Multiscale Adaptive Sensor Systems

Size: px
Start display at page:

Download "Multiscale Adaptive Sensor Systems"

Transcription

1 Multiscale Adaptive Sensor Systems Silvia Ferrari Sibley School of Mechanical and Aerospace Engineering Cornell University ONR Maritime Sensing D&I Review Naval Surface Warfare Center, Carderock 9-11 August 2016

2 Introduction and Motivation Sensor planning: control reconfigurable sensors for collaborative gather information in contested communication environments { Tracking endangered species target control Sensor Model output [1] { Security surveillance task { Search and Rescue [3] [2] [1] [2] [3] 2

3 Information-driven sensor planning Literature Review { Information value comparison [Polcari 13, Kastella 97,... ] { Cell decomposition [Cai 09, Paull 10, Ferrari 09, 12,... ] { Probability road maps and trees [Zhang 09, Lu 10, 12, 14,... ] { Graphical model [Krause 06, 10, 12, Singh 09, Guestrin 05, Meliou 07, Srinivas 12, Le Ny 09,... ] { Advantage: a. Represent information value of measurements for improving the target model b. Can be calculated before measurements are obtained { Disadvantage: a. Can only be applied when target models are known b. Assumptions too restricted: stationary target; discrete and finite control space; unbounded sensor field of view; 3 unconstrained sensor dynamics,...

4 Problem Formulation

5 Assumptions sensor 5

6 Problem Formulation 6

7 Example

8 Information Sufficiency Motivation: Develop planning and control algorithms for collaborative networks with intermittent communications Existing decentralized optimization methods assume constant communications (network is a connected graph) or detailed prior information (perfect models) Consider networks in which some or all nodes (agents) may be disconnected some of the time, and there is no or little prior information (high uncertainty) Agents aim to construct probabilistic model from data Disconnected agents can determine when their own local information is insufficient, and it is time to reestablish communications Model a spatial phenomenon: T( F) Max temperature over a 2D ROI Time invariant Observable at a set of target locations: 8

9 Applications Robot Navigation Traffic Planning Animal Tracking Env. Monitor 1: 2: 3: 4: PRISM Climate Group, Oregon State University, created March

10 Model and Information Value Estimation of spatial phenomenon: estimation Measurements: f(x) ~ Gaussian process Gaussian process: f(x) ~ GP(µ(x), ψ(x 1,x 2 )); µ(x) = E[f(x)] ψ(x 1, x 2 ) = E[( f(x 1 ) µ(x 1 ) )( f(x 2 ) µ(x 2 ) )] Planning objective: at time k choose locations and measurements {y k,z k } to maximize, where, X T = [x 1 x r ], x i T, i = 1,, r ; Y k = [y 1 y k ]; Z k = [z 1 z k ] Since z k is unknown, optimize expected discrimination gain (EDG):

11 Methodology

12 Sensor Planning Framework 12

13 GP Regression Training output Test output Training input Test input 13

14 GP Regression Example Example: Fig. Ground truth Fig. GP regression result 14

15 GP Target Kinematics Model : Target trajectory : Target initial position v x (m/s) 10 8 y (m) x (m) y (m) v y (m/s) x (m) y (m) x (m) { Equivalently: single multi-output GP with diagonal covariance matrix function 15

16 GP Information Value f (x) y x 16

17 GP-EKLD where 17

18 DPGP-EKLD 18

19 DPGP Particle Filter { Time update { Measurement update Target FOV Gaussian distribution Sample of target state 19

20 DPGP-EKLD Approximation Gaussian distribution 20

21 Methodology Part III: Sensor Planning Algorithms Model Update Targets Sensor System Measurements Target Model Control Input Estimated Target States Optimal Planner Objectives Information Value

22 Optimize DPGP-EKLD DPGP-EKLD optimization without sensor dynamics constraints DPGP-EKLD approximation: FOV Sweep line algorithm: segment tree 22

23 Incorporate Sensor Dynamics DPGP-EKLD optimization with sensor dynamics constraints Linear sensor dynamics with constraints: Lower bound: Reward for observing j th target that follows i th VF: FOV 0 Multiple objective optimization -1 2 y (m) x (m)

24 Lexicographic Algorithm Objectives can be ordered by relative importance reorder Remaining iterations: Additional constraints: 24

25 Nominal Network Performance Let Σ denote the covariance matrix and Ψ(x, y) denote the cross-covariance matrix, then the GP average generalization error (AGE), 2 T ε ( k) = Ex Σ( x) Ψ( x, Yk ) Σ( Yk ) + δ I Ψ ( x, Yk ) represent a measure of GP performance. From the latest GP, the posterior covariance, and the network nominal AGE can be estimated from an assumed probability distribution for future measurement locations, and an assumed probability of detection p (b) t 1 [ ] 1 (a) average generalization error, ε(k) p t = 3/4 p t = 1 experimental ε(k) theoretical ε(k) p t = 1/25 p t = 1/ time step, k

