ISSN (Online), Volume 5, Issue 7, July (2014), pp IAEME AND TECHNOLOGY (IJCIET) MODELING OF SOIL EROSION BY WATER

Size: px
Start display at page:

Download "ISSN (Online), Volume 5, Issue 7, July (2014), pp IAEME AND TECHNOLOGY (IJCIET) MODELING OF SOIL EROSION BY WATER"

Transcription

1 INTERNATIONAL Intnational Journal of Civil Engineing JOURNAL and Technology OF CIVIL (IJCIET), ENGINEERING ISSN (Print), AND TECHNOLOGY (IJCIET) ISSN (Print) ISSN (Online) Volume 5, Issue 7, July (2014), pp IAEME: Journal Impact Factor (2014): (Calculated by GISI) IJCIET IAEME MODELING OF SOIL EROSION BY WATER Kissi Benaissa *1, El Haouzi Ahmed 1 1 National School of Arts and Trades of Casablanca (ENSAM-Casablanca), Univsity Hassan II. Avenue Hassan II.B.P: 145, Mohammedia Morocco ABSTRACT Many dam ruptures events have occurred throughout the world, Then main cause was piping phenomenon that occurred in the foundation soil or in the dam structure. Sviceability of hydraulic infrastructures needs considing vulnability of soil to intnal osion und the action of a seepage flow. Undstanding the undlying mechanisms and quantifying the effects of ptinent variables that affect this phenomenon is of great importance in ord to prevent such catastrophes. Erosion due to liquid flow discharge can be modeled by diffent. In this work, the wat osion is modeled in the wat/soil intface during the hole osion test (HET). The Hole Erosion Test is commonly used to quantify the rate of piping osion. The aim of this work is to predict the osion of soil in the wat/soil intface by using the Fluent package and three dimensional modeling.this modelling makes it possible describing the effect of the flow on osion in the intface wat/soil by using the k turbulence model equations, and predicts a non uniform osion along the hole length unlike the usual one dimensional models. In particular, the flow velocity is found to increase noticeably the osion rate. Effects on the wall-shear stress resulting from varying flow velocity and applied hydraulic gradient are analyzed. Keywords: Piping, Soil Erosion, Turbulence, k Model, Near-Wall Boundary, Hole Erosion Test. 1. INTRODUCTION Soil osion is a complex phenomenon which yields at its final stage insidious fluid leakages und the hydraulic infrastructures known as piping and which provokes their rupture. Many dam ruptures events have occurred throughout the world, some of them we reported by Fost and al. [1]. (Fig.1) 123

2 Then main cause was piping phenomenon that occurred in the foundation soil or in the dam structure. Sviceability of hydraulic infrastructures needs considing vulnability of soil to intnal osion und the action of a seepage flow, [2, 3]. A simplified one-dimensional model for intpreting the Hole Erosion Test (HET) with a constant pressure drop was developed by Bonelli and Brivois [4, 5]. This model yielded a charactistic osion time which was found to be depending on the initial hydraulic gradient and the soil coefficient of osion. Fig.1: TETON Dam Failure, USA 1976 We can consid various measures to reduce the risk of formation of wat osion. In particular (Figure.2: a) and b)): - Decrease the value of the hydraulic gradient (to envisage an impmeable carpet in the side upstream of an earth dam ) - To inst piezomets of discharge. - To charge the soil and to emge a matial which can play the part of filt to change its granulometry. a) b) Fig.2: Example of anti-wat osion an earth dam A three-dimensional modeling of fluid flow taking place in the hole inside the hole osion test sample test was pformed by means of enhanced CFD software package. The hole wall had been assumed to be rigid and to have ideal circular cylindrical geometry. Unlike the early models which are essentially one-dimensional, the two-dimensional modeling had shown that the wall-shear stress is not uniform along the hole wall [6]. 124

3 For instance, the inlet side of the sample hole undgoes genally much more osion than the outlet side. But, one-dimensional modeling of this test could not predict this oded shape since it yields uniform osion at the whole fluid/soil intface inside the soil sample hole. The aim of this study is to describe the biphasic turbulent flow at the origin of osion taking place inside the porous soil sample by considing the influence of variation of the flow velocity on rate osion. A Computational Fluid Dynamics (CFD) approach is used to investigate the shear stress that develops at the wat/soil intface and which represents the main mechanical action that causes surface osion. When the shear stress is calculated by means of Fluent, the classical linear osion law is used to estimate osion rate. This law gives osion rate, consided to be the amount of mass departure due to osion p unit time and by unit surface area, by & = c ( τ τ cr ) whe c and τ cr are constants depending on the consided soil matial. For a cylindrical hole, the rate & can be related to time variation of local radius by & = ρ d dr / dt whe ρ d is the dry density of soil and R is hole radius. The osion law yields that & is proportional to the amount of shear exceeding the critical shear τ cr for which osion begins. The standard HET is such that, the fluid domain which is assumed to be axisymmetric extends ov 117 mm in the axial z-direction and 3 mm in the radial r-direction (Figure 2). Fig.2: Geometry of the HET tube 2. THREE-DIMENSIONAL MODELING APPROACH OF THE HET The turbulence modelling is achieved by means of Fluent software package. Fluent is a genal purpose Computational Fluid Dynamics (CFD) code that has been applied to various problems in the fields of fluid mechanics and heat transf. This code has been validated through numous investigations. Fluent is especially appropriate for the complex physics involved in heat and mass transf and consids mixtures by modeling each fluid species independently or as a homogenized medium, [7]. Flow taking place inside the hole is turbulent. To pform realistic simulation of turbulence, the exact instantaneous Navi-Stokes govning equations are habitually time-avaged or ensemble-avaged. The obtained avaged equations contain furth unknown variables, and turbulence models are introduced to detmine them in tms of known quantities. Various turbulence models have been proposed in the litature; howev the is no single turbulence model which could be univsally applied for all classes of problems. The choice of a ptinent model for a 125

