# Chapter 3 NATURAL CONVECTION

Size: px
Start display at page:

Transcription

1 Fundamentals of Thermal-Fluid Sciences, 3rd Edition Yunus A. Cengel, Robert H. Turner, John M. Cimbala McGraw-Hill, 2008 Chapter 3 NATURAL CONVECTION Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 Objectives Understand the physical mechanism of natural convection Derive the governing equations of natural convection, and obtain the dimensionless Grashof number by nondimensionalizing them Evaluate the Nusselt number for natural convection associated with vertical, horizontal, and inclined plates as well as cylinders and spheres Examine natural convection from finned surfaces, and determine the optimum fin spacing Analyze natural convection inside enclosures such as double-pane windows. 2

3 PHYSICAL MECHANISM OF CONVECTION Conduction and convection both require the presence of a material medium but convection requires fluid motion. Convection involves fluid motion as well as heat conduction. Heat transfer through a solid is always by conduction. Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Therefore, conduction in a fluid can be viewed as the limiting case of convection, corresponding to the case of quiescent fluid. Heat transfer from a hot surface to the surrounding fluid by convection and conduction. 3

4 The fluid motion enhances heat transfer, since it brings warmer and cooler chunks of fluid into contact, initiating higher rates of conduction at a greater number of sites in a fluid. The rate of heat transfer through a fluid is much higher by convection than it is by conduction. In fact, the higher the fluid velocity, the higher the rate of heat transfer. Heat transfer through a fluid sandwiched between two parallel plates. 4

5 Convection in daily life We resort to forced convection whenever we need to increase the rate of heat transfer. We turn on the fan on hot summer days to help our body cool more effectively. The higher the fan speed, the better we feel. We stir our soup and blow on a hot slice of pizza to make them cool faster. The air on windy winter days feels much colder than it actually is. The simplest solution to heating problems in electronics packaging is to use a large enough fan. 5

6 Many familiar heat transfer applications involve natural convection as the primary mechanism of heat transfer. Examples? Natural convection in gases is usually accompanied by radiation of comparable magnitude except for low-emissivity surfaces. The motion that results from the continual replacement of the heated air in the vicinity of the egg by the cooler air nearby is called a natural convection current, and the heat transfer that is enhanced as a result of this current is called natural convection heat transfer. The cooling of a boiled egg in a cooler environment by natural convection. The warming up of a cold drink in a warmer environment by natural convection. 6

7 The density of a fluid, in general, depends more strongly on temperature than it does on pressure, and the variation of density with temperature is resposible for numerous natural phenomena such a winds, currents in oceans, rise of plumes in chimneys, the operation of hotair balloons, heat transfer by natural convection. To quantify these effects, we need a property that represents the variation of the density of a fluid with temperature at constant pressure. Natural convection over a woman s hand. 7

8 VELOCITY BOUNDARY LAYER 8

9 SURFACE SHEAR STRESS 9

10 SURFACE SHEAR STRESS 10

11 Reynolds number 11

12 THERMAL BOUNDARY LAYER 12

13 THERMAL BOUNDARY LAYER 13

14 14

15 Forces acting on a differential volume element in the natural convection boundary layer over a vertical flat plate. 15

16 16

17 17

18

19

20 Example 20

21 Quiz 1. Using the differential element shown in the figure, prove that in the hydroyinamic boundary layer the continuity equation is: 2. Define the Prandtl number and say what is its principal application in heat transfer problems. 21

22 FORCED CONVECTION 22

23 SOLUTION OF CONVECTION EQUATION FOR A FLAT PLATE 23

24 SOLUTION OF CONVECTION EQUATION FOR A FLAT PLATE 24

25 SOLUTION OF CONVECTION EQUATION FOR A FLAT PLATE 25

26 SOLUTION OF CONVECTION EQUATION FOR A FLAT PLATE 26

27 CONVECTION FOR A FLAT PLATE 27

28 PARALLEL FLOW OVER FLAT PLATES The transition from laminar to turbulent flow depends on the surface geometry, surface roughness, upstream velocity, surface temperature, and the type of fluid, among other things, and is best characterized by the Reynolds number. The Reynolds number at a distance x from the leading edge of a flat plate is expressed as A generally accepted value for the Critical Reynold number Laminar and turbulent regions of the boundary layer during flow over a flat plate. The actual value of the engineering critical Reynolds number for a flat plate may vary somewhat from 10 5 to , depending on the surface roughness, the turbulence level, and the variation of pressure along the surface. 28

29 The local Nusselt number at a location x for laminar flow over a flat plate may be obtained by solving the differential energy equation to be These relations are for isothermal and smooth surfaces The local friction and heat transfer coefficients are higher in turbulent flow than they are in laminar flow. Also, h x reaches its highest values when the flow becomes fully turbulent, and then decreases by a factor of x 0.2 in the flow direction. The variation of the local friction and heat transfer coefficients for flow over a flat plate. 29

30 Nusselt numbers for average heat transfer coefficients Laminar + turbulent For liquid metals For all liquids, all Prandtl numbers Graphical representation of the average heat transfer coefficient for a flat plate with combined laminar and turbulent flow. 30

