Naïve Bayes. Naïve Bayes

Size: px
Start display at page:

Download "Naïve Bayes. Naïve Bayes"

Transcription

1 Statistical Data Miig ad Machie Learig Hilary Term 206 Dio Sejdiovic Departmet of Statistics Oxford Slides ad other materials available at: : aother plug-i classifier with a simple geerative model - it assumes all measured variables/features are idepedet give the label. Ofte used i text documet classificatio, e.g. of scietific articles or s. A basic stadard model for text classificatio cosists of cosiderig a pre-specified dictioary of p words ad summarizig each documet i by a biary vector x i where x (j) i = { if word j is preset i documet 0 otherwise. Presece of the word j is the j-the feature/dimesio. To implemet a plug-i classifier, we eed a model for the coditioal probability mass fuctio g k (x) = P(X = x Y = k) for each class k =,..., K. is a plug-i classifier which igores feature correlatios ad assumes: MLE: g k (x i ) = P(X = x i Y = k) = = p p P(X (j) = x (j) i Y = k) (φ kj ) x(j) i ( φ kj ) x(j) i, ˆπ k = k, ˆφkj = i:y i =k x(j) i k. A problem with MLE: if the l-th word did ot appear i documets labelled as class k the ˆφ kl = 0 ad where we deoted parametrized coditioal PMF with φ kj = P(X (j) = Y = k) (probability that j-th word appears i class k documet). Give dataset, the MLE of the parameters is: ˆπ k = k, ˆφkj = i:y i =k x(j) i k. P(Y = k X = x with l-th etry equal to ) p ( ) x (j) ˆπ k ˆφkj ( ˆφ ) x (j) kj = 0 i.e. we will ever attribute a ew documet cotaiig word l to class k (regardless of other words i it). This is a example of overfittig. give the class, it assumes each word appears i a documet idepedetly of all others

2 Geerative Learig Geerative vs Discrimiative Geerative vs Discrimiative Geerative vs Discrimiative Learig Classifiers we have see so far are geerative: we work with a joit distributio p X,Y (x, y) over data vectors ad labels. A learig algorithm: costruct f : X Y which predicts the label of X. Give a loss fuctio L, the risk R of f (X) is R(f ) = E px,y [L(Y, f (X))] For 0/ loss i classificatio, Bayes classifier f Bayes (x) = argmax p(y = k x) = argmax p X,Y (x, k) has the miimum risk (Bayes risk), but is ukow sice p X,Y is ukow. Assume a parameteric model for the joit: p X,Y (x, y) = p X,Y (x, y ) Fit ˆ = argmax log p(x i, y i ) ad plug i back to Bayes classifier: ˆf (x) = argmax p(y = k x, ) = argmax p X,Y (x, k ˆ). Geerative learig: fid parameters which explai all the data available. ˆ = argmax log p(x i, y i ) Examples: LDA, QDA, aïve Bayes. Makes use of all the data available. Flexible modellig framework, so ca icorporate missig features or ulabeled examples. Stroger modellig assumptios, which may ot be realistic (Gaussiaity, idepedece of features). Discrimiative learig: fid parameters that aid i predictio. ˆ = argmi L(y i, f (x i )) or ˆ = argmax log p(y i x i, ) Examples: logistic regressio, eural ets, support vector machies. Typically performs better o a give task. Weaker modellig assumptios: essetially o model o X, oly o Y X. Ca overfit more easily. Logistic regressio Logistic Regressio Hard vs Soft classificatio rules Logistic Regressio A discrimiative classifier. Cosider biary classificatio with Y = {, +}. Logistic regressio uses a parametric model o the coditioal Y X, ot the joit distributio of (X, Y): p(y = y X = x; a, b) = + exp( y(a + b x)). a, b fitted by miimizig the empirical risk with respect to log loss. Cosider usig LDA for biary classificatio with Y = {, +}. Predictios are based o liear decisio boudary: { ŷ LDA (x) = sig log ˆπ + g + (x ˆµ +, ˆΣ) log ˆπ g (x ˆµ, ˆΣ) } = sig { a + b x } for a ad b depedig o fitted parameters ˆ = (ˆπ, ˆπ +, ˆµ, ˆµ +, Σ). Quatity a + b x ca be viewed as a soft classificatio rule. Ideed, it is modellig the differece betwee the log-discrimiat fuctios, or equivaletly, the log-odds ratio: a + b x = log p(y = + X = x; ˆ) p(y = X = x; ˆ). f (x) = a + b x correspods to the cofidece of predictios ad loss ca be measured as a fuctio of this cofidece: expoetial loss: L(y, f (x)) = e yf (x), log-loss: L(y, f (x)) = log( + e yf (x) ), hige loss: L(y, f (x)) = max{ yf (x), 0}.

