Taking into account the gustiness due to free and deep convection for the representation of air-sea fluxes. - in the LMDZ model -

Size: px
Start display at page:

Download "Taking into account the gustiness due to free and deep convection for the representation of air-sea fluxes. - in the LMDZ model -"

Transcription

1 Taking into account the gustiness due to free and deep convection for the representation of air-sea fluxes - in the LMDZ model - Alina Găinuşă-Bogdan, Frédéric Hourdin, Abdoul Traore, Catherine Rio, Jean-Yves Grandpeix, Jean-Louis Dufresne

2 What is gustiness? Small-scale wind variability Subgrid Redelsperger et al. (2000)

3 How can we parameterize gustiness? Free convection: Godfrey&Beljaars (1991): U eff 2 = U (βw * ) 2 Redelsperger et al. (2000): β = 0.65 Deep convection: Redelsperger et al. (2000): U g = 19.8 R R + R 2 4

4 How can we parameterize gustiness? ALE = Available lifting energy

5 How can we parameterize gustiness? Redelsperger et al. (2000): (βw * ) 2 f(r) U eff 2 = U β 2 2ALE BL + α 2ALE WK ALE = Available lifting energy

6 Simulations Old parameterization - contained ad-hoc C H enhancement at low wind speeds under unstable conditions eq.9/miller et al. (1992) No parameterization - de-activation of eq.9/miller et al. (1992) New parameterization - replacement of Miller et al. eq. 9 with full gustiness (BL+WK) 1D case TOGA

7 Simulations Old parameterization - contained ad-hoc C H enhancement at low wind speeds under unstable conditions eq.9/miller et al. (1992) No parameterization - de-activation of eq.9/miller et al. (1992) New parameterization - replacement of Miller et al. eq. 9 with full gustiness (BL+WK) Effective wind speed difference 1D case TOGA

8 Results - fluxes none - old new - old The results are what we expect for the wind stress: removing the old C H enchancement => no effect on wind stress add proper gustiness => enhanced wind stress, following effective wind speed evolution

9 Results - fluxes none - old new - old Removing the old parameterization decreases the latent heat flux New parameterization => mostly enhanced latent heat fluxes No clear change of mean sensible heat fluxes in either case, but more variability with the new parameterization

10 Results - fluxes none - old new - old Removing the old parameterization decreases the latent heat flux New parameterization => mostly enhanced latent heat fluxes No clear change of mean sensible heat fluxes in either case, but more variability with the new parameterization...is that really so?

11 Results - fluxes none - old new - old

12 Results - fluxes none - old? new - old

13 Results - fluxes none - old new - old? old parameterization old parameterization no parameterization new parameterization

14 Results - fluxes none - old new - old? old parameterization old parameterization no parameterization new parameterization

15 Conclusions 1D experiments (TOGA) Evaluation of gustiness parameterization global statistics BUT ALSO high-frequency time evolution! (process-oriented diagnostics ideal, but not often possible)

16 Conclusions 1D experiments (TOGA) Evaluation of gustiness parameterization global statistics BUT ALSO high-frequency time evolution! (process-oriented diagnostics ideal, but not often possible) Gustiness => higher, more variable wind stress higher because of effective wind speed, NOT C D (~same mean value, lower variability); more variable simply because it takes both positive and negative values + see above

17 Conclusions 1D experiments (TOGA) Evaluation of gustiness parameterization global statistics BUT ALSO high-frequency time evolution! (process-oriented diagnostics ideal, but not often possible) Gustiness => higher, more variable wind stress higher because of effective wind speed, NOT C D (~same mean value, lower variability); more variable simply because it takes both positive and negative values + see above Gustiness => ~O(25%) higher LH than without (~O(10%) higher than old parameterization); less variability also thanks to direct effect of the effective wind speed C H actually decreases (<> old parameterization, where C H increase is the reason why LH increased compared to no parameterization) q2m increases slightly (O(5%) w.r.t. old, O(10%) w.r.t. none), but systematically