31 Flat Plate with Unheated Starting Length Local Nusselt numbers Average heat transfer coefficients Flow over a flat plate with an unheated starting length. 31

32 Uniform Heat Flux For a flat plate subjected to uniform heat flux These relations give values that are 36 percent higher for laminar flow and 4 percent higher for turbulent flow relative to the isothermal plate case. When heat flux is prescribed, the rate of heat transfer to or from the plate and the surface temperature at a distance x are determined from 32

33 Example Water at 43.3 C flows over a large plate at a velocity of 30 cm/s. The plate is 1.0 m long (in the flow direction), and its surface is maintained at uniform temperature of 10 C. Calculate the steady rate of heat transfer per unit width of the plate. 33

34 Example Parallel plates form a solar collector that covers a roof, as shown in the figure. The plates are maintained at 15 C, while ambient air at 10 C flows over the roof with V=2 m/s. Determine the rate of convetive heat loss from the first plate. 34

35 FLOW ACROSS CYLINDERS AND SPHERES Flows across cylinders and spheres, in general, involve flow separation, which is difficult to handle analytically. Flow across cylinders and spheres has been studied experimentally by numerous investigators, and several empirical correlations have been developed for the heat transfer coefficient. 35

36 FLOW ACROSS CYLINDERS AND SPHERES 36

37 FLOW ACROSS CYLINDERS AND SPHERES 37

38 FLOW ACROSS CYLINDERS AND SPHERES 38

39 FLOW ACROSS CYLINDERS AND SPHERES Heat Transfer Coefficient. Variation of the local heat transfer coefficient along the circumference of a circular cylinder in cross flow of air 39

40 For flow over a cylinder The fluid properties are evaluated at the film temperature For flow over a sphere The fluid properties are evaluated at the free-stream temperature T, except for s, which is evaluated at the surface temperature T s. Constants C and m are given in the table. The relations for cylinders above are for single cylinders or cylinders oriented such that the flow over them is not affected by the presence of others. They are applicable to smooth surfaces. 40

41 41

42 42

43 Example A stainless steel ball (ρ = 5055 kg/m 3, c p = 480 J/Kg. C) of diameter D=15 cm is removed from the oven at a uniform temperature of 350 C. The ball is then subjected to the flow of air at 1 atm pressure and 30 C with a velocity of 6 m/s. The surface temperature of the ball eventually drops to 250 C. Determine the average convection heat transfer coefficient during this process and estimate how long this procces has taken. 43

44 GENERAL CONSIDERATIONS FOR PIPE FLOW Liquid or gas flow through pipes or ducts is commonly used in practice in heating and cooling applications. The fluid is forced to flow by a fan or pump through a conduit that is sufficiently long to accomplish the desired heat transfer. Transition from laminar to turbulent flow depends on the Reynolds number as well as the degree of disturbance of the flow by surface roughness, pipe vibrations, and the fluctuations in the flow. The flow in a pipe is laminar for Re < 2300, fully turbulent for Re > 10,000, and transitional in between. Actual and idealized temperature profiles for flow in a tube (the rate at which energy is transported with the fluid is the same for both cases). 44

45 The fluid properties in internal flow are usually evaluated at the bulk mean fluid temperature, which is the arithmetic average of the mean temperatures at the inlet and the exit: T b = (T m, i + T m, e )/2 Thermal Entrance Region Thermal entrance region: The region of flow over which the thermal boundary layer develops and reaches the tube center. Thermal entry length: The length of this region. Thermally developing flow: Flow in the thermal entrance region. This is the region where the temperature profile develops. Thermally fully developed region: The region beyond the thermal entrance region in which the dimensionless temperature profile remains unchanged. Fully developed flow: The region in which the flow is both hydrodynamically and thermally developed. The development of the thermal boundary layer in a tube. 45

46 Hydrodynamically fully developed: Thermally fully developed: Variation of the friction factor and the convection heat transfer coefficient in the flow direction for flow in a tube (Pr>1). In the thermally fully developed region of a tube, the local convection coefficient is constant (does not vary with x). Therefore, both the friction (which is related to wall shear stress) and convection coefficients remain constant in the fully developed region of a tube. The pressure drop and heat flux are higher in the entrance regions of a tube, and the effect of the entrance region is always to increase the average friction factor and heat transfer coefficient for the entire tube. 46

47 Entry Lengths The Nusselt numbers and thus h values are much higher in the entrance region. The Nusselt number reaches a constant value at a distance of less than 10 diameters, and thus the flow can be assumed to be fully developed for x > 10D. The Nusselt numbers for the uniform surface temperature and uniform surface heat flux conditions are identical in the fully developed regions, and nearly identical in the entrance regions. Variation of local Nusselt number along a tube in turbulent flow for both uniform surface temperature and uniform surface heat flux. 47

48 Entry Lengths Variation of local Nusselt number along a tube in turbulent flow for both uniform surface temperature and uniform surface heat flux. 48