3 Logistic Regressio Liearity of log-odds ad logistic fuctio We ca treat a ad b as parameters i their ow right i the model of the coditioal Y X. p(y = + X = x; a, b) log p(y = X = x; a, b) = a + b x. Solve explicitly for coditioal class probabilities: p(y = + X = x; a, b) = p(y = X = x; a, b) = + exp( (a + b x)) =: s(a + b x) + exp(+(a + b x)) = s( a b x) where s(z) = /( + exp( z)) is the logistic fuctio. Logistic Regressio Fittig the parameters of the hyperplae Cosider maximizig the coditioal log likelihood: l(a, b) = log p(y = y i X = x i ) = log s(y i (a + b x i )). Equivalet to miimizig the empirical risk associated with the log loss: ˆR log (f a,b ) = log s(y i (a + b x i )) = log( + exp( y i (a + b x i ))) over all liear soft classificatio rules f a,b (x) = a + b x. 0.5 Logistic Regressio Logistic Regressio Logistic Regressio Logistic Regressio Not possible to fid optimal a, b aalytically. For simplicity, absorb a as a etry i b by appedig ito x vector. Objective fuctio: ˆR log = Differetiate wrt b: log s(y i xi b) bˆr log = 2 bˆr log = s( y i xi b)y i x i Logistic Fuctio s(y i xi b)s( y i xi b)x i xi 0. s( z) = s(z) z s(z) = s(z)s( z) z log s(z) = s( z) 2 z log s(z) = s(z)s( z) Secod derivative is positive-defiite: objective fuctio is covex ad there is a sigle uique global miimum. May differet algorithms ca fid optimal b, e.g.: Gradiet descet: b ew = b + ɛ s( y i xi b)y i x i Stochastic gradiet descet: b ew = b + ɛ t s( y i xi I(t) i I(t) b)y i x i where I(t) is a subset of the data at iteratio t, ad ɛ t 0 slowly ( t ɛ t =, t ɛ2 t < ). Newto-Raphso: b ew = b ( 2 bˆr log ) bˆr log This is also called iterative reweighted least squares. Cojugate gradiet, LBFGS ad other methods from umerical aalysis.

4 Logistic Regressio vs. LDA Logistic Regressio Liearly separable data Logistic Regressio Both have liear decisio boudaries ad model log-posterior odds as log p(y = + X = x) p(y = X = x) = a + b x LDA models the margial desity of x as a Gaussia mixture with shared covariace g(x) = π N (x; µ, Σ) + π + N (x; µ +, Σ) ad fits the parameters = (µ, µ +, π, π +, Σ) by maximizig joit likelihood p(x i, y i ). a ad b are the determied from. Logistic regressio leaves the margial desity g(x) as a arbitrary desity fuctio, ad fits the parameters a,b by maximizig the coditioal likelihood p(y i x i ; a, b). Assume that the data is liearly separable, i.e. there is a scalar α ad a vector β such that y i (α + β x i ) > 0, i =,...,. Let c > 0. The empirical risk for a = cα, b = cβ is ˆR log (f a,b ) = log( + exp( cy i (α + β x i ))) which ca be made arbitrarily close to zero as c, i.e. soft classificatio rule becomes ± (overcofidece). Multi-class logistic regressio Logistic Regressio Logistic Regressio: Summary Logistic Regressio The multi-class/multiomial logistic regressio uses the softmax fuctio to model the coditioal class probabilities p (Y = k X = x; ), for K classes k =,..., K, i.e., exp ( w k p (Y = k X = x; ) = x + b ) k K l= exp ( w l x + b l). Parameters are = (b, W) where W = (w kj ) is a K p matrix of weights ad b R K is a vector of bias terms. Makes less modellig assumptios tha geerative classifiers: ofte resultig i better predictio accuracy. Divergig optimal parameters for liearly separable data: eed to regularise / pull them towards zero. A simple example of a geeralised liear model (GLM), for which there is a well established statistical theory: Assessmet of fit via deviace ad plots, Well fouded approaches to removig isigificat features (drop-i deviace test, Wald test).