18 Conclusions 1D experiments (TOGA) Evaluation of gustiness parameterization global statistics BUT ALSO high-frequency time evolution! (process-oriented diagnostics ideal, but not often possible) Gustiness => higher, more variable wind stress higher because of effective wind speed, NOT C D (~same mean value, lower variability); more variable simply because it takes both positive and negative values + see above Gustiness => ~O(25%) higher LH than without (~O(10%) higher than old parameterization); less variability also thanks to direct effect of the effective wind speed C H actually decreases (<> old parameterization, where C H increase is the reason why LH increased compared to no parameterization) q2m increases slightly (O(5%) w.r.t. old, O(10%) w.r.t. none), but systematically Gustiness => negligible differences in mean SH; slightly less variability lower CH and ΔT compensate for higher effective wind speed?

19 Results 3D, atmosphere forced with climatological SSTs, 3 years

20 Results 3D, atmosphere forced with climatological SSTs, 3 years

21 Results 3D, atmosphere forced with climatological SSTs, 3 years

22 Results 3D, atmosphere forced with climatological SSTs, 3 years

23 Results 3D, atmosphere forced with climatological SSTs, 3 years

24 Results 3D, atmosphere forced with climatological SSTs, 3 years

25 Results 3D, coupled ocean-atmosphere model, 3 years

26 Conclusionsts 3D tests Gustiness doesn t only affect the tropics! Thank you!

27 How important is gustiness? Free convection: Godfrey&Beljaars (1991): At low wind speeds, quite! U eff 2 = U (βw * ) 2 Redelsperger et al. (2000): β = 0.65 Deep convection: Redelsperger et al. (2000): U g = 19.8 R R + R 2 4

28 How important is gustiness? Wind stress At low wind speeds, quite! Latent heat flux Sensible heat flux

29 What can we use for development? 1D case TOGA The TOGA-COARE campaign: Nov. 1 st, 1992 Feb. 28, 1993 Succession of active and suppressed convection events

30 How do we parameterize gustiness? U eff 2 = U β 2 2ALE BL + α 2ALE WK

31 How do we parameterize gustiness? U eff 2 = U β 2 2ALE BL + α 2ALE WK Scalar mean of the wind speed (Redelsperger et al., 2000) = U 0 + resolved deep convection gustiness Magnitude of the mean vector wind (Redelsperger et al., 2000) = U 0 U 0, CTRL + BL gust + WK gust U 0, CTRL + BL gust U 0, CTRL + WK gust Magnitude of the mean vector wind = U 0, CTRL comparable magnitudes lower gustiness for U 0 peaks, higher for low U 0 wind enhancement higher in Dec than Dec 1992

32 How do we parameterize gustiness? U eff 2 = U β 2 2ALE BL + α 2ALE WK Horizontal wind speed deep convection gustiness Scalar mean of the wind speed (Redelsperger et al., 2000) = U 0 + resolved deep convection gustiness Magnitude of the mean vector wind (Redelsperger et al., 2000) = U 0 Magnitude of the mean vector wind = U 0, OBS Magnitude of the mean vector wind = U 0, CTRL

33 Results 3D gustiness and turbulent exchange coefficients AMIP CPL

34 Results 3D - Precipitation AMIP CPL

35 Results 3D - Precipitation

Evaluation of the IPSL climate model in a weather-forecast mode

Evaluation of the IPSL climate model in a weather-forecast mode Evaluation of the IPSL climate model in a weather-forecast mode CFMIP/GCSS/EUCLIPSE Meeting, The Met Office, Exeter 2011 Solange Fermepin, Sandrine Bony and Laurent Fairhead Introduction Transpose AMIP

More information

Turbulent fluxes. Sensible heat flux. Momentum flux = Wind stress ρc D (U-U s ) 2. Latent heat flux. ρc p C H (U-U s ) (T s -T a )