49 GENERAL THERMAL ANALYSIS Rate of heat transfer Surface heat flux h x the local heat transfer coefficient The heat transfer to a fluid flowing in a tube is equal to the increase in the energy of the fluid. The thermal conditions at the surface can be approximated to be constant surface temperature (T s = const) constant surface heat flux (q s = const) The constant surface temperature condition is realized when a phase change process such as boiling or condensation occurs at the outer surface of a tube. The constant surface heat flux condition is realized when the tube is subjected to radiation or electric resistance heating uniformly from all directions. We may have either T s = constant or q s = constant at the surface of a tube, but not both. 49

50 Constant Surface Heat Flux (q s = constant) Rate of heat transfer: Mean fluid temperature at the tube exit: Surface temperature: Variation of the tube surface and the mean fluid temperatures along the tube for the case of constant surface heat flux. 50

51 Energy interactions for a differential control volume in a tube. Circular tube: The shape of the temperature profile remains unchanged in the fully developed region of a tube subjected to constant surface heat flux. 51

52 Constant Surface Temperature (T s = constant) Rate of heat transfer to or from a fluid flowing in a tube Two suitable ways of expressing T avg arithmetic mean temperature difference logarithmic mean temperature difference Arithmetic mean temperature difference Bulk mean fluid temperature: T b = (T i + T e )/2 By using arithmetic mean temperature difference, we assume that the mean fluid temperature varies linearly along the tube, which is hardly ever the case when T s = constant. This simple approximation often gives acceptable results, but not always. Therefore, we need a better way to evaluate T avg. 52

53 Integrating from x = 0 (tube inlet, T m = T i ) to x = L (tube exit, T m = T e ) The variation of the mean fluid temperature along the tube for the case of constant temperature. Energy interactions for a differential control volume in a tube. 53

54 NTU: Number of transfer units. A measure of the effectiveness of the heat transfer systems. For NTU = 5, T e = T s, and the limit for heat transfer is reached. A small value of NTU indicates more opportunities for heat transfer. T ln is an exact representation of the average temperature difference between the fluid and the surface. When T e differs from T i by no more than 40 percent, the error in using the arithmetic mean temperature difference is less than 1 percent. logarithmic mean temperature difference An NTU greater than 5 indicates that the fluid flowing in a tube will reach the surface temperature at the exit regardless of the inlet temperature. 54

55 LAMINAR FLOW IN TUBES The rate of net energy transfer to the control volume by mass flow is equal to the net rate of heat conduction in the radial direction. The differential volume element used in the derivation of energy balance relation. 55

56 Constant Surface Heat Flux Applying the boundary conditions T/ x = 0 at r = 0 (because of symmetry) and T = T s at r = R Therefore, for fully developed laminar flow in a circular tube subjected to constant surface heat flux, the Nusselt number is a constant. There is no dependence on the Reynolds or the Prandtl numbers. 56

57 Constant Surface Temperature The thermal conductivity k for use in the Nu relations should be evaluated at the bulk mean fluid temperature. For laminar flow, the effect of surface roughness on the friction factor and the heat transfer coefficient is negligible. In laminar flow in a tube with constant surface temperature, both the friction factor and the heat transfer coefficient remain constant in the fully developed region. Laminar Flow in Noncircular Tubes Nusselt number relations are given in the table for fully developed laminar flow in tubes of various cross sections. The Reynolds and Nusselt numbers for flow in these tubes are based on the hydraulic diameter D h = 4A c /p, Once the Nusselt number is available, the convection heat transfer coefficient is determined from h = knu/d h. 57

58 58

59 Developing Laminar Flow in the Entrance Region For a circular tube of length L subjected to constant surface temperature, the average Nusselt number for the thermal entrance region: The average Nusselt number is larger at the entrance region, and it approaches asymptotically to the fully developed value of 3.66 as L. When the difference between the surface and the fluid temperatures is large, it may be necessary to account for the variation of viscosity with temperature: All properties are evaluated at the bulk mean fluid temperature, except for s, which is evaluated at the surface temperature. The average Nusselt number for the thermal entrance region of flow between isothermal parallel plates of length L is 59

60 TURBULENT FLOW IN TUBES Chilton Colburn analogy First Petukhov equation Colburn equation Dittus Boelter equation When the variation in properties is large due to a large temperature difference All properties are evaluated at T b except s, which is evaluated at T s. 60

61 Second Petukhov equation Gnielinski relation In turbulent flow, wall roughness increases the heat transfer coefficient h by a factor of 2 or more. The convection heat transfer coefficient for rough tubes can be calculated approximately from Gnielinski relation or Chilton Colburn analogy by using the friction factor determined from the Moody chart or the Colebrook equation. The relations above are not very sensitive to the thermal conditions at the tube surfaces and can be used for both T s = constant and q s = constant. 61

62 62

63 Developing Turbulent Flow in the Entrance Region The entry lengths for turbulent flow are typically short, often just 10 tube diameters long, and thus the Nusselt number determined for fully developed turbulent flow can be used approximately for the entire tube. This simple approach gives reasonable results for pressure drop and heat transfer for long tubes and conservative results for short ones. Correlations for the friction and heat transfer coefficients for the entrance regions are available in the literature for better accuracy. Turbulent Flow in Noncircular Tubes Pressure drop and heat transfer characteristics of turbulent flow in tubes are dominated by the very thin viscous sublayer next to the wall surface, and the shape of the core region is not of much significance. The turbulent flow relations given above for circular tubes can also be used for noncircular tubes with reasonable accuracy by replacing the diameter D in the evaluation of the Reynolds number by the hydraulic diameter D h = 4A c /p. In turbulent flow, the velocity profile is nearly a straight line in the core region, and any significant velocity gradients occur in the viscous sublayer. 63