5 Regularizatio Regularizatio Regularizatio Regularizatio Flexible models for high-dimesioal problems require may parameters. With may parameters, learers ca easily overfit. Regularizatio: Limit flexibility of model to prevet overfittig. Add term pealizig large values of parameters. mi ˆR(f ) + λ ρ ρ = mi L(y i, f (x i )) + λ ρ ρ where ρ, ad ρ = ( p j ρ ) /ρ is the L ρ orm of (also of iterest whe ρ [0, ), but is o loger a orm). Also kow as shrikage methods parameters are shruk towards 0. λ is a tuig parameter (or hyperparameter) ad cotrols the amout of regularizatio, ad resultig complexity of the model L ρ regularizatio profile for differet values of ρ. Regularizatio Regularizatio Types of Regularizatio L promotes sparsity Ridge regressio / Tikhoov regularizatio: ρ = 2 (Euclidea orm) LASSO: ρ = (Mahatta orm) Sparsity-iducig regularizatio: ρ (ocovex for ρ < ) Elastic et regularizatio: mixed L /L 2 pealty: mi L(y i, f (x i )) + λ [ ( α) 2 ] 2 + α Figure : The itersectio betwee the L (left) ad the L 2 (right) ball with a hyperplae. L regularizatio ofte leads to optimal solutios with may zeros, i.e., the regressio fuctio depeds oly o the (small) umber of features with o-zero parameters. figure from M. Elad, Sparse ad Redudat Represetatios, 200.

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model

The Bayesian Learning Framework. Back to Maximum Likelihood. Naïve Bayes. Simple Example: Coin Tosses. Given a generative model Back to Maximum Likelihood Give a geerative model f (x, y = k) =π k f k (x) Usig a geerative modellig approach, we assume a parametric form for f k (x) =f (x; k ) ad compute the MLE θ of θ =(π k, k ) k=

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

Lecture 2 October 11

Lecture 2 October 11 Itroductio to probabilistic graphical models 203/204 Lecture 2 October Lecturer: Guillaume Oboziski Scribes: Aymeric Reshef, Claire Verade Course webpage: http://www.di.es.fr/~fbach/courses/fall203/ 2.

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Lecture 4. Hw 1 and 2 will be reoped after class for every body. New deadline 4/20 Hw 3 and 4 online (Nima is lead)

Lecture 4. Hw 1 and 2 will be reoped after class for every body. New deadline 4/20 Hw 3 and 4 online (Nima is lead) Lecture 4 Homework Hw 1 ad 2 will be reoped after class for every body. New deadlie 4/20 Hw 3 ad 4 olie (Nima is lead) Pod-cast lecture o-lie Fial projects Nima will register groups ext week. Email/tell

More information

CSIE/GINM, NTU 2009/11/30 1

CSIE/GINM, NTU 2009/11/30 1 Itroductio ti to Machie Learig (Part (at1: Statistical Machie Learig Shou de Li CSIE/GINM, NTU sdli@csie.tu.edu.tw 009/11/30 1 Syllabus of a Itro ML course ( Machie Learig, Adrew Ng, Staford, Autum 009

More information

Outline. Linear regression. Regularization functions. Polynomial curve fitting. Stochastic gradient descent for regression. MLE for regression

Outline. Linear regression. Regularization functions. Polynomial curve fitting. Stochastic gradient descent for regression. MLE for regression REGRESSION 1 Outlie Liear regressio Regularizatio fuctios Polyomial curve fittig Stochastic gradiet descet for regressio MLE for regressio Step-wise forward regressio Regressio methods Statistical techiques

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week Lecture: Cocept Check Exercises Starred problems are optioal. Statistical Learig Theory. Suppose A = Y = R ad X is some other set. Furthermore, assume P X Y is a discrete

More information

Intro to Learning Theory

Intro to Learning Theory Lecture 1, October 18, 2016 Itro to Learig Theory Ruth Urer 1 Machie Learig ad Learig Theory Comig soo 2 Formal Framework 21 Basic otios I our formal model for machie learig, the istaces to be classified

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

Admin REGULARIZATION. Schedule. Midterm 9/29/16. Assignment 5. Midterm next week, due Friday (more on this in 1 min)

Admin REGULARIZATION. Schedule. Midterm 9/29/16. Assignment 5. Midterm next week, due Friday (more on this in 1 min) Admi Assigmet 5! Starter REGULARIZATION David Kauchak CS 158 Fall 2016 Schedule Midterm ext week, due Friday (more o this i 1 mi Assigmet 6 due Friday before fall break Midterm Dowload from course web

More information

NYU Center for Data Science: DS-GA 1003 Machine Learning and Computational Statistics (Spring 2018)

NYU Center for Data Science: DS-GA 1003 Machine Learning and Computational Statistics (Spring 2018) NYU Ceter for Data Sciece: DS-GA 003 Machie Learig ad Computatioal Statistics (Sprig 208) Brett Berstei, David Roseberg, Be Jakubowski Jauary 20, 208 Istructios: Followig most lab ad lecture sectios, we

More information

Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring

Machine Learning Regression I Hamid R. Rabiee [Slides are based on Bishop Book] Spring Machie Learig Regressio I Hamid R. Rabiee [Slides are based o Bishop Book] Sprig 015 http://ce.sharif.edu/courses/93-94//ce717-1 Liear Regressio Liear regressio: ivolves a respose variable ad a sigle predictor