Turbulent fluxes. Sensible heat flux. Momentum flux = Wind stress ρc D (U-U s ) 2. Latent heat flux. ρc p C H (U-U s ) (T s -T a ) Intertropical ocean-atmosphere coupling in a state of the art Earth System Model: Evaluating the representation of turbulent air-sea fluxes in IPSL-CM5A Alina Găinuşă-Bogdan, Pascale Braconnot Laboratoire

More information

Relevant timescales: convective events diurnal intraseasonal. 3 ocean-atmosphere communication methods: freshwater flux flux momentum flux

Relevant timescales: convective events diurnal intraseasonal. 3 ocean-atmosphere communication methods: freshwater flux flux momentum flux Radar Perspective on Air-Sea Interactions during DYNAMO Elizabeth Thompson; July 23 2013 Update Steve Rutledge, Brenda Dolan, Jim Moum, Aurelie Moulin, Chris Fairall, Bob Rilling, Mike Dixon, Scott Ellis,

More information

NOTES AND CORRESPONDENCE. Parameterization of Wind Gustiness for the Computation of Ocean Surface Fluxes at Different Spatial Scales

NOTES AND CORRESPONDENCE. Parameterization of Wind Gustiness for the Computation of Ocean Surface Fluxes at Different Spatial Scales 15 NOTES AND CORRESPONDENCE Parameterization of Wind Gustiness for the Computation of Ocean Surface Fluxes at Different Spatial Scales XUBIN ZENG Institute of Atmospheric Physics, The University of Arizona,

More information

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling Eric D. Skyllingstad

More information

2.1 OBSERVATIONS AND THE PARAMETERISATION OF AIR-SEA FLUXES DURING DIAMET

2.1 OBSERVATIONS AND THE PARAMETERISATION OF AIR-SEA FLUXES DURING DIAMET 2.1 OBSERVATIONS AND THE PARAMETERISATION OF AIR-SEA FLUXES DURING DIAMET Peter A. Cook * and Ian A. Renfrew School of Environmental Sciences, University of East Anglia, Norwich, UK 1. INTRODUCTION 1.1

More information

Air-Sea Interaction and the MJO

Air-Sea Interaction and the MJO Air-Sea Interaction and the MJO Julia Slingo with thanks to Dan Bernie, Eric Guilyardi, Pete Inness, Hilary Spencer and Steve Woolnough NCAS Centre for Global Atmospheric Modelling University of Reading

More information

John Steffen and Mark A. Bourassa

John Steffen and Mark A. Bourassa John Steffen and Mark A. Bourassa Funding by NASA Climate Data Records and NASA Ocean Vector Winds Science Team Florida State University Changes in surface winds due to SST gradients are poorly modeled

More information

A "New" Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean

A New Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean A "New" Mechanism for the Diurnal Variation of Convection over the Tropical Western Pacific Ocean D. B. Parsons Atmospheric Technology Division National Center for Atmospheric Research (NCAR) Boulder,

More information

Advanced Hurricane WRF (AHW) Physics

Advanced Hurricane WRF (AHW) Physics Advanced Hurricane WRF (AHW) Physics Jimy Dudhia MMM Division, NCAR 1D Ocean Mixed-Layer Model 1d model based on Pollard, Rhines and Thompson (1973) was added for hurricane forecasts Purpose is to represent

More information

Aircraft Observations for ONR DRI and DYNAMO. Coupled Air-sea processes: Q. Wang, D. Khelif, L. Mahrt, S. Chen

Aircraft Observations for ONR DRI and DYNAMO. Coupled Air-sea processes: Q. Wang, D. Khelif, L. Mahrt, S. Chen Aircraft Observations for ONR DRI and DYNAMO (NOAA/ONR/NSF) Coupled Air-sea processes: Q. Wang, D. Khelif, L. Mahrt, S. Chen Deep convection/mjo initiation: Dave Jorgensen, S. Chen, R. Houze Aerosol/Cloud

More information

Tropospheric Moisture: The Crux of the MJO?