4 given problem will depend on the actual physics of the flow, the degree of accuracy required and the computational cost tolated. Refence [8] gives a detailed discussion on how to pform at best the appropriate choice of a turbulence model. Among the various models, the standard k model which was proposed first by Laund and Spalding [9] has become the most popular when dealing with practical engineing flow calculations. This model relies on phenomenological considations and integrates empiricism to pform closure of equations. 3. STANDARD K-ΕPSILON MODEL The simplest "complete models'' of turbulence are two-equation models in which the solution of two separate transport equations allows the turbulent velocity and length scales to be independently detmined. The standard k- model in FLUENT falls within this class of turbulence model and has become the workhorse of practical engineing flow calculations in the time since it was proposed by Laund and Spalding [9]. Robustness, economy, and reasonable accuracy for a wide range of turbulent flows explain its popularity in industrial flow and heat transf simulations. It is a semi-empirical model, and the divation of the model equations relies on phenomenological considations and empiricism. As the strengths and weaknesses of the standard k- model have become known, improvements have been made to the model to improve its pformance. The standard k- model [9] is a semi-empirical model based on model transport equations for the turbulence kinetic engy (k) and its dissipation rate (). The model transport equation for k is dived from the exact equation, while the model transport equation for was obtained using physical reasoning and bears little resemblance to its mathematically exact countpart. In the divation of the k- model, the assumption is that the flow is fully turbulent, and the effects of molecular viscosity are negligible. The standard k- model is thefore valid only for fully turbulent flows. 4. TRANSPORT EQUATIONS FOR THE STANDARD K-ΕPSILON MODEL The turbulence kinetic engy, k, and its rate of dissipation,, are obtained from the following transport equations: µ t k ( ρk) + ( ρ ku ) = ( µ + ) + G + G ρ Y + S t xi xj σ k x j i k b M k (1) And µ ( ρ) + ( ρ u ) = ( µ + ) + C ( G + C G ) C ρ + S t xi xj x k k 2 t i 1 k 3 b 2 σ j (2) In these equations, Gk represents the genation of turbulence kinetic engy due to the mean velocity gradients. G b is the genation of turbulence kinetic engy due to buoyancy. Y M represents the contribution of the fluctuating dilatation in compressible turbulence to the ovall dissipation rate. C1, C2, and C3 are constants. σ k and σ are the turbulent Prandtl numbs for k and, respectively. S k and S are us-defined source tms. Although the default values of the model constants are the standard ones most widely accepted, you can change them (if needed) in the Viscous Model panel. 126

5 5. RESULTS AND DISCUSSIONS The analysis presented in this section focuses on the simulation of the turbulent fluid flow taking place inside a cylindrical pipe having a rigid wall that replicates the geometry of the hole in the HET. The fluid domain which is assumed to be axisymmetric extends 170 mm in the axial z- direction and 30 mm in the radial r-direction. The origin of the refence frame is placed at the entrance section. Modeling und fluent has been pformed by using wat density and dynamic viscosity at 3 the tempature 20 C for which ρ = 1000 kg / m and η = ρµ = Pa. s. The four values of flow consided are given in table 1: Table (1): Reynolds numb and velocity of flow consided in this study Reynolds Velocity ( m / s ) Debit ( m 3 / s ) T.I(%) The solution method chosen und Fluent is Volume Of Fluid (VOF). The viscous Model selected is the standard k model and the near-wall treatment is conforming to the enhanced wall treatment with pressure gradient effects. The boundary conditions that we used are: - Inlet at the left extremity of the domain with gauge pressure value specified and turbulence specification method corresponding to turbulence intensity T.I (%) and hydraulic diamet equal to 1/8 the radius R. turbulence intensity can be calculated as: T. I = 0.16 Re - Outlet at the right extremity of the domain with gauge pressure fixed at 0, turbulence specification method was used with turbulence intensity T.I (%) and hydraulic diamet equal to the radius R. - Symmetry type axis at the axis of symmetry which is the bottom side of the domain as presented in figure 1. - Wall at the top side of the domain, (figure 1), whe the enhanced near-wall treatment with pressure gradient effects option is selected. Default convgence statements we selected. They assure that continuity, velocities, turbulent kinetic engy and its dissipation rate are stationary within a relative tolance limit fixed at 10-6.The solution convges in approximately 300 itations. Figures 2 and 3 give the Profiles of Wall Shear Stress on wall as function of Reynolds numb. 127

6 Fig.3: Profiles of Wall Shear Stress on wall for Re=20000 Fig.4: Erosion rate as function of inlet velocity (Reynolds numb) (in Pascal) 4 Table 2 gives the osion rate (in 10 kg / s ) which corresponds to the amount of mass departure p unit time due to osion. This amount is obtained by integrating the osion law ov the whole length of the hole and by multiplying the result by the initial circumfence of the hole. 4 The classical linear osion law & = c ( τ τ s ) was used, with the osion constants c = s / m and τ s = 0.2 Pa as identified for a soil sample containing 50% kaolinit clay and 50% of sand that was tested in [10]. 4 TABLE (2): EROSION RATE IN 10 kg / s AS FUNCTION OF REYNOLDS NUMBER Re τ (Pa) & Re= Re= Figures 2 and 3 show that the wall-shear is not uniform along the whole hole length. The wall-shear stress at the inlet extremity can exceed multiple times its pmanent value in the plateau zone inside the hole. This is in contrast with the habitual hypothesis used to dive one-dimensional modeling of the HET. The obtained results, as shown in figure 4, indicate that osion rate increase with Reynolds numb and wit the axial coordinate. 128