More information

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019

Outline. CSCI-567: Machine Learning (Spring 2019) Outline. Prof. Victor Adamchik. Mar. 26, 2019 Outlie CSCI-567: Machie Learig Sprig 209 Gaussia mixture models Prof. Victor Adamchik 2 Desity estimatio U of Souther Califoria Mar. 26, 209 3 Naive Bayes Revisited March 26, 209 / 57 March 26, 209 2 /

More information

Linear Classifiers III

Linear Classifiers III Uiversität Potsdam Istitut für Iformatik Lehrstuhl Maschielles Lere Liear Classifiers III Blaie Nelso, Tobias Scheffer Cotets Classificatio Problem Bayesia Classifier Decisio Liear Classifiers, MAP Models

More information

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015

ECE 8527: Introduction to Machine Learning and Pattern Recognition Midterm # 1. Vaishali Amin Fall, 2015 ECE 8527: Itroductio to Machie Learig ad Patter Recogitio Midterm # 1 Vaishali Ami Fall, 2015 tue39624@temple.edu Problem No. 1: Cosider a two-class discrete distributio problem: ω 1 :{[0,0], [2,0], [2,2],

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Statistical Machine Learning Hilary Term 2018

Statistical Machine Learning Hilary Term 2018 Statistical Machine Learning Hilary Term 2018 Pier Francesco Palamara Department of Statistics University of Oxford Slide credits and other course material can be found at: http://www.stats.ox.ac.uk/~palamara/sml18.html

More information

Chapter 7. Support Vector Machine

Chapter 7. Support Vector Machine Chapter 7 Support Vector Machie able of Cotet Margi ad support vectors SVM formulatio Slack variables ad hige loss SVM for multiple class SVM ith Kerels Relevace Vector Machie Support Vector Machie (SVM)

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 5 CS434a/54a: Patter Recogitio Prof. Olga Veksler Lecture 5 Today Itroductio to parameter estimatio Two methods for parameter estimatio Maimum Likelihood Estimatio Bayesia Estimatio Itroducto Bayesia Decisio

More information

6.867 Machine learning

6.867 Machine learning 6.867 Machie learig Mid-term exam October, ( poits) Your ame ad MIT ID: Problem We are iterested here i a particular -dimesioal liear regressio problem. The dataset correspodig to this problem has examples

More information

Ada Boost, Risk Bounds, Concentration Inequalities. 1 AdaBoost and Estimates of Conditional Probabilities

Ada Boost, Risk Bounds, Concentration Inequalities. 1 AdaBoost and Estimates of Conditional Probabilities CS8B/Stat4B Sprig 008) Statistical Learig Theory Lecture: Ada Boost, Risk Bouds, Cocetratio Iequalities Lecturer: Peter Bartlett Scribe: Subhrasu Maji AdaBoost ad Estimates of Coditioal Probabilities We

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 016 MODULE : Statistical Iferece Time allowed: Three hours Cadidates should aswer FIVE questios. All questios carry equal marks. The umber

More information

Lecture 3: MLE and Regression

Lecture 3: MLE and Regression STAT/Q SCI 403: Itroductio to Resamplig Methods Sprig 207 Istructor: Ye-Chi Che Lecture 3: MLE ad Regressio 3. Parameters ad Distributios Some distributios are idexed by their uderlyig parameters. Thus,

More information

Pattern recognition systems Laboratory 10 Linear Classifiers and the Perceptron Algorithm

Pattern recognition systems Laboratory 10 Linear Classifiers and the Perceptron Algorithm Patter recogitio systems Laboratory 10 Liear Classifiers ad the Perceptro Algorithm 1. Objectives his laboratory sessio presets the perceptro learig algorithm for the liear classifier. We will apply gradiet

More information

CS284A: Representations and Algorithms in Molecular Biology

CS284A: Representations and Algorithms in Molecular Biology CS284A: Represetatios ad Algorithms i Molecular Biology Scribe Notes o Lectures 3 & 4: Motif Discovery via Eumeratio & Motif Represetatio Usig Positio Weight Matrix Joshua Gervi Based o presetatios by

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

6.867 Machine learning, lecture 7 (Jaakkola) 1

6.867 Machine learning, lecture 7 (Jaakkola) 1 6.867 Machie learig, lecture 7 (Jaakkola) 1 Lecture topics: Kerel form of liear regressio Kerels, examples, costructio, properties Liear regressio ad kerels Cosider a slightly simpler model where we omit

More information

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion .87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

Machine Learning Theory (CS 6783)

