic Algorithm Productio Schedulig with Geetic Algorithm Áko Gubá 1, Mikló Gubá 2 1 college profeor, head of departmet, Departmet of Iformatio Sciece ad Techology, Budapet Buie School 2 college profeor, head of ititute,

More information

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( )

STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN ( ) STUDENT S t-distribution AND CONFIDENCE INTERVALS OF THE MEAN Suppoe that we have a ample of meaured value x1, x, x3,, x of a igle uow quatity. Aumig that the meauremet are draw from a ormal ditributio

More information

Alliance Partition Number in Graphs

Alliance Partition Number in Graphs Alliace Partitio Number i Graphs Lida Eroh Departmet of Mathematics Uiversity of Wiscosi Oshkosh, Oshkosh, WI email: eroh@uwoshedu, phoe: (90)44-7343 ad Ralucca Gera Departmet of Applied Mathematics Naval

More information

On Algorithm for the Minimum Spanning Trees Problem with Diameter Bounded Below

On Algorithm for the Minimum Spanning Trees Problem with Diameter Bounded Below O Algorithm for the Miimum Spaig Trees Problem with Diameter Bouded Below Edward Kh. Gimadi 1,2, Alexey M. Istomi 1, ad Ekateria Yu. Shi 2 1 Sobolev Istitute of Mathematics, 4 Acad. Koptyug aveue, 630090

More information

The log-behavior of n p(n) and n p(n)/n

The log-behavior of n p(n) and n p(n)/n Ramauja J. 44 017, 81-99 The log-behavior of p ad p/ William Y.C. Che 1 ad Ke Y. Zheg 1 Ceter for Applied Mathematics Tiaji Uiversity Tiaji 0007, P. R. Chia Ceter for Combiatorics, LPMC Nakai Uivercity

More information

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY Orietal J. ath., Volue 1, Nuber, 009, Page 101-108 009 Orietal Acadeic Publiher PRIARY DECOPOSITION, ASSOCIATED PRIE IDEALS AND GABRIEL TOPOLOGY. EL HAJOUI, A. IRI ad A. ZOGLAT Uiverité ohaed V aculté

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

A criterion for easiness of certain SAT-problems

A criterion for easiness of certain SAT-problems A criterio for eaie of certai SAT-problem Berd R. Schuh Dr. Berd Schuh, D-50968 Köl, Germay; berd.chuh@etcologe.de keyword: compleity, atifiability, propoitioal logic, P, NP, -i-3sat, eay/hard itace Abtract.

More information

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS

EULER-MACLAURIN SUM FORMULA AND ITS GENERALIZATIONS AND APPLICATIONS EULER-MACLAURI SUM FORMULA AD ITS GEERALIZATIOS AD APPLICATIOS Joe Javier Garcia Moreta Graduate tudet of Phyic at the UPV/EHU (Uiverity of Baque coutry) I Solid State Phyic Addre: Practicate Ada y Grijalba

More information

Disjoint Systems. Abstract

Disjoint Systems. Abstract Disjoit Systems Noga Alo ad Bey Sudaov Departmet of Mathematics Raymod ad Beverly Sacler Faculty of Exact Scieces Tel Aviv Uiversity, Tel Aviv, Israel Abstract A disjoit system of type (,,, ) is a collectio

More information

Lecture 2 Long paths in random graphs

Lecture 2 Long paths in random graphs Lecture Log paths i radom graphs 1 Itroductio I this lecture we treat the appearace of log paths ad cycles i sparse radom graphs. will wor with the probability space G(, p) of biomial radom graphs, aalogous

More information

Confidence Intervals. Confidence Intervals

Confidence Intervals. Confidence Intervals A overview Mot probability ditributio are idexed by oe me parameter. F example, N(µ,σ 2 ) B(, p). I igificace tet, we have ued poit etimat f parameter. F example, f iid Y 1,Y 2,...,Y N(µ,σ 2 ), Ȳ i a poit

More information

2.1. The Algebraic and Order Properties of R Definition. A binary operation on a set F is a function B : F F! F.

2.1. The Algebraic and Order Properties of R Definition. A binary operation on a set F is a function B : F F! F. CHAPTER 2 The Real Numbers 2.. The Algebraic ad Order Properties of R Defiitio. A biary operatio o a set F is a fuctio B : F F! F. For the biary operatios of + ad, we replace B(a, b) by a + b ad a b, respectively.