26 AGE Communications

27 Communication Control Robot _ i Environment Random Policy Sensor (i) x n Buffer Sender (a) (a) Local GP Receiver Nominal GP Communication Control Approximate nominal average generalization error (AGE) from latest GP 18

28 Communication Control Robot _ i Environment Random Policy Sensor (i) x n Buffer Sender (a) (a) Local GP Receiver Nominal GP Communication Control Approximate nominal average generalization error (AGE) from latest GP Local GP (GPL) computation GPL is updated using local measurements (obtained by robot i) Actual AGE is calculated from the local covariance function. 18

29 Communication Control Robot _ i Environment Random Policy Sensor (i) x n Buffer Sender (a) (a) Local GP Receiver Nominal GP Communication Control Approximate nominal average generalization error (AGE) from latest GP Local GP (GPL) computation Communication time: at the n th time step, the i th robot communicates if max i n k = n ε ( k) ε ( k) > γ 0 i nominal where, is predefined performance threshold. γ 18

30 Communication Control Robot _ i Environment Random Policy Sensor (i) x n Buffer Sender (a) (a) Local GP Receiver Nominal GP Communication Control Approximate nominal average generalization error (AGE) from latest GP Local GP (GPL) computation Communication time Information sharing: all new measurements are communicated and used to update the robot GP 18

31 Communication Control Robot _ i Random Policy (a) Environment Sensor (i) x n Buffer Sender Actual AGE (robot i) Nominal AGE Receiver Robot _ j Environment Local GP Nominal GP Random Policy Sensor ( j) x n Communication Control Buffer (a) Sender average generalization error, ε(k) Current time step, k Local GP Receiver Nominal GP Communication Control 19

32 Communication Control Robot _ i Random Policy (a) Environment Sensor (i) x n Buffer Sender Actual AGE (robot i) Nominal AGE Receiver Robot _ j Environment Local GP Nominal GP Random Policy Sensor ( j) x n Communication Control Buffer (a) Sender average generalization error, ε(k) Current time step, k Local GP Receiver Nominal GP Communication Control 19

33 Communication Control Robot _ i Random Policy (a) Environment Sensor (i) x n Buffer Sender Actual AGE (robot i) Nominal AGE Receiver Robot _ j Environment Local GP Nominal GP Random Policy Sensor ( j) x n Communication Control Buffer (a) Sender average generalization error, ε(k) Current time step, k Local GP Receiver Nominal GP Communication Control 19

34 Communication Control Robot _ i Random Policy (a) Environment Sensor (i) x n Buffer Sender Actual AGE (robot i) Nominal AGE Receiver Robot _ j Environment Local GP Nominal GP Random Policy Sensor ( j) x n Communication Control Buffer (a) Sender average generalization error, ε(k) Current time step, k Local GP Receiver Nominal GP Communication Control 19

35 Simulation Results Modeling of a spatial phenomenon, g(x), by four robots with disjoint workspaces: W 1 W 2 y (Km) W 3 W 4 x (Km) 20

36 Conclusions Conclusion { Developed novel information theoretic functions for GP models of distributed spatio-temporal processes { Developed information-theoretic sensor planning algorithms for distributed networks with bounded fields of view { Developed AGE method for monitoring information sufficiency and schedule communications Future work { Extend information theoretic functions to partially observable targets { Extend information theoretic functions to decentralized control { Develop multiscale adaptive planners to uncertain environments 36

37 Thank you!

ONR Mine Warfare Autonomy Virtual Program Review September 7, 2017

ONR Mine Warfare Autonomy Virtual Program Review September 7, 2017 ONR Mine Warfare Autonomy Virtual Program Review September 7, 2017 Information-driven Guidance and Control for Adaptive Target Detection and Classification Silvia Ferrari Pingping Zhu and Bo Fu Mechanical

More information

Mathematical Formulation of Our Example

Mathematical Formulation of Our Example Mathematical Formulation of Our Example We define two binary random variables: open and, where is light on or light off. Our question is: What is? Computer Vision 1 Combining Evidence Suppose our robot

More information

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) Partially Observable Markov Decision Processes (POMDPs) Sachin Patil Guest Lecture: CS287 Advanced Robotics Slides adapted from Pieter Abbeel, Alex Lee Outline Introduction to POMDPs Locally Optimal Solutions

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Multi-scale Adaptive Sensor Systems Silvia Ferrari, Professor Mechanical and Aerospace Engineering Cornell University

Multi-scale Adaptive Sensor Systems Silvia Ferrari, Professor Mechanical and Aerospace Engineering Cornell University ONR Maritime Sensing - Discovery & Invention (D&I) Review Naval Surface Warfare Center, Carderock (MD) August 21-23, 2018 Multi-scale Adaptive Sensor Systems Silvia Ferrari, Professor Mechanical and Aerospace