Machine Learning Theory (CS 6783) Machie Learig Theory (CS 6783) Lecture 2 : Learig Frameworks, Examples Settig up learig problems. X : istace space or iput space Examples: Computer Visio: Raw M N image vectorized X = 0, 255 M N, SIFT

More information

Logit regression Logit regression

Logit regression Logit regression Logit regressio Logit regressio models the probability of Y= as the cumulative stadard logistic distributio fuctio, evaluated at z = β 0 + β X: Pr(Y = X) = F(β 0 + β X) F is the cumulative logistic distributio

More information

Linear Support Vector Machines

Linear Support Vector Machines Liear Support Vector Machies David S. Roseberg The Support Vector Machie For a liear support vector machie (SVM), we use the hypothesis space of affie fuctios F = { f(x) = w T x + b w R d, b R } ad evaluate

More information

18.657: Mathematics of Machine Learning

18.657: Mathematics of Machine Learning 8.657: Mathematics of Machie Learig Lecturer: Philippe Rigollet Lecture 0 Scribe: Ade Forrow Oct. 3, 05 Recall the followig defiitios from last time: Defiitio: A fuctio K : X X R is called a positive symmetric

More information

Lecture 13: Maximum Likelihood Estimation

Lecture 13: Maximum Likelihood Estimation ECE90 Sprig 007 Statistical Learig Theory Istructor: R. Nowak Lecture 3: Maximum Likelihood Estimatio Summary of Lecture I the last lecture we derived a risk (MSE) boud for regressio problems; i.e., select

More information

Support vector machine revisited

Support vector machine revisited 6.867 Machie learig, lecture 8 (Jaakkola) 1 Lecture topics: Support vector machie ad kerels Kerel optimizatio, selectio Support vector machie revisited Our task here is to first tur the support vector

More information

Summary and Discussion on Simultaneous Analysis of Lasso and Dantzig Selector

Summary and Discussion on Simultaneous Analysis of Lasso and Dantzig Selector Summary ad Discussio o Simultaeous Aalysis of Lasso ad Datzig Selector STAT732, Sprig 28 Duzhe Wag May 4, 28 Abstract This is a discussio o the work i Bickel, Ritov ad Tsybakov (29). We begi with a short

More information

Information-based Feature Selection

Information-based Feature Selection Iformatio-based Feature Selectio Farza Faria, Abbas Kazeroui, Afshi Babveyh Email: {faria,abbask,afshib}@staford.edu 1 Itroductio Feature selectio is a topic of great iterest i applicatios dealig with

More information

Pattern recognition systems Lab 10 Linear Classifiers and the Perceptron Algorithm

Pattern recognition systems Lab 10 Linear Classifiers and the Perceptron Algorithm Patter recogitio systems Lab 10 Liear Classifiers ad the Perceptro Algorithm 1. Objectives his lab sessio presets the perceptro learig algorithm for the liear classifier. We will apply gradiet descet ad

More information

Step 1: Function Set. Otherwise, output C 2. Function set: Including all different w and b

Step 1: Function Set. Otherwise, output C 2. Function set: Including all different w and b Logistic Regressio Step : Fuctio Set We wat to fid P w,b C x σ z = + exp z If P w,b C x.5, output C Otherwise, output C 2 z P w,b C x = σ z z = w x + b = w i x i + b i z Fuctio set: f w,b x = P w,b C x

More information

Probability and MLE.

Probability and MLE. 10-701 Probability ad MLE http://www.cs.cmu.edu/~pradeepr/701 (brief) itro to probability Basic otatios Radom variable - referrig to a elemet / evet whose status is ukow: A = it will rai tomorrow Domai

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

Introductory statistics

Introductory statistics CM9S: Machie Learig for Bioiformatics Lecture - 03/3/06 Itroductory statistics Lecturer: Sriram Sakararama Scribe: Sriram Sakararama We will provide a overview of statistical iferece focussig o the key

More information

Classification with linear models

Classification with linear models Lecture 8 Classificatio with liear models Milos Hauskrecht milos@cs.pitt.edu 539 Seott Square Geerative approach to classificatio Idea:. Represet ad lear the distributio, ). Use it to defie probabilistic

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Sample Size Estimation in the Proportional Hazards Model for K-sample or Regression Settings Scott S. Emerson, M.D., Ph.D.

Sample Size Estimation in the Proportional Hazards Model for K-sample or Regression Settings Scott S. Emerson, M.D., Ph.D. ample ie Estimatio i the Proportioal Haards Model for K-sample or Regressio ettigs cott. Emerso, M.D., Ph.D. ample ie Formula for a Normally Distributed tatistic uppose a statistic is kow to be ormally

More information

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam.