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

1. (a) If u (I : R J), there exists c 0 in R such that for all q 0, cu q (I : R J) [q] I [q] : R J [q]. Hence, if j J, for all q 0, j q (cu q ) =

1. (a) If u (I : R J), there exists c 0 in R such that for all q 0, cu q (I : R J) [q] I [q] : R J [q]. Hence, if j J, for all q 0, j q (cu q ) = Math 615, Witer 2016 Problem Set #5 Solutio 1. (a) If u (I : R J), there exit c 0 i R uch that for all q 0, cu q (I : R J) [q] I [q] : R J [q]. Hece, if j J, for all q 0, j q (cu q ) = c(ju) q I [q], o

More information

TEACHER CERTIFICATION STUDY GUIDE

TEACHER CERTIFICATION STUDY GUIDE COMPETENCY 1. ALGEBRA SKILL 1.1 1.1a. ALGEBRAIC STRUCTURES Kow why the real ad complex umbers are each a field, ad that particular rigs are ot fields (e.g., itegers, polyomial rigs, matrix rigs) Algebra

More information

CHAPTER I: Vector Spaces

CHAPTER I: Vector Spaces CHAPTER I: Vector Spaces Sectio 1: Itroductio ad Examples This first chapter is largely a review of topics you probably saw i your liear algebra course. So why cover it? (1) Not everyoe remembers everythig

More information

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders)

VIII. Interval Estimation A. A Few Important Definitions (Including Some Reminders) VIII. Iterval Etimatio A. A Few Importat Defiitio (Icludig Some Remider) 1. Poit Etimate - a igle umerical value ued a a etimate of a parameter.. Poit Etimator - the ample tatitic that provide the poit

More information

Ma 530 Infinite Series I

Ma 530 Infinite Series I Ma 50 Ifiite Series I Please ote that i additio to the material below this lecture icorporated material from the Visual Calculus web site. The material o sequeces is at Visual Sequeces. (To use this li

More information

Large holes in quasi-random graphs

Large holes in quasi-random graphs Large holes i quasi-radom graphs Joaa Polcy Departmet of Discrete Mathematics Adam Mickiewicz Uiversity Pozań, Polad joaska@amuedupl Submitted: Nov 23, 2006; Accepted: Apr 10, 2008; Published: Apr 18,

More information

Lecture 5: April 17, 2013

Lecture 5: April 17, 2013 TTIC/CMSC 350 Mathematical Toolkit Sprig 203 Madhur Tulsiai Lecture 5: April 7, 203 Scribe: Somaye Hashemifar Cheroff bouds recap We recall the Cheroff/Hoeffdig bouds we derived i the last lecture idepedet

More information

Statistical Inference Procedures

Statistical Inference Procedures Statitical Iferece Procedure Cofidece Iterval Hypothei Tet Statitical iferece produce awer to pecific quetio about the populatio of iteret baed o the iformatio i a ample. Iferece procedure mut iclude a

More information

Brief Review of Linear System Theory

Brief Review of Linear System Theory Brief Review of Liear Sytem heory he followig iformatio i typically covered i a coure o liear ytem theory. At ISU, EE 577 i oe uch coure ad i highly recommeded for power ytem egieerig tudet. We have developed

More information

Fractional Integral Operator and Olsen Inequality in the Non-Homogeneous Classic Morrey Space

Fractional Integral Operator and Olsen Inequality in the Non-Homogeneous Classic Morrey Space It Joural of Math Aalyi, Vol 6, 202, o 3, 50-5 Fractioal Itegral Oerator ad Ole Ieuality i the No-Homogeeou Claic Morrey Sace Mohammad Imam Utoyo Deartmet of Mathematic Airlagga Uiverity, Camu C, Mulyorejo