7 The obtained results state clearly the three-dimensional charact of flow taking place inside the hole and show strong variations in comparison with two-dimensional and one-dimensional approaches. Predicting the osion in its initial stage can be done und the assumptions that the wall is rigid and that the linear osion law is valid. This was pformed and results are summarized in table 2 whe it could be obsved that the Reynolds numb has strong effect on the amount of osion rate. The osion rate increases as function the flow velocity with a maximum value at the inlet extremity. At the inlet extremity wall-shear stress is maximal and osion is maximal. 6. CONCLUSIONS A three-dimensional modeling of fluid flow taking place in the hole inside the hole osion test sample test was pformed by means of enhanced CFD software package. The hole wall had been assumed to be rigid and to have ideal circular cylindrical geometry. Unlike the early models which are essentially one-dimensional, the three-dimensional modeling had shown that the wallshear stress is not uniform along the hole wall (in the wat/soil intface). It was possible then through using a linear osion law to predict non uniform osion along the hole length. Studying the effect of Reynolds numb has shown that it has important effect on the wall-shear stress and thus would affect in its turn surface osion that develops at the fluid soil sample intface. This enabled qualitatively undstanding why the oded profile of the hole wall as obsved during expiment is not uniform. 7. REFERENCES [1] M.A. Fost, R. Fell, M. Spannangle. The statistics of embankment dam failures and accidents. Canadian geotechnical Journal 37 (2000) [2] Fjar E., Holt R.M., Horsrud P., Raaen A.M., Risnes R., Petroleum related rock mechanics, revised edition Elsevi, Amstdam, [3] Lachouette D. Golay F., Bonelli S. One dimensional modelling of piping flow osion. C. R. Mecanique 336 (2008) [4] D. Lachouette, F. Golay, S. Bonelli. One dimensional modelling of piping flow osion. Comptes Rendus de Mécanique 336 (2008), [5] S. Bonelli, O. Brivois. The scaling law in the hole osion test with a constant pressure Drop. Intnational Journal for Numical and Analytical Methods in Geomechanics, 32(2008) [6] Kissi Benaissa, Parron Va Miguel Angel, Rubio Cintas Maria Dlolores, Dubujet Philippe, Khamlichi Abdellatif, Bezzazi Mohammed, El Bakkali Larbi. Predicting initial osion during the Hole Erosion Test by using turbulent flow CFD Simulation. Applied Mathematical Modelling. 36 (2012) [7] A. Escue, J. Cui. Comparison of turbulence models in simulating swirling pipe flows. Applied Mathematical Modelling. (2010) doi: /j.apm [8] Fieldview refence Manual, Software Release Vsion 10, Intelligent Light, [9] Laund, B.E., Spalding, D.B. Lectures in Mathematical Models of Turbulence. Academic Press, London, England, [10] T.L. PHAM. Erosion et dispsion des sols argileux par un fluide. In French. Ph.D Thesis, Ord numb: D.U. ED: 430. Ecole Nationale des Ponts et Chaussées, Paris, France, [11] A. Rizk, A. Aldebky and N. Guirguis, Comparison Between Natural Cross and Hybrid Ventilation for Hot Climate by Using CFD Intnational Journal of Civil Engineing & Technology (IJCIET), Volume 5, Issue 2, 2014, pp , ISSN Print: , ISSN Online:

Modeling Approach of the water/soil Interface in the Hole Erosion Test (HET)

Modeling Approach of the water/soil Interface in the Hole Erosion Test (HET) Australian Journal of Basic and Applied Sciences, 5(7): 1213-1220, 2011 ISSN 1991-8178 Modeling Approach of the water/soil Interface in the Hole Erosion Test (HET) 1 Kissi Benaissa, 2 El Bakkali Larbi,

More information

EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS

EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS EVALUATION OF FOUR TURBULENCE MODELS IN THE INTERACTION OF MULTI BURNERS SWIRLING FLOWS A Aroussi, S Kucukgokoglan, S.J.Pickering, M.Menacer School of Mechanical, Materials, Manufacturing Engineering and

More information

Basic Fluid Mechanics

Basic Fluid Mechanics Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible

More information

Investigation of Flow Profile in Open Channels using CFD

Investigation of Flow Profile in Open Channels using CFD Investigation of Flow Profile in Open Channels using CFD B. K. Gandhi 1, H.K. Verma 2 and Boby Abraham 3 Abstract Accuracy of the efficiency measurement of a hydro-electric generating unit depends on the

More information

Civil Engineering Department College of Engineering

Civil Engineering Department College of Engineering Civil Engineering Department College of Engineering Course: Soil Mechanics (CE 359) Lecturer: Dr. Frederick Owusu-Nimo FREQUENCY CE 260 Results (2013) 30 25 23 25 26 27 21 20 18 15 14 15 Civil Geological

More information

Comparison of two equations closure turbulence models for the prediction of heat and mass transfer in a mechanically ventilated enclosure

Comparison of two equations closure turbulence models for the prediction of heat and mass transfer in a mechanically ventilated enclosure Proceedings of 4 th ICCHMT May 17-0, 005, Paris-Cachan, FRANCE 381 Comparison of two equations closure turbulence models for the prediction of heat and mass transfer in a mechanically ventilated enclosure

More information

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B.