This exam contains 19 pages (including this cover page) and 10 questions. A Formulae sheet is provided with the exam. Probability ad Statistics FS 07 Secod Sessio Exam 09.0.08 Time Limit: 80 Miutes Name: Studet ID: This exam cotais 9 pages (icludig this cover page) ad 0 questios. A Formulae sheet is provided with the

More information

Empirical Process Theory and Oracle Inequalities

Empirical Process Theory and Oracle Inequalities Stat 928: Statistical Learig Theory Lecture: 10 Empirical Process Theory ad Oracle Iequalities Istructor: Sham Kakade 1 Risk vs Risk See Lecture 0 for a discussio o termiology. 2 The Uio Boud / Boferoi

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Patter Recogitio Classificatio: No-Parametric Modelig Hamid R. Rabiee Jafar Muhammadi Sprig 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Ageda Parametric Modelig No-Parametric Modelig

More information

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet

More information

Algorithms for Clustering

Algorithms for Clustering CR2: Statistical Learig & Applicatios Algorithms for Clusterig Lecturer: J. Salmo Scribe: A. Alcolei Settig: give a data set X R p where is the umber of observatio ad p is the umber of features, we wat

More information

Boosting. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 1, / 32

Boosting. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 1, / 32 Boostig Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machie Learig Algorithms March 1, 2017 1 / 32 Outlie 1 Admiistratio 2 Review of last lecture 3 Boostig Professor Ameet Talwalkar CS260

More information

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification

INF Introduction to classifiction Anne Solberg Based on Chapter 2 ( ) in Duda and Hart: Pattern Classification INF 4300 90 Itroductio to classifictio Ae Solberg ae@ifiuioo Based o Chapter -6 i Duda ad Hart: atter Classificatio 90 INF 4300 Madator proect Mai task: classificatio You must implemet a classificatio

More information

Introduction to Machine Learning DIS10

Introduction to Machine Learning DIS10 CS 189 Fall 017 Itroductio to Machie Learig DIS10 1 Fu with Lagrage Multipliers (a) Miimize the fuctio such that f (x,y) = x + y x + y = 3. Solutio: The Lagragia is: L(x,y,λ) = x + y + λ(x + y 3) Takig

More information

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar.

Clustering. CM226: Machine Learning for Bioinformatics. Fall Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar. Clusterig CM226: Machie Learig for Bioiformatics. Fall 216 Sriram Sakararama Ackowledgmets: Fei Sha, Ameet Talwalkar Clusterig 1 / 42 Admiistratio HW 1 due o Moday. Email/post o CCLE if you have questios.

More information

MA Advanced Econometrics: Properties of Least Squares Estimators

MA Advanced Econometrics: Properties of Least Squares Estimators MA Advaced Ecoometrics: Properties of Least Squares Estimators Karl Whela School of Ecoomics, UCD February 5, 20 Karl Whela UCD Least Squares Estimators February 5, 20 / 5 Part I Least Squares: Some Fiite-Sample

More information

Efficient GMM LECTURE 12 GMM II

Efficient GMM LECTURE 12 GMM II DECEMBER 1 010 LECTURE 1 II Efficiet The estimator depeds o the choice of the weight matrix A. The efficiet estimator is the oe that has the smallest asymptotic variace amog all estimators defied by differet

More information

Lecture 22: Review for Exam 2. 1 Basic Model Assumptions (without Gaussian Noise)

Lecture 22: Review for Exam 2. 1 Basic Model Assumptions (without Gaussian Noise) Lecture 22: Review for Exam 2 Basic Model Assumptios (without Gaussia Noise) We model oe cotiuous respose variable Y, as a liear fuctio of p umerical predictors, plus oise: Y = β 0 + β X +... β p X p +

More information

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator Ecoomics 24B Relatio to Method of Momets ad Maximum Likelihood OLSE as a Maximum Likelihood Estimator Uder Assumptio 5 we have speci ed the distributio of the error, so we ca estimate the model parameters

More information

PC5215 Numerical Recipes with Applications - Review Problems

PC5215 Numerical Recipes with Applications - Review Problems PC55 Numerical Recipes with Applicatios - Review Problems Give the IEEE 754 sigle precisio bit patter (biary or he format) of the followig umbers: 0 0 05 00 0 00 Note that it has 8 bits for the epoet,

More information

Lecture 11 and 12: Basic estimation theory

Lecture 11 and 12: Basic estimation theory Lecture ad 2: Basic estimatio theory Sprig 202 - EE 94 Networked estimatio ad cotrol Prof. Kha March 2 202 I. MAXIMUM-LIKELIHOOD ESTIMATORS The maximum likelihood priciple is deceptively simple. Louis

More information

Overview. Structured learning for feature selection and prediction. Motivation for feature selection. Outline. Part III:

Overview. Structured learning for feature selection and prediction. Motivation for feature selection. Outline. Part III: Overview Structured learig for feature selectio ad predictio Yookyug Lee Departmet of Statistics The Ohio State Uiversity Part I: Itroductio to Kerel methods Part II: Learig with Reproducig Kerel Hilbert

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpeCourseWare http://ocw.mit.edu.00 Ucertaity i Egieerig Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu.terms. .00 - Brief Notes # 9 Poit ad Iterval

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

Bayesian Methods: Introduction to Multi-parameter Models

Bayesian Methods: Introduction to Multi-parameter Models Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

More information

1 Models for Matched Pairs

1 Models for Matched Pairs 1 Models for Matched Pairs Matched pairs occur whe we aalyse samples such that for each measuremet i oe of the samples there is a measuremet i the other sample that directly relates to the measuremet i

More information

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State Bayesia Cotrol Charts for the Two-parameter Expoetial Distributio if the Locatio Parameter Ca Take o Ay Value Betwee Mius Iity ad Plus Iity R. va Zyl, A.J. va der Merwe 2 Quitiles Iteratioal, ruaavz@gmail.com

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen)

Goodness-of-Fit Tests and Categorical Data Analysis (Devore Chapter Fourteen) Goodess-of-Fit Tests ad Categorical Data Aalysis (Devore Chapter Fourtee) MATH-252-01: Probability ad Statistics II Sprig 2019 Cotets 1 Chi-Squared Tests with Kow Probabilities 1 1.1 Chi-Squared Testig................

More information

1 Review of Probability & Statistics

1 Review of Probability & Statistics 1 Review of Probability & Statistics a. I a group of 000 people, it has bee reported that there are: 61 smokers 670 over 5 960 people who imbibe (drik alcohol) 86 smokers who imbibe 90 imbibers over 5

More information

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes The Maximum-Lielihood Decodig Performace of Error-Correctig Codes Hery D. Pfister ECE Departmet Texas A&M Uiversity August 27th, 2007 (rev. 0) November 2st, 203 (rev. ) Performace of Codes. Notatio X,

More information

Regression with quadratic loss

Regression with quadratic loss Regressio with quadratic loss Maxim Ragisky October 13, 2015 Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X,Y, where, as before,

More information

4. Linear Classification. Kai Yu

4. Linear Classification. Kai Yu 4. Liear Classificatio Kai Y Liear Classifiers A simplest classificatio model Help to derstad oliear models Argably the most sefl classificatio method! 2 Liear Classifiers A simplest classificatio model

More information

A Risk Comparison of Ordinary Least Squares vs Ridge Regression

A Risk Comparison of Ordinary Least Squares vs Ridge Regression Joural of Machie Learig Research 14 (2013) 1505-1511 Submitted 5/12; Revised 3/13; Published 6/13 A Risk Compariso of Ordiary Least Squares vs Ridge Regressio Paramveer S. Dhillo Departmet of Computer

More information

Stat410 Probability and Statistics II (F16)

Stat410 Probability and Statistics II (F16) Some Basic Cocepts of Statistical Iferece (Sec 5.) Suppose we have a rv X that has a pdf/pmf deoted by f(x; θ) or p(x; θ), where θ is called the parameter. I previous lectures, we focus o probability problems

More information

Multinomial likelihood. Multinomial MLE. NIST data and genetic fingerprints. θ = (p 1,..., p m ) with j p j = 1 and p j 0. Point probabilities

Multinomial likelihood. Multinomial MLE. NIST data and genetic fingerprints. θ = (p 1,..., p m ) with j p j = 1 and p j 0. Point probabilities Multiomial distributio Let Y,..., Y be iid, uiformly sampled from a fiite populatio ad X i deotes a property of the idividual i. Label the properties,..., m. p j = PX i = j) = umber of idividuals with

More information

Introduction to Optimization Techniques. How to Solve Equations

Introduction to Optimization Techniques. How to Solve Equations Itroductio to Optimizatio Techiques How to Solve Equatios Iterative Methods of Optimizatio Iterative methods of optimizatio Solutio of the oliear equatios resultig form a optimizatio problem is usually

More information

Machine Learning. Logistic Regression -- generative verses discriminative classifier. Le Song /15-781, Spring 2008

Machine Learning. Logistic Regression -- generative verses discriminative classifier. Le Song /15-781, Spring 2008 Machie Learig 070/578 Srig 008 Logistic Regressio geerative verses discrimiative classifier Le Sog Lecture 5 Setember 4 0 Based o slides from Eric Xig CMU Readig: Cha. 3..34 CB Geerative vs. Discrimiative

More information

STA6938-Logistic Regression Model

STA6938-Logistic Regression Model Dr. Yig Zhag STA6938-Logistic Regressio Model Topic -Simple (Uivariate) Logistic Regressio Model Outlies:. Itroductio. A Example-Does the liear regressio model always work? 3. Maximum Likelihood Curve