More information

DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE

DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE DISCRETE MELLIN CONVOLUTION AND ITS EXTENSIONS, PERRON FORMULA AND EXPLICIT FORMULAE Joe Javier Garcia Moreta Graduate tudet of Phyic at the UPV/EHU (Uiverity of Baque coutry) I Solid State Phyic Addre:

More information

On the Positive Definite Solutions of the Matrix Equation X S + A * X S A = Q

On the Positive Definite Solutions of the Matrix Equation X S + A * X S A = Q The Ope Applied Mathematic Joural 011 5 19-5 19 Ope Acce O the Poitive Defiite Solutio of the Matrix Equatio X S + A * X S A = Q Maria Adam * Departmet of Computer Sciece ad Biomedical Iformatic Uiverity

More information

Positive solutions of singular (k,n-k) conjugate boundary value problem

Positive solutions of singular (k,n-k) conjugate boundary value problem Joural of Applied Mathematic & Bioiformatic vol5 o 25-2 ISSN: 792-662 prit 792-699 olie Sciepre Ltd 25 Poitive olutio of igular - cojugate boudar value problem Ligbi Kog ad Tao Lu 2 Abtract Poitive olutio

More information

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory 1. Graph Theory Prove that there exist o simple plaar triagulatio T ad two distict adjacet vertices x, y V (T ) such that x ad y are the oly vertices of T of odd degree. Do ot use the Four-Color Theorem.

More information

Confidence Intervals: Three Views Class 23, Jeremy Orloff and Jonathan Bloom

Confidence Intervals: Three Views Class 23, Jeremy Orloff and Jonathan Bloom Cofidece Iterval: Three View Cla 23, 18.05 Jeremy Orloff ad Joatha Bloom 1 Learig Goal 1. Be able to produce z, t ad χ 2 cofidece iterval baed o the correpodig tadardized tatitic. 2. Be able to ue a hypothei

More information

Analysis of Analytical and Numerical Methods of Epidemic Models

Analysis of Analytical and Numerical Methods of Epidemic Models Iteratioal Joural of Egieerig Reearc ad Geeral Sciece Volue, Iue, Noveber-Deceber, 05 ISSN 09-70 Aalyi of Aalytical ad Nuerical Metod of Epideic Model Pooa Kuari Aitat Profeor, Departet of Mateatic Magad

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

Random assignment with integer costs

Random assignment with integer costs Radom assigmet with iteger costs Robert Parviaie Departmet of Mathematics, Uppsala Uiversity P.O. Box 480, SE-7506 Uppsala, Swede robert.parviaie@math.uu.se Jue 4, 200 Abstract The radom assigmet problem

More information

Weak formulation and Lagrange equations of motion

Weak formulation and Lagrange equations of motion Chapter 4 Weak formulatio ad Lagrage equatio of motio A mot commo approach to tudy tructural dyamic i the ue of the Lagrage equatio of motio. Thee are obtaied i thi chapter tartig from the Cauchy equatio

More information

Sub-exponential Upper Bound for #XSAT of some CNF Classes

Sub-exponential Upper Bound for #XSAT of some CNF Classes Su-expoetial Upper Boud for #XSAT of ome CN Clae Berd R. Schuh Dr. Berd Schuh, D-5968 Köl, Germay; erd.chuh@etcologe.de eyword: complexity, atifiaility, SAT, XSAT, #XSAT, propoitioal logic Atract. We derive

More information

Polynomial identity testing and global minimum cut

Polynomial identity testing and global minimum cut CHAPTER 6 Polyomial idetity testig ad global miimum cut I this lecture we will cosider two further problems that ca be solved usig probabilistic algorithms. I the first half, we will cosider the problem

More information

Integer Programming (IP)

Integer Programming (IP) Iteger Programmig (IP) The geeral liear mathematical programmig problem where Mied IP Problem - MIP ma c T + h Z T y A + G y + y b R p + vector of positive iteger variables y vector of positive real variables

More information

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play.