64 Flow through Tube Annulus The hydraulic diameter of annulus For laminar flow, the convection coefficients for the inner and the outer surfaces are determined from For fully developed turbulent flow, h i and h o are approximately equal to each other, and the tube annulus can be treated as a noncircular duct with a hydraulic diameter of D h = D o D i. The Nusselt number can be determined from a suitable turbulent flow relation such as the Gnielinski equation. To improve the accuracy, Nusselt number can be multiplied by the following correction factors when one of the tube walls is adiabatic and heat transfer is through the other wall: Tube surfaces are often roughened, corrugated, or finned in order to enhance convection heat transfer. 64

65 Heat Transfer Enhancement Tubes with rough surfaces have much higher heat transfer coefficients than tubes with smooth surfaces. Heat transfer in turbulent flow in a tube has been increased by as much as 400 percent by roughening the surface. Roughening the surface, of course, also increases the friction factor and thus the power requirement for the pump or the fan. The convection heat transfer coefficient can also be increased by inducing pulsating flow by pulse generators, by inducing swirl by inserting a twisted tape into the tube, or by inducing secondary flows by coiling the tube. Tube surfaces are often roughened, corrugated, or finned in order to enhance convection heat transfer. 65

66 Exercice: 66

67 Exercice: 67

68 Quiz 68

69 NATURAL CONVECTION 69

70 EQUATION OF MOTION AND THE GRASHOF NUMBER The thickness of the boundary layer increases in the flow direction. Unlike forced convection, the fluid velocity is zero at the outer edge of the velocity boundary layer as well as at the surface of the plate. At the surface, the fluid temperature is equal to the plate temperature, and gradually decreases to the temperature of the surrounding fluid at a distance sufficiently far from the surface. In the case of cold surfaces, the shape of the velocity and temperature profiles remains the same but their direction is reversed. Typical velocity and temperature profiles for natural convection flow over a hot vertical plate at temperature T s inserted in a fluid at temperature T. 70

71 The Grashof Number The governing equations of natural convection and the boundary conditions can be nondimensionalized by dividing all dependent and independent variables by suitable constant quantities: Substituting them into the momentum equation and simplifying give Grashof number: Represents the natural convection effects in momentum equation 71

72 The Grashof number provides the main criterion in determining whether the fluid flow is laminar or turbulent in natural convection. For vertical plates, the critical Grashof number is observed to be about The Grashof number Gr is a measure of the relative magnitudes of the buoyancy force and the opposing viscous force acting on the fluid. When a surface is subjected to external flow, the problem involves both natural and forced convection. The relative importance of each mode of heat transfer is determined by the value of the coefficient Gr/Re 2 : Natural convection effects are negligible if Gr/Re 2 << 1. Free convection dominates and the forced convection effects are negligible if Gr/Re 2 >> 1. Both effects are significant and must be considered if Gr/Re

### Chapter 9 NATURAL CONVECTION

Heat and Mass Transfer: Fundamentals & Applications Fourth Edition in SI Units Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 9 NATURAL CONVECTION PM Dr Mazlan Abdul Wahid Universiti Teknologi

### Principles of Convection

Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid

### Convection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.

Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,

### Chapter 8 INTERNAL FORCED CONVECTION

Heat Transfer Chapter 8 INTERNAL FORCED CONVECTION Universitry of Technology Materials Engineering Department MaE216: Heat Transfer and Fluid bjectives Obtain average velocity from a knowledge of velocity

### UNIT II CONVECTION HEAT TRANSFER

UNIT II CONVECTION HEAT TRANSFER Convection is the mode of heat transfer between a surface and a fluid moving over it. The energy transfer in convection is predominately due to the bulk motion of the fluid

### Heat Transfer Convection

Heat ransfer Convection Previous lectures conduction: heat transfer without fluid motion oday (textbook nearly 00 pages) Convection: heat transfer with fluid motion Research methods different Natural Convection

### Internal Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Internal Forced Convection Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction Pipe circular cross section. Duct noncircular cross section. Tubes small-diameter

### Convection Heat Transfer. Introduction

Convection Heat Transfer Reading Problems 12-1 12-8 12-40, 12-49, 12-68, 12-70, 12-87, 12-98 13-1 13-6 13-39, 13-47, 13-59 14-1 14-4 14-18, 14-24, 14-45, 14-82 Introduction Newton s Law of Cooling Controlling

### C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127

C ONTENTS Preface xviii Nomenclature xxvi CHAPTER ONE BASICS OF HEAT TRANSFER 1 1-1 Thermodynamics and Heat Transfer 2 Application Areas of Heat Transfer 3 Historical Background 3 1-2 Engineering Heat

### Liquid or gas flow through pipes or ducts is commonly used in heating and

cen58933_ch08.qxd 9/4/2002 11:29 AM Page 419 INTERNAL FORCED CONVECTION CHAPTER 8 Liquid or gas flow through pipes or ducts is commonly used in heating and cooling applications. The fluid in such applications