ME 309 Fluid Mechanics Fall 2010 Exam 2 1A. 1B. Fall 010 Exam 1A. 1B. Fall 010 Exam 1C. Water is flowing through a 180º bend. The inner and outer radii of the bend are 0.75 and 1.5 m, respectively. The velocity profile is approximated as C/r where C

More information

A Comparative Analysis of Turbulent Pipe Flow Using k And k Models

A Comparative Analysis of Turbulent Pipe Flow Using k And k Models A Comparative Analysis of Turbulent Pipe Flow Using k And k Models 1 B. K. Menge, 2 M. Kinyanjui, 3 J. K. Sigey 1 Department of Mathematics and Physics. Technical University of Mombasa, P.O BOX 90420-80100,Mombasa,

More information

A NUMERICAL ANALYSIS OF COMBUSTION PROCESS IN AN AXISYMMETRIC COMBUSTION CHAMBER

A NUMERICAL ANALYSIS OF COMBUSTION PROCESS IN AN AXISYMMETRIC COMBUSTION CHAMBER SCIENTIFIC RESEARCH AND EDUCATION IN THE AIR FORCE-AFASES 2016 A NUMERICAL ANALYSIS OF COMBUSTION PROCESS IN AN AXISYMMETRIC COMBUSTION CHAMBER Alexandru DUMITRACHE*, Florin FRUNZULICA ** *Institute of

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION 2016 IJSRSET Volume 2 Issue 4 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Analysis of Compressible Effect in the Flow Metering By Orifice Plate Using Prasanna

More information

Partition of mixed modes in double cantilever beams with non-rigid elastic interfaces

Partition of mixed modes in double cantilever beams with non-rigid elastic interfaces Loughborough Univsity nstitutional Repository artition of mixed modes in double cantilev beams ith non-rigid elastic intfaces This item as submitted to Loughborough Univsity's nstitutional Repository by

More information

*** ***! " " ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14. " > /' ;-,=. / ١

*** ***!   ) * % )!( & ' % # $. 0 1 %./ +, - 7 : %8% 9 ) 7 / ( * 7 : %8% 9 < ;14.  > /' ;-,=. / ١ ١ ******!" #$ % & '!( ) % * ") +,-./ % 01. 3 ( 4 56 7/4 ) 8%9 % : 7 ;14 < 8%9 % : *7./ = ;-, >/'." Soil Permeability & Seepage ٢ Soil Permeability- Definition ٣ What is Permeability? Permeability is the

More information

Physical Properties of Fluids

Physical Properties of Fluids Physical Properties of Fluids Viscosity: Resistance to relative motion between adjacent layers of fluid. Dynamic Viscosity:generally represented as µ. A flat plate moved slowly with a velocity V parallel

More information

Tutorial for the supercritical pressure pipe with STAR-CCM+

Tutorial for the supercritical pressure pipe with STAR-CCM+ Tutorial for the supercritical pressure pipe with STAR-CCM+ For performing this tutorial, it is necessary to have already studied the tutorial on the upward bend. In fact, after getting abilities with

More information

Principles of Convection

Principles of Convection Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

More information

DEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M.

DEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M. DEVELOPED LAMINAR FLOW IN PIPE USING COMPUTATIONAL FLUID DYNAMICS M. Sahu 1, Kishanjit Kumar Khatua and Kanhu Charan Patra 3, T. Naik 4 1, &3 Department of Civil Engineering, National Institute of technology,

More information

The scaling law of piping erosion

The scaling law of piping erosion The scaling law of piping erosion Bonelli Stéphane, Brivois Olivier & Lachouette Damien Cemagref Hydraulics Engineering and Hydrology Research Unit 3275 Route de Cezanne, CS 40061, 13182 Aix-en-Provence

More information

CFD Simulation in Helical Coiled Tubing

CFD Simulation in Helical Coiled Tubing Journal of Applied Science and Engineering, Vol. 19, No. 3, pp. 267 272 (2016) DOI: 10.6180/jase.2016.19.3.04 CFD Simulation in Helical Coiled Tubing Z. Y. Zhu Department of Petroleum Engineering, China

More information

3D Numerical Simulation of Supercritical Flow in Bends of Channel

3D Numerical Simulation of Supercritical Flow in Bends of Channel 3D Numerical Simulation of Supercritical Flow in Bends of Channel Masoud. Montazeri-Namin, Reyhaneh-Sadat. Ghazanfari-Hashemi, and Mahnaz. Ghaeini- Hessaroeyeh Abstract An attempt has been made to simulate

More information

MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow

MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow TRANSPORT PHENOMENA MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow Introduction to Turbulent Flow 1. Comparisons of laminar and turbulent flows 2. Time-smoothed equations of change for incompressible

More information

Effect of modification to tongue and basic circle diameter on vibration in a double-suction centrifugal pump

Effect of modification to tongue and basic circle diameter on vibration in a double-suction centrifugal pump 5th International Conference on Information Engineering for Mechanics and Materials (ICIMM 2015) Effect of modification to tongue and basic circle diameter on vibration in a double-suction centrifugal

More information

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE

COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE COMPUTATIONAL SIMULATION OF THE FLOW PAST AN AIRFOIL FOR AN UNMANNED AERIAL VEHICLE L. Velázquez-Araque 1 and J. Nožička 2 1 Division of Thermal fluids, Department of Mechanical Engineering, National University

More information

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE

THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE Polymers Research Journal ISSN: 195-50 Volume 6, Number 01 Nova Science Publishers, Inc. THERMAL ANALYSIS OF SECOND STAGE GAS TURBINE ROTOR BLADE E. Poursaeidi, M. Mohammadi and S. S. Khamesi University

More information

Lecture 30 Review of Fluid Flow and Heat Transfer

Lecture 30 Review of Fluid Flow and Heat Transfer Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in