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play. Number Theory Math 5840 otes. Sectio 1: Axioms. I umber theory we will geerally be workig with itegers, though occasioally fractios ad irratioals will come ito play. Notatio: Z deotes the set of all itegers

More information

Brief Review of Functions of Several Variables

Brief Review of Functions of Several Variables Brief Review of Fuctios of Several Variables Differetiatio Differetiatio Recall, a fuctio f : R R is differetiable at x R if ( ) ( ) lim f x f x 0 exists df ( x) Whe this limit exists we call it or f(

More information

CHAPTER 6. Confidence Intervals. 6.1 (a) y = 1269; s = 145; n = 8. The standard error of the mean is = s n = = 51.3 ng/gm.

CHAPTER 6. Confidence Intervals. 6.1 (a) y = 1269; s = 145; n = 8. The standard error of the mean is = s n = = 51.3 ng/gm. } CHAPTER 6 Cofidece Iterval 6.1 (a) y = 1269; = 145; = 8. The tadard error of the mea i SE ȳ = = 145 8 = 51.3 g/gm. (b) y = 1269; = 145; = 30. The tadard error of the mea i ȳ = 145 = 26.5 g/gm. 30 6.2

More information

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs CSE 1400 Applied Discrete Mathematics Number Theory ad Proofs Departmet of Computer Scieces College of Egieerig Florida Tech Sprig 01 Problems for Number Theory Backgroud Number theory is the brach of

More information

4 The Sperner property.

4 The Sperner property. 4 The Sperer property. I this sectio we cosider a surprisig applicatio of certai adjacecy matrices to some problems i extremal set theory. A importat role will also be played by fiite groups. I geeral,

More information

Lecture 14: Randomized Computation (cont.)

Lecture 14: Randomized Computation (cont.) CSE 200 Computability ad Complexity Wedesday, May 15, 2013 Lecture 14: Radomized Computatio (cot.) Istructor: Professor Shachar Lovett Scribe: Dogcai She 1 Radmized Algorithm Examples 1.1 The k-th Elemet

More information

ROLL CUTTING PROBLEMS UNDER STOCHASTIC DEMAND

ROLL CUTTING PROBLEMS UNDER STOCHASTIC DEMAND Pacific-Asia Joural of Mathematics, Volume 5, No., Jauary-Jue 20 ROLL CUTTING PROBLEMS UNDER STOCHASTIC DEMAND SHAKEEL JAVAID, Z. H. BAKHSHI & M. M. KHALID ABSTRACT: I this paper, the roll cuttig problem

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

Matrix Geometric Method for M/M/1 Queueing Model With And Without Breakdown ATM Machines

Matrix Geometric Method for M/M/1 Queueing Model With And Without Breakdown ATM Machines Reearch Paper America Joural of Egieerig Reearch (AJER) 28 America Joural of Egieerig Reearch (AJER) e-issn: 232-847 p-issn : 232-936 Volume-7 Iue- pp-246-252 www.ajer.org Ope Acce Matrix Geometric Method

More information

Application to Random Graphs

Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

Last time: Completed solution to the optimum linear filter in real-time operation

Last time: Completed solution to the optimum linear filter in real-time operation 6.3 tochatic Etimatio ad Cotrol, Fall 4 ecture at time: Completed olutio to the oimum liear filter i real-time operatio emi-free cofiguratio: t D( p) F( p) i( p) dte dp e π F( ) F( ) ( ) F( p) ( p) 4444443

More information

We will look for series solutions to (1) around (at most) regular singular points, which without

We will look for series solutions to (1) around (at most) regular singular points, which without ENM 511 J. L. Baai April, 1 Frobeiu Solutio to a d order ODE ear a regular igular poit Coider the ODE y 16 + P16 y 16 + Q1616 y (1) We will look for erie olutio to (1) aroud (at mot) regular igular poit,