### Introduction to Heat and Mass Transfer. Week 14

Introduction to Heat and Mass Transfer Week 14 HW # 7 prob. 2 Hot water at 50C flows through a steel pipe (thermal conductivity 14 W/m-K) of 100 mm outside diameter and 8 mm wall thickness. During winter,

Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

### Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI

+ Forced Convection: Inside Pipe HANNA ILYANI ZULHAIMI + OUTLINE u Introduction and Dimensionless Numbers u Heat Transfer Coefficient for Laminar Flow inside a Pipe u Heat Transfer Coefficient for Turbulent

### PHYSICAL MECHANISM OF NATURAL CONVECTION

1 NATURAL CONVECTION In this chapter, we consider natural convection, where any fluid motion occurs by natural means such as buoyancy. The fluid motion in forced convection is quite noticeable, since a

### PHYSICAL MECHANISM OF CONVECTION

Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

### MYcsvtu Notes HEAT TRANSFER BY CONVECTION

www.mycsvtunotes.in HEAT TRANSFER BY CONVECTION CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in

### INSTRUCTOR: PM DR MAZLAN ABDUL WAHID

SMJ 4463: HEAT TRANSFER INSTRUCTOR: PM ABDUL WAHID http://www.fkm.utm.my/~mazlan TEXT: Introduction to Heat Transfer by Incropera, DeWitt, Bergman, Lavine 5 th Edition, John Wiley and Sons Chapter 9 Natural

### Introduction to Heat and Mass Transfer. Week 14

Introduction to Heat and Mass Transfer Week 14 Next Topic Internal Flow» Velocity Boundary Layer Development» Thermal Boundary Layer Development» Energy Balance Velocity Boundary Layer Development Velocity

### Convective Mass Transfer

Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

### Natural Convection Systems

C H A P T E R 6 Natural Convection Systems 6.1 Physical Mechanism Of Natural Convection Many familiar heat transfer applications involve natural convection as the primary mechanism of heat transfer. Some

### Lecture 30 Review of Fluid Flow and Heat Transfer

Objectives In this lecture you will learn the following We shall summarise the principles used in fluid mechanics and heat transfer. It is assumed that the student has already been exposed to courses in

### Chapter 7: Natural Convection

7-1 Introduction 7- The Grashof Number 7-3 Natural Convection over Surfaces 7-4 Natural Convection Inside Enclosures 7-5 Similarity Solution 7-6 Integral Method 7-7 Combined Natural and Forced Convection

### Basic Fluid Mechanics

Basic Fluid Mechanics Chapter 6A: Internal Incompressible Viscous Flow 4/16/2018 C6A: Internal Incompressible Viscous Flow 1 6.1 Introduction For the present chapter we will limit our study to incompressible

### Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 18 Forced Convection-1 Welcome. We now begin our study of forced convection

### HEAT TRANSFER BY CONVECTION. Dr. Şaziye Balku 1

HEAT TRANSFER BY CONVECTION Dr. Şaziye Balku 1 CONDUCTION Mechanism of heat transfer through a solid or fluid in the absence any fluid motion. CONVECTION Mechanism of heat transfer through a fluid in the

### Problem 4.3. Problem 4.4

Problem 4.3 Problem 4.4 Problem 4.5 Problem 4.6 Problem 4.7 This is forced convection flow over a streamlined body. Viscous (velocity) boundary layer approximations can be made if the Reynolds number Re

### Introduction to Heat and Mass Transfer. Week 12

Introduction to Heat and Mass Transfer Week 12 Next Topic Convective Heat Transfer» Heat and Mass Transfer Analogy» Evaporative Cooling» Types of Flows Heat and Mass Transfer Analogy Equations governing

### External Forced Convection. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

External Forced Convection Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Drag and Heat Transfer in External flow Fluid flow over solid bodies is responsible

### Chapter 7: External Forced Convection. Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University

Chapter 7: External Forced Convection Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University Objectives When you finish studying this chapter, you should be able to: Distinguish between

### Convection. U y. U u(y) T s. T y

Convection Heat transfer in the presence of a fluid motion on a solid surface Various mechanisms at play in the fluid: - advection physical transport of the fluid - diffusion conduction in the fluid -

### Ben Wolfe 11/3/14. Figure 1: Theoretical diagram showing the each step of heat loss.

Condenser Analysis Water Cooled Model: For this condenser design there will be a coil of stainless steel tubing suspended in a bath of cold water. The cold water will be stationary and begin at an ambient

### So far, we have considered conduction, which is the mechanism of heat

cen58933_ch06.qxd 9/4/2002 12:05 PM Page 333 FUNDAMENTALS OF CONVECTION CHAPTER 6 So far, we have considered conduction, which is the mechanism of heat transfer through a solid or a quiescent fluid. We

### Outlines. simple relations of fluid dynamics Boundary layer analysis. Important for basic understanding of convection heat transfer

Forced Convection Outlines To examine the methods of calculating convection heat transfer (particularly, the ways of predicting the value of convection heat transfer coefficient, h) Convection heat transfer