More information

A Comparative Study of Omega RSM and RNG k Model for the Numerical Simulation of a Hydrocyclone

A Comparative Study of Omega RSM and RNG k Model for the Numerical Simulation of a Hydrocyclone Iran. J. Chem. Chem. Eng. Vol. 33, No. 3, 14 A Comparative Study of Omega RSM and RNG k Model for the Numerical Simulation of a Hydrocyclone Zhuo Lun Cen* + ; Ji Gang Zhao; Ben Xian Shen State Key Laboratory

More information

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE In this chapter, the governing equations for the proposed numerical model with discretisation methods are presented. Spiral

More information

R. SHAYMAA ABDUL MUTTALEB ALHASHIMI

R. SHAYMAA ABDUL MUTTALEB ALHASHIMI www.semargroups.org, www.ijsetr.com ISSN 2319-8885 Vol.02,Issue.15, November-2013, Pages:1682-1687 CFD Modeling of Flow over Ogee Spillway by Using Different Turbulence DR. SHAYMAA ABDUL MUTTALEB ALHASHIMI

More information

Numerical analysis of fluid flow and heat transfer in 2D sinusoidal wavy channel

Numerical analysis of fluid flow and heat transfer in 2D sinusoidal wavy channel Numerical analysis of fluid flow and heat transfer in 2D sinusoidal wavy channel Arunanshu Chakravarty 1* 1 CTU in Prague, Faculty of Mechanical Engineering, Department of Process Engineering,Technická

More information

Experimental and Theoretical Investigation of Hydrodynamics Characteristics and Heat Transfer for Newtonian and Non-newtonian Fluids

Experimental and Theoretical Investigation of Hydrodynamics Characteristics and Heat Transfer for Newtonian and Non-newtonian Fluids International Journal of Energy Science and Engineering Vol. 2, No. 3, 2016, pp. 13-22 http://www.aiscience.org/journal/ijese ISSN: 2381-7267 (Print); ISSN: 2381-7275 (Online) Experimental and Theoretical

More information

Numerical Study on the Liquid Sloshing in a Battery Cell Equipped with New Baffle Design

Numerical Study on the Liquid Sloshing in a Battery Cell Equipped with New Baffle Design International Journal of Mechanics and Applications 2016, 6(2): 31-38 DOI: 10.5923/j.mechanics.20160602.03 Numerical Study on the Liquid Sloshing in a Battery Cell Equipped with New Baffle Design Abdallah

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

More information

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES 5.1.3. Pressure and Shear Stress

More information

Differential relations for fluid flow

Differential relations for fluid flow Differential relations for fluid flow In this approach, we apply basic conservation laws to an infinitesimally small control volume. The differential approach provides point by point details of a flow

More information

150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces

150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with

More information

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004

OE4625 Dredge Pumps and Slurry Transport. Vaclav Matousek October 13, 2004 OE465 Vaclav Matousek October 13, 004 1 Dredge Vermelding Pumps onderdeel and Slurry organisatie Transport OE465 Vaclav Matousek October 13, 004 Dredge Vermelding Pumps onderdeel and Slurry organisatie

More information

REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology

REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology REE 307 Fluid Mechanics II Lecture 1 Sep 27, 2017 Dr./ Ahmed Mohamed Nagib Elmekawy Zewail City for Science and Technology Course Materials drahmednagib.com 2 COURSE OUTLINE Fundamental of Flow in pipes

More information

Turbulent Boundary Layers & Turbulence Models. Lecture 09

Turbulent Boundary Layers & Turbulence Models. Lecture 09 Turbulent Boundary Layers & Turbulence Models Lecture 09 The turbulent boundary layer In turbulent flow, the boundary layer is defined as the thin region on the surface of a body in which viscous effects

More information

Numerical and Analytical Study of Exhaust Gases Flow in Porous Media with Applications to Diesel Particulate Filters

Numerical and Analytical Study of Exhaust Gases Flow in Porous Media with Applications to Diesel Particulate Filters American J. of Engineering and Applied Sciences (1): 70-75, 009 ISSN 1941-700 009 Science ublications Numerical and Analytical Study of Exhaust Gases Flow in orous Media with Applications to Diesel articulate

More information

International Journal of Research in Advent Technology, Vol.6, No.11, November 2018 E-ISSN: Available online at

International Journal of Research in Advent Technology, Vol.6, No.11, November 2018 E-ISSN: Available online at Comparative analysis of cylindrical and helical coil counter flow type of heat exchanger used in thermoelectric generator for waste heat recovery using CFD fluent Chanchal Kumar 1, a, Dr. Savita Vyas 2,b

More information

Numerical simulations of heat transfer in plane channel flow

Numerical simulations of heat transfer in plane channel flow Numerical simulations of heat transfer in plane channel flow Najla EL GHARBI 1, 3, a, Rafik ABSI 2, b and Ahmed BENZAOUI 3, c 1 Renewable Energy Development Center, BP 62 Bouzareah 163 Algiers, Algeria

More information

Chapter (4) Motion of Fluid Particles and Streams

Chapter (4) Motion of Fluid Particles and Streams Chapter (4) Motion of Fluid Particles and Streams Read all Theoretical subjects from (slides Dr.K.AlASTAL) Patterns of Flow Reynolds Number (R e ): A dimensionless number used to identify the type of flow.