More information

Probability Map Building of Uncertain Dynamic Environments with Indistinguishable Obstacles

Probability Map Building of Uncertain Dynamic Environments with Indistinguishable Obstacles Probability Map Building of Uncertain Dynamic Environments with Indistinguishable Obstacles Myungsoo Jun and Raffaello D Andrea Sibley School of Mechanical and Aerospace Engineering Cornell University

More information

Robotics 2 Target Tracking. Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard

Robotics 2 Target Tracking. Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard Robotics 2 Target Tracking Kai Arras, Cyrill Stachniss, Maren Bennewitz, Wolfram Burgard Slides by Kai Arras, Gian Diego Tipaldi, v.1.1, Jan 2012 Chapter Contents Target Tracking Overview Applications

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

2D Image Processing. Bayes filter implementation: Kalman filter

2D Image Processing. Bayes filter implementation: Kalman filter 2D Image Processing Bayes filter implementation: Kalman filter Prof. Didier Stricker Dr. Gabriele Bleser Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche

More information

Gaussian Processes. 1 What problems can be solved by Gaussian Processes?

Gaussian Processes. 1 What problems can be solved by Gaussian Processes? Statistical Techniques in Robotics (16-831, F1) Lecture#19 (Wednesday November 16) Gaussian Processes Lecturer: Drew Bagnell Scribe:Yamuna Krishnamurthy 1 1 What problems can be solved by Gaussian Processes?

More information

Planning Under Uncertainty II

Planning Under Uncertainty II Planning Under Uncertainty II Intelligent Robotics 2014/15 Bruno Lacerda Announcement No class next Monday - 17/11/2014 2 Previous Lecture Approach to cope with uncertainty on outcome of actions Markov

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#20 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (6-83, F) Lecture# (Monday November ) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan Applications of Gaussian Processes (a) Inverse Kinematics

More information

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS

Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Partially Observable Markov Decision Processes (POMDPs) Pieter Abbeel UC Berkeley EECS Many slides adapted from Jur van den Berg Outline POMDPs Separation Principle / Certainty Equivalence Locally Optimal

More information

Robotics 2 Target Tracking. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard

Robotics 2 Target Tracking. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Robotics 2 Target Tracking Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Linear Dynamical System (LDS) Stochastic process governed by is the state vector is the input vector is the process

More information

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes

Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Statistical Techniques in Robotics (16-831, F12) Lecture#21 (Monday November 12) Gaussian Processes Lecturer: Drew Bagnell Scribe: Venkatraman Narayanan 1, M. Koval and P. Parashar 1 Applications of Gaussian

More information

Robot Localization and Kalman Filters

Robot Localization and Kalman Filters Robot Localization and Kalman Filters Rudy Negenborn rudy@negenborn.net August 26, 2003 Outline Robot Localization Probabilistic Localization Kalman Filters Kalman Localization Kalman Localization with

More information

Information Value in Nonparametric Dirichlet-Process Gaussian-Process (DPGP) Mixture Models

Information Value in Nonparametric Dirichlet-Process Gaussian-Process (DPGP) Mixture Models Information Value in Nonparametric Dirichlet-Process Gaussian-Process (DPGP) Mixture Models Hongchuan Wei, Wenjie Lu, Pingping Zhu, Silvia Ferrari, Miao Liu, Robert H. Klein, Shayegan Omidshafiei, Jonathan

More information

Expectation Propagation in Dynamical Systems

Expectation Propagation in Dynamical Systems Expectation Propagation in Dynamical Systems Marc Peter Deisenroth Joint Work with Shakir Mohamed (UBC) August 10, 2012 Marc Deisenroth (TU Darmstadt) EP in Dynamical Systems 1 Motivation Figure : Complex

More information

Probabilistic Graphical Models (I)

Probabilistic Graphical Models (I) Probabilistic Graphical Models (I) Hongxin Zhang zhx@cad.zju.edu.cn State Key Lab of CAD&CG, ZJU 2015-03-31 Probabilistic Graphical Models Modeling many real-world problems => a large number of random

More information

9 Forward-backward algorithm, sum-product on factor graphs

9 Forward-backward algorithm, sum-product on factor graphs Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 9 Forward-backward algorithm, sum-product on factor graphs The previous

More information

The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance. Samuel Prentice and Nicholas Roy Presentation by Elaine Short

The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance. Samuel Prentice and Nicholas Roy Presentation by Elaine Short The Belief Roadmap: Efficient Planning in Belief Space by Factoring the Covariance Samuel Prentice and Nicholas Roy Presentation by Elaine Short 1 Outline" Motivation Review of PRM and EKF Factoring the

More information

Distributed Data Fusion with Kalman Filters. Simon Julier Computer Science Department University College London