### Analysis, Design and Fabrication of Forced Convection Apparatus

Analysis, Design and Fabrication of Forced Convection Apparatus Shajan K. Thomas 1, Vishnukumar C M 2, Vishnu C J 3, Alex Baby 4 Assistant Professor, Dept. of Mechanical Engineering, Toc H Institute of

### ME 331 Homework Assignment #6

ME 33 Homework Assignment #6 Problem Statement: ater at 30 o C flows through a long.85 cm diameter tube at a mass flow rate of 0.020 kg/s. Find: The mean velocity (u m ), maximum velocity (u MAX ), and

### If there is convective heat transfer from outer surface to fluid maintained at T W.

Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

### HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY. C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York

HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business

### CONVECTION HEAT TRANSFER

CONVECTION HEAT TRANSFER THIRD EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina WILEY JOHN WILEY & SONS, INC. CONTENTS Preface Preface to the

### Fundamental Concepts of Convection : Flow and Thermal Considerations. Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.

Fundamental Concepts of Convection : Flow and Thermal Considerations Chapter Six and Appendix D Sections 6.1 through 6.8 and D.1 through D.3 6.1 Boundary Layers: Physical Features Velocity Boundary Layer

### Examination Heat Transfer

Examination Heat Transfer code: 4B680 date: 17 january 2006 time: 14.00-17.00 hours NOTE: There are 4 questions in total. The first one consists of independent sub-questions. If necessary, guide numbers

### Chapter 8: Flow in Pipes

Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate the major and minor losses associated with pipe flow in piping networks

### CONVECTION HEAT TRANSFER

CONVECTION HEAT TRANSFER SECOND EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina A WILEY-INTERSCIENCE PUBUCATION JOHN WILEY & SONS, INC. New York

### Heat and Mass Transfer Unit-1 Conduction

1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

### In Chapters 7 and 8, we considered heat transfer by forced convection,

cen58933_ch09.qxd 9/4/2002 2:25 PM Page 459 NATURAL CONVECTION CHAPTER 9 In Chapters 7 and 8, we considered heat transfer by forced convection, where a fluid was forced to move over a surface or in a tube

### Chapter 6. Losses due to Fluid Friction

Chapter 6 Losses due to Fluid Friction 1 Objectives ä To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. ä To correlate this in terms of

### Countercurrent heat exchanger

Countercurrent heat exchanger 1. Theoretical summary The basic operating principles and the simplified calculations regarding the counter current heat exchanger were discussed in the subject Chemical Unit

### NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB University of Technology Department Mechanical engineering Baghdad, Iraq ABSTRACT - This paper presents numerical investigation of heat

### Empirical Co - Relations approach for solving problems of convection 10:06:43

Empirical Co - Relations approach for solving problems of convection 10:06:43 10:06:44 Empirical Corelations for Free Convection Use T f or T b for getting various properties like Re = VL c / ν β = thermal

### Chapter 1 INTRODUCTION AND BASIC CONCEPTS

Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu University of Gaziantep

### Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs

Heat Transfer-ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course HEAT TRANSFER GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 2 C O N T E N T 1. INTRODUCTION

### ELEC9712 High Voltage Systems. 1.2 Heat transfer from electrical equipment

ELEC9712 High Voltage Systems 1.2 Heat transfer from electrical equipment The basic equation governing heat transfer in an item of electrical equipment is the following incremental balance equation, with

### Convection Workshop. Academic Resource Center

Convection Workshop Academic Resource Center Presentation Outline Understanding the concepts Correlations External Convection (Chapter 7) Internal Convection (Chapter 8) Free Convection (Chapter 9) Solving

### Chapter 2 HEAT CONDUCTION EQUATION

Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 2 HEAT CONDUCTION EQUATION Mehmet Kanoglu University of Gaziantep

### 6 Empirical and Practical

6 Empirical and Practical Forced-Convection Relations for Heat Transfer CHAPTER 6-1 INTRODUCTION The discussion and analyses of Chapter 5 have shown how forced-convection heat transfer may be calculated

### Chapter 2 HEAT CONDUCTION EQUATION

Heat and Mass Transfer: Fundamentals & Applications Fourth Edition Yunus A. Cengel, Afshin J. Ghajar McGraw-Hill, 2011 Chapter 2 HEAT CONDUCTION EQUATION Mehmet Kanoglu University of Gaziantep Copyright

### In Chapter 6 we considered the general and theoretical aspects of forced

cen58933_ch07.qxd 9/4/2002 12:12 PM Page 367 EXTERNAL FORCED CONVECTION CHAPTER 7 In Chapter 6 we considered the general and theoretical aspects of forced convection, with emphasis on differential formulation

### Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

Principles of Food and Bioprocess Engineering (FS 1) Problems on Heat Transfer 1. What is the thermal conductivity of a material 8 cm thick if the temperature at one end of the product is 0 C and the temperature

### PROBLEM 8.3 ( ) p = kg m 1m s m 1000 m = kg s m = bar < P = N m 0.25 m 4 1m s = 1418 N m s = 1.

PROBLEM 8.3 KNOWN: Temperature and velocity of water flow in a pipe of prescribed dimensions. FIND: Pressure drop and pump power requirement for (a) a smooth pipe, (b) a cast iron pipe with a clean surface,