More information

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+

Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ Tutorial for the heated pipe with constant fluid properties in STAR-CCM+ For performing this tutorial, it is necessary to have already studied the tutorial on the upward bend. In fact, after getting abilities

More information

Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions Using CFD

Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions Using CFD International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-5, May 2015 Prediction of Performance Characteristics of Orifice Plate Assembly for Non-Standard Conditions

More information

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis

Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis 1 Portál pre odborné publikovanie ISSN 1338-0087 Simplified Model of WWER-440 Fuel Assembly for ThermoHydraulic Analysis Jakubec Jakub Elektrotechnika 13.02.2013 This work deals with thermo-hydraulic processes

More information

Chapter 3 NATURAL CONVECTION

Chapter 3 NATURAL CONVECTION Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGraw-Hill Companies,

More information

NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW AROUND AN AIRFOIL. (AERODYNAMIC FORM)

NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW AROUND AN AIRFOIL. (AERODYNAMIC FORM) Journal of Fundamental and Applied Sciences ISSN 1112-9867 Available online at http://www.jfas.info NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW AROUND AN AIRFOIL. (AERODYNAMIC FORM) M. Y. Habib

More information

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza

Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza REPRESENTING PRESENCE OF SUBSURFACE CURRENT TURBINES IN OCEAN MODELS Manhar Dhanak Florida Atlantic University Graduate Student: Zaqie Reza 1 Momentum Equations 2 Effect of inclusion of Coriolis force

More information

PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation

PIPE FLOWS: LECTURE /04/2017. Yesterday, for the example problem Δp = f(v, ρ, μ, L, D) We came up with the non dimensional relation /04/07 ECTURE 4 PIPE FOWS: Yesterday, for the example problem Δp = f(v, ρ, μ,, ) We came up with the non dimensional relation f (, ) 3 V or, p f(, ) You can plot π versus π with π 3 as a parameter. Or,

More information

Evaluation of Flow Transmissibility of Rockfill Structures

Evaluation of Flow Transmissibility of Rockfill Structures Evaluation of Flow Transmissibility of Rockfill Structures Toshihiro MORII 1 and Takahiko TATEISHI 2 Abstract To predict the hydraulic conditions during and after the construction of such structures as

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Problem 4.3. Problem 4.4

Problem 4.3. Problem 4.4 Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

More information

Phenomenological interpretation of internal erosion in granular soils from a discrete fluid-solid numerical model

Phenomenological interpretation of internal erosion in granular soils from a discrete fluid-solid numerical model Phenomenological interpretation of internal erosion in granular soils from a discrete fluid-solid numerical model L. Sibille Université Grenoble Alpes, 3SR Laboratory, F-38000 Grenoble, France D. Marot

More information

Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i

Turbulence Modeling. Cuong Nguyen November 05, The incompressible Navier-Stokes equations in conservation form are u i x i Turbulence Modeling Cuong Nguyen November 05, 2005 1 Incompressible Case 1.1 Reynolds-averaged Navier-Stokes equations The incompressible Navier-Stokes equations in conservation form are u i x i = 0 (1)

More information

Numerical Study of the Temperature Separation in the Ranque-Hilsch Vortex Tube

Numerical Study of the Temperature Separation in the Ranque-Hilsch Vortex Tube American J. of Engineering and Applied Sciences 1 (3): 181-187, 2008 ISSN 1941-7020 2008 Science Publications Numerical Study of the Temperature Separation in the Ranque-Hilsch Vortex Tube 1 Saeid Akhesmeh,

More information

ICOLD Bulletin 164 on internal erosion of dams, dikes and levees and their foundations

ICOLD Bulletin 164 on internal erosion of dams, dikes and levees and their foundations ICOLD Bulletin 164 on internal erosion of dams, dikes and levees and their foundations Rodney Bridle UK Member, ICOLD Technical Committee on Embankment Dams rodney.bridle@damsafety.co.uk Workshop on seepage-induced

More information

2. FLUID-FLOW EQUATIONS SPRING 2019

2. FLUID-FLOW EQUATIONS SPRING 2019 2. FLUID-FLOW EQUATIONS SPRING 2019 2.1 Introduction 2.2 Conservative differential equations 2.3 Non-conservative differential equations 2.4 Non-dimensionalisation Summary Examples 2.1 Introduction Fluid

More information

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

More information

Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical and CFD Method

Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical and CFD Method International Journal of Engineering and Technical Research (IJETR) ISSN: 2321-0869, Volume-3, Issue-5, May 2015 Predictionof discharge coefficient of Venturimeter at low Reynolds numbers by analytical

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 28 CFD BASED HEAT TRANSFER ANALYSIS OF SOLAR AIR HEATER DUCT PROVIDED WITH ARTIFICIAL ROUGHNESS Vivek Rao, Dr. Ajay

More information

WALL ROUGHNESS EFFECTS ON SHOCK BOUNDARY LAYER INTERACTION FLOWS

WALL ROUGHNESS EFFECTS ON SHOCK BOUNDARY LAYER INTERACTION FLOWS ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology An ISO 3297: 2007 Certified Organization, Volume 2, Special Issue

More information

MODA. Modelling data documenting one simulation. NewSOL energy storage tank

MODA. Modelling data documenting one simulation. NewSOL energy storage tank MODA Modelling data documenting one simulation NewSOL energy storage tank Metadata for these elements are to be elaborated over time Purpose of this document: Definition of a data organisation that is

More information

Multi-Fidelity Computational Flow Assurance for Design and Development of Subsea Systems and Equipment Simon Lo

Multi-Fidelity Computational Flow Assurance for Design and Development of Subsea Systems and Equipment Simon Lo Multi-Fidelity Computational Flow Assurance for Design and Development of Subsea Systems and Equipment Simon Lo CD-adapco, Trident House, Basil Hill Road, Didcot, OX11 7HJ, UK Multi-Fidelity Computational