Distributed Data Fusion with Kalman Filters. Simon Julier Computer Science Department University College London Distributed Data Fusion with Kalman Filters Simon Julier Computer Science Department University College London S.Julier@cs.ucl.ac.uk Structure of Talk Motivation Kalman Filters Double Counting Optimal

More information

Context Driven Tracking using Particle Filters

Context Driven Tracking using Particle Filters 18th International Conference on Information Fusion Washington, DC - July 6-9, 2015 Context Driven Tracking using Particle Filters Rik Claessens, Gregor Pavlin and Patrick de Oude University of Liverpool,

More information

Multi-Robotic Systems

Multi-Robotic Systems CHAPTER 9 Multi-Robotic Systems The topic of multi-robotic systems is quite popular now. It is believed that such systems can have the following benefits: Improved performance ( winning by numbers ) Distributed

More information

Chris Bishop s PRML Ch. 8: Graphical Models

Chris Bishop s PRML Ch. 8: Graphical Models Chris Bishop s PRML Ch. 8: Graphical Models January 24, 2008 Introduction Visualize the structure of a probabilistic model Design and motivate new models Insights into the model s properties, in particular

More information

AASS, Örebro University

AASS, Örebro University Mobile Robotics Achim J. and Lilienthal Olfaction Lab, AASS, Örebro University 1 Contents 1. Gas-Sensitive Mobile Robots in the Real World 2. Gas Dispersal in Natural Environments 3. Gas Quantification

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Introduction to Reinforcement Learning. CMPT 882 Mar. 18

Introduction to Reinforcement Learning. CMPT 882 Mar. 18 Introduction to Reinforcement Learning CMPT 882 Mar. 18 Outline for the week Basic ideas in RL Value functions and value iteration Policy evaluation and policy improvement Model-free RL Monte-Carlo and

More information

Linear Dynamical Systems

Linear Dynamical Systems Linear Dynamical Systems Sargur N. srihari@cedar.buffalo.edu Machine Learning Course: http://www.cedar.buffalo.edu/~srihari/cse574/index.html Two Models Described by Same Graph Latent variables Observations

More information

A RAIN PIXEL RESTORATION ALGORITHM FOR VIDEOS WITH DYNAMIC SCENES

A RAIN PIXEL RESTORATION ALGORITHM FOR VIDEOS WITH DYNAMIC SCENES A RAIN PIXEL RESTORATION ALGORITHM FOR VIDEOS WITH DYNAMIC SCENES V.Sridevi, P.Malarvizhi, P.Mathivannan Abstract Rain removal from a video is a challenging problem due to random spatial distribution and

More information

Lecture 8: Kinematics: Path and Trajectory Planning

Lecture 8: Kinematics: Path and Trajectory Planning Lecture 8: Kinematics: Path and Trajectory Planning Concept of Configuration Space c Anton Shiriaev. 5EL158: Lecture 8 p. 1/20 Lecture 8: Kinematics: Path and Trajectory Planning Concept of Configuration

More information

CS599 Lecture 1 Introduction To RL

CS599 Lecture 1 Introduction To RL CS599 Lecture 1 Introduction To RL Reinforcement Learning Introduction Learning from rewards Policies Value Functions Rewards Models of the Environment Exploitation vs. Exploration Dynamic Programming

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Tracking and Identification of Multiple targets

Tracking and Identification of Multiple targets Tracking and Identification of Multiple targets Samir Hachour, François Delmotte, Eric Lefèvre, David Mercier Laboratoire de Génie Informatique et d'automatique de l'artois, EA 3926 LGI2A first name.last

More information

Uncertainty Quantification in Performance Evaluation of Manufacturing Processes

Uncertainty Quantification in Performance Evaluation of Manufacturing Processes Uncertainty Quantification in Performance Evaluation of Manufacturing Processes Manufacturing Systems October 27, 2014 Saideep Nannapaneni, Sankaran Mahadevan Vanderbilt University, Nashville, TN Acknowledgement

More information

SLAM for Ship Hull Inspection using Exactly Sparse Extended Information Filters

SLAM for Ship Hull Inspection using Exactly Sparse Extended Information Filters SLAM for Ship Hull Inspection using Exactly Sparse Extended Information Filters Matthew Walter 1,2, Franz Hover 1, & John Leonard 1,2 Massachusetts Institute of Technology 1 Department of Mechanical Engineering

More information

Pose tracking of magnetic objects

Pose tracking of magnetic objects Pose tracking of magnetic objects Niklas Wahlström Department of Information Technology, Uppsala University, Sweden Novmber 13, 2017 niklas.wahlstrom@it.uu.se Seminar Vi2 Short about me 2005-2010: Applied

More information

Markov decision processes

Markov decision processes CS 2740 Knowledge representation Lecture 24 Markov decision processes Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Administrative announcements Final exam: Monday, December 8, 2008 In-class Only

More information

A Decentralized Approach to Multi-agent Planning in the Presence of Constraints and Uncertainty