### Forced Convection Heat Transfer in the Entrance Region of Horizontal Tube under Constant Heat Flux

World Applied Sciences Journal 15 (3): 331-338, 011 ISSN 1818-495 IDOSI Publications, 011 Forced Convection Heat Transfer in the Entrance Region of Horizontal Tube under Constant Heat Flux S.M. Peyghambarzadeh

### Chapter 6. Losses due to Fluid Friction

Chapter 6 Losses due to Fluid Friction 1 Objectives To measure the pressure drop in the straight section of smooth, rough, and packed pipes as a function of flow rate. To correlate this in terms of the

### OUTCOME 2 - TUTORIAL 1

Unit 4: Heat Transfer and Combustion Unit code: K/60/44 QCF level: 5 Credit value: 5 OUTCOME - TUTORIAL Heat transfer coefficients Dimensional analysis: dimensionless groups; Reynolds, Nusselt, Prandtl,

### A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined Circular Ribs as Artificial Roughness

Bonfring International Journal of Industrial Engineering and Management Science, Vol. 4, No. 3, August 2014 115 A Computational Fluid Dynamics Investigation of Solar Air Heater Duct Provided with Inclined

### FORMULA SHEET. General formulas:

FORMULA SHEET You may use this formula sheet during the Advanced Transport Phenomena course and it should contain all formulas you need during this course. Note that the weeks are numbered from 1.1 to

### 5th WSEAS Int. Conf. on Heat and Mass transfer (HMT'08), Acapulco, Mexico, January 25-27, 2008

Numerical Determination of Temperature and Velocity Profiles for Forced and Mixed Convection Flow through Narrow Vertical Rectangular Channels ABDALLA S. HANAFI Mechanical power department Cairo university

### FREE CONVECTIVE HEAT TRANSFER FROM AN OBJECT AT LOW RAYLEIGH NUMBER

Free Convective Heat Transfer From an Object at Low Rayleigh Number FREE CONVECTIVE HEAT TRANSFER FROM AN OBJECT AT LOW RAYLEIGH NUMBER Md. Golam Kader and Khandkar Aftab Hossain * Department of Mechanical

### CONVECTIVE HEAT TRANSFER

CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 4 HEAT TRANSFER IN CHANNEL FLOW BASIC CONCEPTS BASIC CONCEPTS Laminar

### Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k)

Tutorial 1 1. Explain in detail the mechanism of forced convection. Show by dimensional analysis (Rayleigh method) that data for forced convection may be correlated by an equation of the form Nu = φ (Re,

Table of contents Task... 2 Calculation of heat loss of storage tanks... 3 Properties ambient air Properties of air... 7 Heat transfer outside, roof Heat transfer in flow past a plane wall... 8 Properties

### ENG Heat Transfer II 1. 1 Forced Convection: External Flows Flow Over Flat Surfaces... 4

ENG7901 - Heat Transfer II 1 Contents 1 Forced Convection: External Flows 4 1.1 Flow Over Flat Surfaces............................. 4 1.1.1 Non-Dimensional form of the Equations of Motion.......... 4

### Chapter 10: Boiling and Condensation 1. Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI.

Chapter 10: Boiling and Condensation 1 1 Based on lecture by Yoav Peles, Mech. Aero. Nuc. Eng., RPI. Objectives When you finish studying this chapter, you should be able to: Differentiate between evaporation

### CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel *1 Hüseyin Kaya, 2 Kamil Arslan 1 Bartın University, Mechanical Engineering Department, Bartın, Turkey

### 1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used?

1. Nusselt number and Biot number are computed in a similar manner (=hd/k). What are the differences between them? When and why are each of them used?. During unsteady state heat transfer, can the temperature

### Chapter 7: External Forced Convection

Chapter 7: External Forced Convection Yoav Peles Department of Mechanical, Aerospace and Nuclear Engineering Rensselaer Polytechnic Institute Copyright The McGraw-Hill Companies, Inc. Permission required

### Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer

1. Nusselt number Summary of Dimensionless Numbers of Fluid Mechanics and Heat Transfer Average Nusselt number: convective heat transfer Nu L = conductive heat transfer = hl where L is the characteristic

### ENTROPY. Chapter 7. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Boles.

Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 7 ENTROPY Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc. Permission required

### Chapter 8: Flow in Pipes

8-1 Introduction 8-2 Laminar and Turbulent Flows 8-3 The Entrance Region 8-4 Laminar Flow in Pipes 8-5 Turbulent Flow in Pipes 8-6 Fully Developed Pipe Flow 8-7 Minor Losses 8-8 Piping Networks and Pump

### Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering

### FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER

FLUID MECHANICS PROF. DR. METİN GÜNER COMPILER ANKARA UNIVERSITY FACULTY OF AGRICULTURE DEPARTMENT OF AGRICULTURAL MACHINERY AND TECHNOLOGIES ENGINEERING 1 5. FLOW IN PIPES Liquid or gas flow through pipes

### Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

Sādhanā Vol. 40, Part 2, April 2015, pp. 467 485. c Indian Academy of Sciences Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition RAMBIR BHADOURIYA,

### MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow

TRANSPORT PHENOMENA MOMENTUM TRANSPORT Velocity Distributions in Turbulent Flow Introduction to Turbulent Flow 1. Comparisons of laminar and turbulent flows 2. Time-smoothed equations of change for incompressible

### COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES OF DIFFERENT ASPECT RATIOS

HEFAT214 1 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 14 16 July 214 Orlando, Florida COMPUTATIONAL ANALYSIS OF LAMINAR FORCED CONVECTION IN RECTANGULAR ENCLOSURES

### Technological design and off-design behavior of heat exchangers 26

Technological design and off-design behavior of heat exchangers 26 2.2 MODELING OF HEAT TRANSFER The overall heat transfer coefficient U depends on the distribution of thermal resistances in the exchanger.