More information

Fluid Mechanics. du dy

Fluid Mechanics. du dy FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

More information

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube

What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube PHYS 101 Lecture 29x - Viscosity 29x - 1 Lecture 29x Viscosity (extended version) What s important: viscosity Poiseuille's law Stokes' law Demo: dissipation in flow through a tube Viscosity We introduced

More information

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER

EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER THERMAL SCIENCE: Year 2014, Vol. 18, No. 4, pp. 1355-1360 1355 EXPERIMENTAL AND NUMERICAL STUDIES OF A SPIRAL PLATE HEAT EXCHANGER by Rangasamy RAJAVEL Department of Mechanical Engineering, AMET University,

More information

OPTIMAL DESIGN OF CLUTCH PLATE BASED ON HEAT AND STRUCTURAL PARAMETERS USING CFD AND FEA

OPTIMAL DESIGN OF CLUTCH PLATE BASED ON HEAT AND STRUCTURAL PARAMETERS USING CFD AND FEA International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 5, May 2018, pp. 717 724, Article ID: IJMET_09_05_079 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=5

More information

[Prasanna m a*et al., 5(6): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116

[Prasanna m a*et al., 5(6): July, 2016] ISSN: IC Value: 3.00 Impact Factor: 4.116 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY NUMERICAL ANALYSIS OF COMPRESSIBLE EFFECT IN THE FLOW METERING BY CLASSICAL VENTURIMETER Prasanna M A *, Dr V Seshadri, Yogesh

More information

Fluid Dynamics Exercises and questions for the course

Fluid Dynamics Exercises and questions for the course Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r

More information

On the modelling of internal soil erosion

On the modelling of internal soil erosion On the modelling of internal soil erosion Stéphane Bonelli, Didier Marot To cite this version: Stéphane Bonelli, Didier Marot. On the modelling of internal soil erosion. IACMAG. The 12th International

More information

Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles

Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles Model Studies on Slag-Metal Entrainment in Gas Stirred Ladles Anand Senguttuvan Supervisor Gordon A Irons 1 Approach to Simulate Slag Metal Entrainment using Computational Fluid Dynamics Introduction &

More information

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous

More information

Practical Analysis Of Turbulent Flow In A Pipe Using Computational Fluid Dynamics

Practical Analysis Of Turbulent Flow In A Pipe Using Computational Fluid Dynamics International Journal of Engineering Inventions e-issn: 2278-7461, p-issn: 2319-6491 Volume 3, Issue 12 [December. 2014] PP: 77-81 Practical Analysis Of Turbulent Flow In A Pipe Using Computational Fluid

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION 2017 IJSRSET Volume 3 Issue 3 Print ISSN: 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology CFD Analysis of Flow through Single and Multi Stage Eccentric Orifice Plate Assemblies

More information

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1

Contents. Microfluidics - Jens Ducrée Physics: Laminar and Turbulent Flow 1 Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. Ink-Jet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors

More information

MECHANICAL PROPERTIES OF FLUIDS:

MECHANICAL PROPERTIES OF FLUIDS: Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is

More information

Chapter 8: Flow in Pipes

Chapter 8: Flow in Pipes 8-1 Introduction 8-2 Laminar and Turbulent Flows 8-3 The Entrance Region 8-4 Laminar Flow in Pipes 8-5 Turbulent Flow in Pipes 8-6 Fully Developed Pipe Flow 8-7 Minor Losses 8-8 Piping Networks and Pump

More information

Heat Transfer Convection

Heat Transfer Convection Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection

More information

Experimental Verification of CFD Modeling of Turbulent Flow over Circular Cavities using FLUENT

Experimental Verification of CFD Modeling of Turbulent Flow over Circular Cavities using FLUENT Experimental Verification of CFD Modeling of Turbulent Flow over Circular Cavities using FLUENT T Hering, J Dybenko, E Savory Mech. & Material Engineering Dept., University of Western Ontario, London,

More information

Signature: (Note that unsigned exams will be given a score of zero.)

Signature: (Note that unsigned exams will be given a score of zero.) Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.) Circle your lecture section (-1 point if not circled, or circled incorrectly): Prof. Dabiri Prof. Wassgren Prof.

More information

Determination of Mechanical Energy Loss in Steady Flow by Means of Dissipation Power

Determination of Mechanical Energy Loss in Steady Flow by Means of Dissipation Power Archives of Hydro-Engineering and Environmental Mechanics Vol. 64 (2017), No. 2, pp. 73 85 DOI: 10.1515/heem-2017-0005 IBW PAN, ISSN 1231 3726 Determination of Mechanical Energy Loss in Steady Flow by

More information

Numerical flow model stepped spillways in order to maximize energy dissipation using FLUENT software

Numerical flow model stepped spillways in order to maximize energy dissipation using FLUENT software IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 06 (June. 2014), V5 PP 17-25 www.iosrjen.org Numerical flow model stepped spillways in order to maximize energy

More information

A Computational Investigation of a Turbulent Flow Over a Backward Facing Step with OpenFOAM

A Computational Investigation of a Turbulent Flow Over a Backward Facing Step with OpenFOAM 206 9th International Conference on Developments in esystems Engineering A Computational Investigation of a Turbulent Flow Over a Backward Facing Step with OpenFOAM Hayder Al-Jelawy, Stefan Kaczmarczyk

More information

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds. Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

More information

NUMERICAL SIMULATION OF THREE DIMENSIONAL GAS-PARTICLE FLOW IN A SPIRAL CYCLONE

NUMERICAL SIMULATION OF THREE DIMENSIONAL GAS-PARTICLE FLOW IN A SPIRAL CYCLONE Applied Mathematics and Mechanics (English Edition), 2006, 27(2):247 253 c Editorial Committee of Appl. Math. Mech., ISSN 0253-4827 NUMERICAL SIMULATION OF THREE DIMENSIONAL GAS-PARTICLE FLOW IN A SPIRAL