More information

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) =

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) = AN INTRODUCTION TO SCHRÖDER AND UNKNOWN NUMBERS NICK DUFRESNE Abstract. I this article we will itroduce two types of lattice paths, Schröder paths ad Ukow paths. We will examie differet properties of each,

More information

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8

Capacitors and PN Junctions. Lecture 8: Prof. Niknejad. Department of EECS University of California, Berkeley. EECS 105 Fall 2003, Lecture 8 CS 15 Fall 23, Lecture 8 Lecture 8: Capacitor ad PN Juctio Prof. Nikejad Lecture Outlie Review of lectrotatic IC MIM Capacitor No-Liear Capacitor PN Juctio Thermal quilibrium lectrotatic Review 1 lectric

More information

IP Reference guide for integer programming formulations.

IP Reference guide for integer programming formulations. IP Referece guide for iteger programmig formulatios. by James B. Orli for 15.053 ad 15.058 This documet is iteded as a compact (or relatively compact) guide to the formulatio of iteger programs. For more

More information

Cryptographic Hash Functions and Message Authentication Codes. Reading: Chapter 4 of Katz & Lindell

Cryptographic Hash Functions and Message Authentication Codes. Reading: Chapter 4 of Katz & Lindell Cryptographic Hah Fuctio ad Meage Autheticatio Code Readig: Chapter 4 of Katz & Lidell 1 Hah fuctio A fuctio mappig from a domai to a maller rage (thu ot ijective). Applicatio: Fat looup (hah table) Error

More information

On The Computation Of Weighted Shapley Values For Cooperative TU Games

On The Computation Of Weighted Shapley Values For Cooperative TU Games O he Computatio Of Weighted hapley Value For Cooperative U Game Iriel Draga echical Report 009-0 http://www.uta.edu/math/preprit/ Computatio of Weighted hapley Value O HE COMPUAIO OF WEIGHED HAPLEY VALUE

More information

arxiv: v3 [math.co] 6 Aug 2014

arxiv: v3 [math.co] 6 Aug 2014 NEAR PERFECT MATCHINGS IN -UNIFORM HYPERGRAPHS arxiv:1404.1136v3 [math.co] 6 Aug 2014 JIE HAN Abstract. Let H be a -uiform hypergraph o vertices where is a sufficietly large iteger ot divisible by. We

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

Lecture #20. n ( x p i )1/p = max

Lecture #20. n ( x p i )1/p = max COMPSCI 632: Approximatio Algorithms November 8, 2017 Lecturer: Debmalya Paigrahi Lecture #20 Scribe: Yua Deg 1 Overview Today, we cotiue to discuss about metric embeddigs techique. Specifically, we apply

More information

Topics in MMSE Estimation for Sparse Approximation

Topics in MMSE Estimation for Sparse Approximation for Spare Approximatio * Michael Elad The Computer Sciece Departmet The Techio Irael Ititute of techology Haifa 3, Irael Workhop: Sparity ad Computatio Haudorff ceter of Mathematic Uiverity of Bo Jue 7-,

More information

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA.

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA. INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 2008, #A05 Q-BINOMIALS AND THE GREATEST COMMON DIVISOR Keith R. Slavi 8474 SW Chevy Place, Beaverto, Orego 97008, USA slavi@dsl-oly.et Received:

More information

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients. Defiitios ad Theorems Remember the scalar form of the liear programmig problem, Miimize, Subject to, f(x) = c i x i a 1i x i = b 1 a mi x i = b m x i 0 i = 1,2,, where x are the decisio variables. c, b,

More information

Week 5-6: The Binomial Coefficients

Week 5-6: The Binomial Coefficients Wee 5-6: The Biomial Coefficiets March 6, 2018 1 Pascal Formula Theorem 11 (Pascal s Formula For itegers ad such that 1, ( ( ( 1 1 + 1 The umbers ( 2 ( 1 2 ( 2 are triagle umbers, that is, The petago umbers

More information