### Fall 2014 Qualifying Exam Thermodynamics Closed Book

Fall 2014 Qualifying Exam Thermodynamics Closed Book Saturated ammonia vapor at 200 O F flows through a 0.250 in diameter tube. The ammonia passes through a small orifice causing the pressure to drop very

### Friction Factors and Drag Coefficients

Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the

### ENGR Heat Transfer II

ENGR 7901 - Heat Transfer II External Flows 1 Introduction In this chapter we will consider several fundamental flows, namely: the flat plate, the cylinder, the sphere, several other body shapes, and banks

### International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 28 CFD BASED HEAT TRANSFER ANALYSIS OF SOLAR AIR HEATER DUCT PROVIDED WITH ARTIFICIAL ROUGHNESS Vivek Rao, Dr. Ajay

### Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011.

Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 7 ENTROPY Mehmet Kanoglu University of Gaziantep Copyright The McGraw-Hill

### Level 7 Post Graduate Diploma in Engineering Heat and mass transfer

9210-221 Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 0 You should have the following for this examination one answer book non programmable calculator pen, pencil, drawing instruments

### Viscous Flow in Ducts

Dr. M. Siavashi Iran University of Science and Technology Spring 2014 Objectives 1. Have a deeper understanding of laminar and turbulent flow in pipes and the analysis of fully developed flow 2. Calculate

### Autumn 2005 THERMODYNAMICS. Time: 3 Hours

CORK INSTITUTE OF TECHNOOGY Bachelor of Engineering (Honours) in Mechanical Engineering Stage 3 (Bachelor of Engineering in Mechanical Engineering Stage 3) (NFQ evel 8) Autumn 2005 THERMODYNAMICS Time:

### HEAT TRANSFER AND PRESSURE DROP CHARACTERISTICS OF SMOOTH TUBES AT A CONSTANT HEAT FLUX IN THE TRANSITIONAL FLOW REGIME

HEAT TRANSFER AND PRESSURE DROP CHARACTERISTICS OF SMOOTH TUBES AT A CONSTANT HEAT FLUX IN THE TRANSITIONAL FLOW REGIME by Melissa Hallquist Submitted in partial fulfilment of the requirements for the

### Convective Heat Transfer

Convective Heat Transfer Solved Problems Michel Favre-Marinet Sedat Tardu This page intentionally left blank Convective Heat Transfer This page intentionally left blank Convective Heat Transfer Solved

### Piping Systems and Flow Analysis (Chapter 3)

Piping Systems and Flow Analysis (Chapter 3) 2 Learning Outcomes (Chapter 3) Losses in Piping Systems Major losses Minor losses Pipe Networks Pipes in series Pipes in parallel Manifolds and Distribution

### CHME 302 CHEMICAL ENGINEERING LABOATORY-I EXPERIMENT 302-V FREE AND FORCED CONVECTION

CHME 302 CHEMICAL ENGINEERING LABOATORY-I EXPERIMENT 302-V FREE AND FORCED CONVECTION OBJECTIVE The objective of the experiment is to compare the heat transfer characteristics of free and forced convection.

### Application of COMSOL Multiphysics in Transport Phenomena Educational Processes

Application of COMSOL Multiphysics in Transport Phenomena Educational Processes M. Vasilev, P. Sharma and P. L. Mills * Department of Chemical and Natural Gas Engineering, Texas A&M University-Kingsville,

### Phone: , For Educational Use. SOFTbank E-Book Center, Tehran. Fundamentals of Heat Transfer. René Reyes Mazzoco

8 Fundamentals of Heat Transfer René Reyes Mazzoco Universidad de las Américas Puebla, Cholula, Mexico 1 HEAT TRANSFER MECHANISMS 1.1 Conduction Conduction heat transfer is explained through the molecular

### طراحی مبدل های حرارتی مهدي کریمی ترم بهار HEAT TRANSFER CALCULATIONS

طراحی مبدل های حرارتی مهدي کریمی ترم بهار 96-97 HEAT TRANSFER CALCULATIONS ١ TEMPERATURE DIFFERENCE For any transfer the driving force is needed General heat transfer equation : Q = U.A. T What T should

### COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER

THERMAL SCIENCE: Year 2018, Vol. 22, No. 2, pp. 963-972 963 COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A V-RIB WITH GAP ROUGHENED SOLAR AIR HEATER by Jitesh RANA, Anshuman SILORI, Rajesh MAITHANI *, and