More information

Boundary-Layer Theory

Boundary-Layer Theory Hermann Schlichting Klaus Gersten Boundary-Layer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22

More information

Class XI Physics Syllabus One Paper Three Hours Max Marks: 70

Class XI Physics Syllabus One Paper Three Hours Max Marks: 70 Class XI Physics Syllabus 2013 One Paper Three Hours Max Marks: 70 Class XI Weightage Unit I Physical World & Measurement 03 Unit II Kinematics 10 Unit III Laws of Motion 10 Unit IV Work, Energy & Power

More information

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes Application of COMSOL Multiphysics in Transport Phenomena Educational Processes M. Vasilev, P. Sharma and P. L. Mills * Department of Chemical and Natural Gas Engineering, Texas A&M University-Kingsville,

More information

MODIFICATION OF THE CASAGRANDE'S EQUATION OF PHREATIC LINE

MODIFICATION OF THE CASAGRANDE'S EQUATION OF PHREATIC LINE MODIFICATION OF THE CASAGRANDE'S EQUATION OF PHREATIC LINE Modification of The Casagrande's Equation of Phreatic Line, A.K. Shrivastava, Anurag Jain, Deepali A.K. Shrivastava 1, Anurag Jain 2, Deepali

More information

Turbulence Modeling I!

Turbulence Modeling I! Outline! Turbulence Modeling I! Grétar Tryggvason! Spring 2010! Why turbulence modeling! Reynolds Averaged Numerical Simulations! Zero and One equation models! Two equations models! Model predictions!

More information

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction

An-Najah National University Civil Engineering Department. Fluid Mechanics. Chapter 1. General Introduction 1 An-Najah National University Civil Engineering Department Fluid Mechanics Chapter 1 General Introduction 2 What is Fluid Mechanics? Mechanics deals with the behavior of both stationary and moving bodies

More information

DISCHARGE COEFFICIENT OF SMALL SONIC NOZZLES

DISCHARGE COEFFICIENT OF SMALL SONIC NOZZLES THERMAL SCIENCE, Year 2014, Vol. 18, No. 5, pp. 1505-1510 1505 Introduction DISCHARGE COEFFICIENT OF SMALL SONIC NOZZLES by Zhao-Qin YIN *, Dong-Sheng LI, Jin-Long MENG, and Ming LOU Zhejiang Province

More information

SIMULATION OF FLUID FLOW IN CENTRIFUGAL TRICANTER

SIMULATION OF FLUID FLOW IN CENTRIFUGAL TRICANTER Journal of Theoretical and Applied Mechanics, Sofia, 2013, vol. 43, No. 2, pp. 83 94 SIMULATION OF FLUID FLOW IN CENTRIFUGAL TRICANTER Cristian Puscasu, Mihaela Grigorescu, Axene Ghita, Raluca Voicu, Mariana

More information

Fluid Mechanics II Viscosity and shear stresses

Fluid Mechanics II Viscosity and shear stresses Fluid Mechanics II Viscosity and shear stresses Shear stresses in a Newtonian fluid A fluid at rest can not resist shearing forces. Under the action of such forces it deforms continuously, however small

More information

Studies on flow through and around a porous permeable sphere: II. Heat Transfer

Studies on flow through and around a porous permeable sphere: II. Heat Transfer Studies on flow through and around a porous permeable sphere: II. Heat Transfer A. K. Jain and S. Basu 1 Department of Chemical Engineering Indian Institute of Technology Delhi New Delhi 110016, India

More information

Hydrodynamic Characteristics of Gradually Expanded Channel Flow

Hydrodynamic Characteristics of Gradually Expanded Channel Flow International Journal of Hydraulic Engineering 2013, 2(2): 21-27 DOI: 10.5923/j.ijhe.20130202.01 Hydrodynamic Characteristics of Gradually Expanded Channel Flow Edward Ching-Rue y LUO Department of Civil

More information

Numerical Simulation of the Evolution of Reynolds Number on Laminar Flow in a Rotating Pipe

Numerical Simulation of the Evolution of Reynolds Number on Laminar Flow in a Rotating Pipe American Journal of Fluid Dynamics 2014, 4(3): 79-90 DOI: 10.5923/j.ajfd.20140403.01 Numerical Simulation of the Evolution of Reynolds Number on Laminar Flow in a Rotating Pipe A. O. Ojo, K. M. Odunfa,

More information

MECHANICAL PROPERTIES OF FLUIDS

MECHANICAL PROPERTIES OF FLUIDS CHAPTER-10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure

More information

2. Modeling of shrinkage during first drying period

2. Modeling of shrinkage during first drying period 2. Modeling of shrinkage during first drying period In this chapter we propose and develop a mathematical model of to describe nonuniform shrinkage of porous medium during drying starting with several

More information

Fluid dynamics - viscosity and. turbulent flow

Fluid dynamics - viscosity and. turbulent flow Fluid dynamics - viscosity and Fluid statics turbulent flow What is a fluid? Density Pressure Fluid pressure and depth Pascal s principle Buoyancy Archimedes principle Fluid dynamics Reynolds number Equation

More information

Lecture 2 Flow classifications and continuity

Lecture 2 Flow classifications and continuity Lecture 2 Flow classifications and continuity Dr Tim Gough: t.gough@bradford.ac.uk General information 1 No tutorial week 3 3 rd October 2013 this Thursday. Attempt tutorial based on examples from today

More information