A Decentralized Approach to Multi-agent Planning in the Presence of Constraints and Uncertainty 2011 IEEE International Conference on Robotics and Automation Shanghai International Conference Center May 9-13, 2011, Shanghai, China A Decentralized Approach to Multi-agent Planning in the Presence of

More information

Decision Theory: Markov Decision Processes

Decision Theory: Markov Decision Processes Decision Theory: Markov Decision Processes CPSC 322 Lecture 33 March 31, 2006 Textbook 12.5 Decision Theory: Markov Decision Processes CPSC 322 Lecture 33, Slide 1 Lecture Overview Recap Rewards and Policies

More information

Anytime Planning for Decentralized Multi-Robot Active Information Gathering

Anytime Planning for Decentralized Multi-Robot Active Information Gathering Anytime Planning for Decentralized Multi-Robot Active Information Gathering Brent Schlotfeldt 1 Dinesh Thakur 1 Nikolay Atanasov 2 Vijay Kumar 1 George Pappas 1 1 GRASP Laboratory University of Pennsylvania

More information

Mutual Information Based Data Selection in Gaussian Processes for People Tracking

Mutual Information Based Data Selection in Gaussian Processes for People Tracking Proceedings of Australasian Conference on Robotics and Automation, 3-5 Dec 01, Victoria University of Wellington, New Zealand. Mutual Information Based Data Selection in Gaussian Processes for People Tracking

More information

Template-Based Representations. Sargur Srihari

Template-Based Representations. Sargur Srihari Template-Based Representations Sargur srihari@cedar.buffalo.edu 1 Topics Variable-based vs Template-based Temporal Models Basic Assumptions Dynamic Bayesian Networks Hidden Markov Models Linear Dynamical

More information

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti

MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti 1 MARKOV DECISION PROCESSES (MDP) AND REINFORCEMENT LEARNING (RL) Versione originale delle slide fornita dal Prof. Francesco Lo Presti Historical background 2 Original motivation: animal learning Early

More information

Introduction to Graphical Models

Introduction to Graphical Models Introduction to Graphical Models The 15 th Winter School of Statistical Physics POSCO International Center & POSTECH, Pohang 2018. 1. 9 (Tue.) Yung-Kyun Noh GENERALIZATION FOR PREDICTION 2 Probabilistic

More information

Generalization and Function Approximation

Generalization and Function Approximation Generalization and Function Approximation 0 Generalization and Function Approximation Suggested reading: Chapter 8 in R. S. Sutton, A. G. Barto: Reinforcement Learning: An Introduction MIT Press, 1998.

More information

Factor Analysis and Kalman Filtering (11/2/04)

Factor Analysis and Kalman Filtering (11/2/04) CS281A/Stat241A: Statistical Learning Theory Factor Analysis and Kalman Filtering (11/2/04) Lecturer: Michael I. Jordan Scribes: Byung-Gon Chun and Sunghoon Kim 1 Factor Analysis Factor analysis is used

More information

Scalable robust hypothesis tests using graphical models

Scalable robust hypothesis tests using graphical models Scalable robust hypothesis tests using graphical models Umamahesh Srinivas ipal Group Meeting October 22, 2010 Binary hypothesis testing problem Random vector x = (x 1,...,x n ) R n generated from either

More information

Novel Quantization Strategies for Linear Prediction with Guarantees

Novel Quantization Strategies for Linear Prediction with Guarantees Novel Novel for Linear Simon Du 1/10 Yichong Xu Yuan Li Aarti Zhang Singh Pulkit Background Motivation: Brain Computer Interface (BCI). Predict whether an individual is trying to move his hand towards

More information

Neuromorphic Sensing and Control of Autonomous Micro-Aerial Vehicles

Neuromorphic Sensing and Control of Autonomous Micro-Aerial Vehicles Neuromorphic Sensing and Control of Autonomous Micro-Aerial Vehicles Commercialization Fellowship Technical Presentation Taylor Clawson Ithaca, NY June 12, 2018 About Me: Taylor Clawson 3 rd year PhD student

More information

The Use of Short-Arc Angle and Angle Rate Data for Deep-Space Initial Orbit Determination and Track Association

The Use of Short-Arc Angle and Angle Rate Data for Deep-Space Initial Orbit Determination and Track Association The Use of Short-Arc Angle and Angle Rate Data for Deep-Space Initial Orbit Determination and Track Association Dr. Moriba Jah (AFRL) Mr. Kyle DeMars (UT-Austin) Dr. Paul Schumacher Jr. (AFRL) Background/Motivation

More information

A Probabilistic Relational Model for Characterizing Situations in Dynamic Multi-Agent Systems

A Probabilistic Relational Model for Characterizing Situations in Dynamic Multi-Agent Systems A Probabilistic Relational Model for Characterizing Situations in Dynamic Multi-Agent Systems Daniel Meyer-Delius 1, Christian Plagemann 1, Georg von Wichert 2, Wendelin Feiten 2, Gisbert Lawitzky 2, and