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

1 Duality revisited. AM 221: Advanced Optimization Spring 2016

1 Duality revisited. AM 221: Advanced Optimization Spring 2016 AM 22: Advaced Optimizatio Sprig 206 Prof. Yaro Siger Sectio 7 Wedesday, Mar. 9th Duality revisited I this sectio, we will give a slightly differet perspective o duality. optimizatio program: f(x) x R

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple

More information

FMA901F: Machine Learning Lecture 4: Linear Models for Classification. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 4: Linear Models for Classification. Cristian Sminchisescu FMA90F: Machie Learig Lecture 4: Liear Models for Classificatio Cristia Smichisescu Liear Classificatio Classificatio is itrisically o liear because of the traiig costraits that place o idetical iputs

More information

Linear Differential Equations of Higher Order Basic Theory: Initial-Value Problems d y d y dy

Linear Differential Equations of Higher Order Basic Theory: Initial-Value Problems d y d y dy Liear Differetial Equatios of Higher Order Basic Theory: Iitial-Value Problems d y d y dy Solve: a( ) + a ( )... a ( ) a0( ) y g( ) + + + = d d d ( ) Subject to: y( 0) = y0, y ( 0) = y,..., y ( 0) = y

More information

A survey on penalized empirical risk minimization Sara A. van de Geer

A survey on penalized empirical risk minimization Sara A. van de Geer A survey o pealized empirical risk miimizatio Sara A. va de Geer We address the questio how to choose the pealty i empirical risk miimizatio. Roughly speakig, this pealty should be a good boud for the

More information

Exercises Advanced Data Mining: Solutions

Exercises Advanced Data Mining: Solutions Exercises Advaced Data Miig: Solutios Exercise 1 Cosider the followig directed idepedece graph. 5 8 9 a) Give the factorizatio of P (X 1, X 2,..., X 9 ) correspodig to this idepedece graph. P (X) = 9 P

More information

REGRESSION WITH QUADRATIC LOSS

REGRESSION WITH QUADRATIC LOSS REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

More information

Optimization Methods MIT 2.098/6.255/ Final exam

Optimization Methods MIT 2.098/6.255/ Final exam Optimizatio Methods MIT 2.098/6.255/15.093 Fial exam Date Give: December 19th, 2006 P1. [30 pts] Classify the followig statemets as true or false. All aswers must be well-justified, either through a short

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

15-780: Graduate Artificial Intelligence. Density estimation

15-780: Graduate Artificial Intelligence. Density estimation 5-780: Graduate Artificial Itelligece Desity estimatio Coditioal Probability Tables (CPT) But where do we get them? P(B)=.05 B P(E)=. E P(A B,E) )=.95 P(A B, E) =.85 P(A B,E) )=.5 P(A B, E) =.05 A P(J

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

x = Pr ( X (n) βx ) =

x = Pr ( X (n) βx ) = Exercise 93 / page 45 The desity of a variable X i i 1 is fx α α a For α kow let say equal to α α > fx α α x α Pr X i x < x < Usig a Pivotal Quatity: x α 1 < x < α > x α 1 ad We solve i a similar way as

More information

Agnostic Learning and Concentration Inequalities

Agnostic Learning and Concentration Inequalities ECE901 Sprig 2004 Statistical Regularizatio ad Learig Theory Lecture: 7 Agostic Learig ad Cocetratio Iequalities Lecturer: Rob Nowak Scribe: Aravid Kailas 1 Itroductio 1.1 Motivatio I the last lecture

More information

t distribution [34] : used to test a mean against an hypothesized value (H 0 : µ = µ 0 ) or the difference

t distribution [34] : used to test a mean against an hypothesized value (H 0 : µ = µ 0 ) or the difference EXST30 Backgroud material Page From the textbook The Statistical Sleuth Mea [0]: I your text the word mea deotes a populatio mea (µ) while the work average deotes a sample average ( ). Variace [0]: The

More information

Lecture 7: October 18, 2017

Lecture 7: October 18, 2017 Iformatio ad Codig Theory Autum 207 Lecturer: Madhur Tulsiai Lecture 7: October 8, 207 Biary hypothesis testig I this lecture, we apply the tools developed i the past few lectures to uderstad the problem

More information

Probabilistic Unsupervised Learning

Probabilistic Unsupervised Learning HT2015: SC4 Statistical Data Miig ad Machie Learig Dio Sejdiovic Departmet of Statistics Oxford http://www.stats.ox.ac.u/~sejdiov/sdmml.html Probabilistic Methods Algorithmic approach: Data Probabilistic

More information