More information

c 4, < y 2, 1 0, otherwise,

c 4, < y 2, 1 0, otherwise, Fundamentals of Big Data Analytics Univ.-Prof. Dr. rer. nat. Rudolf Mathar Problem. Probability theory: The outcome of an experiment is described by three events A, B and C. The probabilities Pr(A) =,

More information

Uncertainty Quantification for Machine Learning and Statistical Models

Uncertainty Quantification for Machine Learning and Statistical Models Uncertainty Quantification for Machine Learning and Statistical Models David J. Stracuzzi Joint work with: Max Chen, Michael Darling, Stephen Dauphin, Matt Peterson, and Chris Young Sandia National Laboratories

More information

Mobile Robot Localization

Mobile Robot Localization Mobile Robot Localization 1 The Problem of Robot Localization Given a map of the environment, how can a robot determine its pose (planar coordinates + orientation)? Two sources of uncertainty: - observations

More information

Time-Varying Parameters

Time-Varying Parameters Kalman Filter and state-space models: time-varying parameter models; models with unobservable variables; basic tool: Kalman filter; implementation is task-specific. y t = x t β t + e t (1) β t = µ + Fβ

More information

CS Machine Learning Qualifying Exam

CS Machine Learning Qualifying Exam CS Machine Learning Qualifying Exam Georgia Institute of Technology March 30, 2017 The exam is divided into four areas: Core, Statistical Methods and Models, Learning Theory, and Decision Processes. There

More information

Intelligent Systems:

Intelligent Systems: Intelligent Systems: Undirected Graphical models (Factor Graphs) (2 lectures) Carsten Rother 15/01/2015 Intelligent Systems: Probabilistic Inference in DGM and UGM Roadmap for next two lectures Definition

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

Joint GPS and Vision Estimation Using an Adaptive Filter

Joint GPS and Vision Estimation Using an Adaptive Filter 1 Joint GPS and Vision Estimation Using an Adaptive Filter Shubhendra Vikram Singh Chauhan and Grace Xingxin Gao, University of Illinois at Urbana-Champaign Shubhendra Vikram Singh Chauhan received his

More information

Statistical Perspectives on Geographic Information Science. Michael F. Goodchild University of California Santa Barbara

Statistical Perspectives on Geographic Information Science. Michael F. Goodchild University of California Santa Barbara Statistical Perspectives on Geographic Information Science Michael F. Goodchild University of California Santa Barbara Statistical geometry Geometric phenomena subject to chance spatial phenomena emphasis

More information

10 Robotic Exploration and Information Gathering

10 Robotic Exploration and Information Gathering NAVARCH/EECS 568, ROB 530 - Winter 2018 10 Robotic Exploration and Information Gathering Maani Ghaffari April 2, 2018 Robotic Information Gathering: Exploration and Monitoring In information gathering

More information

Active Learning of Gaussian Processes for Spatial Functions in Mobile Sensor Networks

Active Learning of Gaussian Processes for Spatial Functions in Mobile Sensor Networks Preprints of the 8th IFAC World Congress Milano (Italy) August 8 - September, Active Learning of Gaussian Processes for Spatial Functions in Mobile Sensor Networks Dongbing Gu Huosheng Hu University of

More information

Manipulators. Robotics. Outline. Non-holonomic robots. Sensors. Mobile Robots

Manipulators. Robotics. Outline. Non-holonomic robots. Sensors. Mobile Robots Manipulators P obotics Configuration of robot specified by 6 numbers 6 degrees of freedom (DOF) 6 is the minimum number required to position end-effector arbitrarily. For dynamical systems, add velocity

More information

Complexity Metrics. ICRAT Tutorial on Airborne self separation in air transportation Budapest, Hungary June 1, 2010.

Complexity Metrics. ICRAT Tutorial on Airborne self separation in air transportation Budapest, Hungary June 1, 2010. Complexity Metrics ICRAT Tutorial on Airborne self separation in air transportation Budapest, Hungary June 1, 2010 Outline Introduction and motivation The notion of air traffic complexity Relevant characteristics

More information

Efficient Information Planning in Graphical Models

Efficient Information Planning in Graphical Models Efficient Information Planning in Graphical Models computational complexity considerations John Fisher & Giorgos Papachristoudis, MIT VITALITE Annual Review 2013 September 9, 2013 J. Fisher (VITALITE Annual

More information

Lecture 7: Optimal Smoothing

Lecture 7: Optimal Smoothing Department of Biomedical Engineering and Computational Science Aalto University March 17, 2011 Contents 1 What is Optimal Smoothing? 2 Bayesian Optimal Smoothing Equations 3 Rauch-Tung-Striebel Smoother

More information

Towards Uncertainty-Aware Path Planning On Road Networks Using Augmented-MDPs. Lorenzo Nardi and Cyrill Stachniss

Towards Uncertainty-Aware Path Planning On Road Networks Using Augmented-MDPs. Lorenzo Nardi and Cyrill Stachniss Towards Uncertainty-Aware Path Planning On Road Networks Using Augmented-MDPs Lorenzo Nardi and Cyrill Stachniss Navigation under uncertainty C B C B A A 2 `B` is the most likely position C B C B A A 3

More information

Towards Fully-automated Driving

Towards Fully-automated Driving Towards Fully-automated Driving Challenges and Potential Solutions Dr. Gijs Dubbelman Mobile Perception Systems EE-SPS/VCA Mobile Perception Systems 6 PhDs, postdoc, project manager, software engineer,

More information

Probabilistic Cardinal Direction Queries On Spatio-Temporal Data

Probabilistic Cardinal Direction Queries On Spatio-Temporal Data Probabilistic Cardinal Direction Queries On Spatio-Temporal Data Ganesh Viswanathan Midterm Project Report CIS 6930 Data Science: Large-Scale Advanced Data Analytics University of Florida September 3 rd,

More information

SLAM Techniques and Algorithms. Jack Collier. Canada. Recherche et développement pour la défense Canada. Defence Research and Development Canada

SLAM Techniques and Algorithms. Jack Collier. Canada. Recherche et développement pour la défense Canada. Defence Research and Development Canada SLAM Techniques and Algorithms Jack Collier Defence Research and Development Canada Recherche et développement pour la défense Canada Canada Goals What will we learn Gain an appreciation for what SLAM

More information

Reinforcement Learning with Reference Tracking Control in Continuous State Spaces

Reinforcement Learning with Reference Tracking Control in Continuous State Spaces Reinforcement Learning with Reference Tracking Control in Continuous State Spaces Joseph Hall, Carl Edward Rasmussen and Jan Maciejowski Abstract The contribution described in this paper is an algorithm

More information

Title: Robust Path Planning in GPS-Denied Environments Using the Gaussian Augmented Markov Decision Process

Title: Robust Path Planning in GPS-Denied Environments Using the Gaussian Augmented Markov Decision Process Title: Robust Path Planning in GPS-Denied Environments Using the Gaussian Augmented Markov Decision Process Authors: Peter Lommel (Corresponding author) 366 Technology Drive Minneapolis, MN 55418 phlommel@alum.mit.edu

More information

Path Integral Stochastic Optimal Control for Reinforcement Learning

Path Integral Stochastic Optimal Control for Reinforcement Learning Preprint August 3, 204 The st Multidisciplinary Conference on Reinforcement Learning and Decision Making RLDM203 Path Integral Stochastic Optimal Control for Reinforcement Learning Farbod Farshidian Institute

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Probabilistic Fundamentals in Robotics Gaussian Filters Course Outline Basic mathematical framework Probabilistic models of mobile robots Mobile

More information

Sensor Localization and Target Estimation in Visual Sensor Networks

Sensor Localization and Target Estimation in Visual Sensor Networks Annual Schedule of my Research Sensor Localization and Target Estimation in Visual Sensor Networks Survey and Problem Settings Presented in the FL seminar on May th First Trial and Evaluation of Proposed

More information

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University

Kalman Filter Computer Vision (Kris Kitani) Carnegie Mellon University Kalman Filter 16-385 Computer Vision (Kris Kitani) Carnegie Mellon University Examples up to now have been discrete (binary) random variables Kalman filtering can be seen as a special case of a temporal

More information

Learning to Control an Octopus Arm with Gaussian Process Temporal Difference Methods

Learning to Control an Octopus Arm with Gaussian Process Temporal Difference Methods Learning to Control an Octopus Arm with Gaussian Process Temporal Difference Methods Yaakov Engel Joint work with Peter Szabo and Dmitry Volkinshtein (ex. Technion) Why use GPs in RL? A Bayesian approach

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: Extended Kalman Filter Dr. Kostas Alexis (CSE) These slides relied on the lectures from C. Stachniss, J. Sturm and the book Probabilistic Robotics from Thurn et al.

More information

Deep Reinforcement Learning. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 19, 2017

Deep Reinforcement Learning. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 19, 2017 Deep Reinforcement Learning STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 19, 2017 Outline Introduction to Reinforcement Learning AlphaGo (Deep RL for Computer Go)

More information

Dialogue as a Decision Making Process

Dialogue as a Decision Making Process Dialogue as a Decision Making Process Nicholas Roy Challenges of Autonomy in the Real World Wide range of sensors Noisy sensors World dynamics Adaptability Incomplete information Robustness under uncertainty

More information

Model-Based Reinforcement Learning with Continuous States and Actions

Model-Based Reinforcement Learning with Continuous States and Actions Marc P. Deisenroth, Carl E. Rasmussen, and Jan Peters: Model-Based Reinforcement Learning with Continuous States and Actions in Proceedings of the 16th European Symposium on Artificial Neural Networks

More information

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji

Dynamic Data Modeling, Recognition, and Synthesis. Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Dynamic Data Modeling, Recognition, and Synthesis Rui Zhao Thesis Defense Advisor: Professor Qiang Ji Contents Introduction Related Work Dynamic Data Modeling & Analysis Temporal localization Insufficient

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Machine Learning Lecture 7

Machine Learning Lecture 7 Course Outline Machine Learning Lecture 7 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Statistical Learning Theory 23.05.2016 Discriminative Approaches (5 weeks) Linear Discriminant

More information

Shape Outlier Detection Using Pose Preserving Dynamic Shape Models

Shape Outlier Detection Using Pose Preserving Dynamic Shape Models Shape Outlier Detection Using Pose Preserving Dynamic Shape Models Chan-Su Lee and Ahmed Elgammal Rutgers, The State University of New Jersey Department of Computer Science Outline Introduction Shape Outlier

More information

Human-Oriented Robotics. Temporal Reasoning. Kai Arras Social Robotics Lab, University of Freiburg

Human-Oriented Robotics. Temporal Reasoning. Kai Arras Social Robotics Lab, University of Freiburg Temporal Reasoning Kai Arras, University of Freiburg 1 Temporal Reasoning Contents Introduction Temporal Reasoning Hidden Markov Models Linear Dynamical Systems (LDS) Kalman Filter 2 Temporal Reasoning

More information

Copyrighted Material. 1.1 Large-Scale Interconnected Dynamical Systems

Copyrighted Material. 1.1 Large-Scale Interconnected Dynamical Systems Chapter One Introduction 1.1 Large-Scale Interconnected Dynamical Systems Modern complex dynamical systems 1 are highly interconnected and mutually interdependent, both physically and through a multitude

More information

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan

The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan The geometry of Gaussian processes and Bayesian optimization. Contal CMLA, ENS Cachan Background: Global Optimization and Gaussian Processes The Geometry of Gaussian Processes and the Chaining Trick Algorithm

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Terrain Navigation Using the Ambient Magnetic Field as a Map

Terrain Navigation Using the Ambient Magnetic Field as a Map Terrain Navigation Using the Ambient Magnetic Field as a Map Aalto University IndoorAtlas Ltd. August 30, 017 In collaboration with M. Kok, N. Wahlström, T. B. Schön, J. Kannala, E. Rahtu, and S. Särkkä

More information

Gaussian Processes (10/16/13)

Gaussian Processes (10/16/13) STA561: Probabilistic machine learning Gaussian Processes (10/16/13) Lecturer: Barbara Engelhardt Scribes: Changwei Hu, Di Jin, Mengdi Wang 1 Introduction In supervised learning, we observe some inputs

More information

Robotics 2 Data Association. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard

Robotics 2 Data Association. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Robotics 2 Data Association Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Data Association Data association is the process of associating uncertain measurements to known tracks. Problem

More information

Dimension Reduction. David M. Blei. April 23, 2012

Dimension Reduction. David M. Blei. April 23, 2012 Dimension Reduction David M. Blei April 23, 2012 1 Basic idea Goal: Compute a reduced representation of data from p -dimensional to q-dimensional, where q < p. x 1,...,x p z 1,...,z q (1) We want to do

More information

Information Exchange in Multi-rover SLAM

Information Exchange in Multi-rover SLAM nformation Exchange in Multi-rover SLAM Brandon M Jones and Lang Tong School of Electrical and Computer Engineering Cornell University, thaca, NY 53 {bmj3,lt35}@cornelledu Abstract We investigate simultaneous

More information

Localization of Radioactive Sources Zhifei Zhang

Localization of Radioactive Sources Zhifei Zhang Localization of Radioactive Sources Zhifei Zhang 4/13/2016 1 Outline Background and motivation Our goal and scenario Preliminary knowledge Related work Our approach and results 4/13/2016 2 Background and

More information

A Spectral Approach to Linear Bayesian Updating

A Spectral Approach to Linear Bayesian Updating A Spectral Approach to Linear Bayesian Updating Oliver Pajonk 1,2, Bojana V. Rosic 1, Alexander Litvinenko 1, and Hermann G. Matthies 1 1 Institute of Scientific Computing, TU Braunschweig, Germany 2 SPT

More information

SUMMARY. ) t, UNIT. Constant velocity represents uniform motion. Acceleration causes a change in velocity.

SUMMARY. ) t, UNIT. Constant velocity represents uniform motion. Acceleration causes a change in velocity. UNIT A SUMMARY KEY CONCEPTS CHAPTER SUMMARY 1 Constant velocity represents uniform motion. Distance and Displacement Position-time graphs Average speed and average velocity Positive, negative, and zero

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information