Tropospheric Moisture: The Crux of the MJO? Tropospheric Moisture: The Crux of the MJO? Chidong Zhang RSMAS, University of Miami ICGPSRO2013, May 14 16, 2013 Madden and Julian 1972 Precipitation Global Impacts of the MJO on Weather and Climate MJO

More information

Impact of Forcing/Coupling on Atmospheric and Oceanic Forecasts

Impact of Forcing/Coupling on Atmospheric and Oceanic Forecasts Impact of Forcing/Coupling on Atmospheric and Oceanic Forecasts herve.giordani@meteo.fr GAME/CNRM (Météo-France/CNRS),Toulouse, France Workshop, ECMWF Reading, UK, 10-12 November 2008 Oceanic state in

More information

Antarctic precipitation in the LMDz and MAR climate models : comparison to CloudSat retrievals and improvement of cold microphysical processes

Antarctic precipitation in the LMDz and MAR climate models : comparison to CloudSat retrievals and improvement of cold microphysical processes Antarctic precipitation in the LMDz and MAR climate models : comparison to CloudSat retrievals and improvement of cold microphysical processes J. B. Madeleine1*, H. Gallée2, E. Vignon2, C. Genthon2, G.

More information

Interhemispheric climate connections: What can the atmosphere do?

Interhemispheric climate connections: What can the atmosphere do? Interhemispheric climate connections: What can the atmosphere do? Raymond T. Pierrehumbert The University of Chicago 1 Uncertain feedbacks plague estimates of climate sensitivity 2 Water Vapor Models agree

More information

Sensitivity of zonal-mean circulation to air-sea roughness in climate models

Sensitivity of zonal-mean circulation to air-sea roughness in climate models Sensitivity of zonal-mean circulation to air-sea roughness in climate models Inna Polichtchouk & Ted Shepherd Royal Meteorological Society National Meeting 16.11.2016 MOTIVATION Question: How sensitive

More information

Lecture 14. Marine and cloud-topped boundary layers Marine Boundary Layers (Garratt 6.3) Marine boundary layers typically differ from BLs over land

Lecture 14. Marine and cloud-topped boundary layers Marine Boundary Layers (Garratt 6.3) Marine boundary layers typically differ from BLs over land Lecture 14. Marine and cloud-topped boundary layers Marine Boundary Layers (Garratt 6.3) Marine boundary layers typically differ from BLs over land surfaces in the following ways: (a) Near surface air

More information

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling Eric D. Skyllingstad

More information

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling

Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Large-Eddy Simulations of Tropical Convective Systems, the Boundary Layer, and Upper Ocean Coupling Eric D. Skyllingstad

More information

Validation of the JRA-55 based data set: Comparison with buoy observations

Validation of the JRA-55 based data set: Comparison with buoy observations Validation of the JRA-55 based data set: Comparison with buoy observations Hiroyuki TOMITA (Nagoya University) tomita@hyarc.nagoya-u.ac.jp 2016.01.14 OMDP extended meeting JAMSTEC@Yokohama Objectives IN

More information

Improved Fields of Satellite-Derived Ocean Surface Turbulent Fluxes of Energy and Moisture

Improved Fields of Satellite-Derived Ocean Surface Turbulent Fluxes of Energy and Moisture Improved Fields of Satellite-Derived Ocean Surface Turbulent Fluxes of Energy and Moisture First year report on NASA grant NNX09AJ49G PI: Mark A. Bourassa Co-Is: Carol Anne Clayson, Shawn Smith, and Gary

More information

Atmospheric Processes

Atmospheric Processes Atmospheric Processes Atmospheric prognostic variables Wind Temperature Humidity Cloud Water/Ice Atmospheric processes Mixing Radiation Condensation/ Evaporation Precipitation Surface exchanges Friction

More information

Convection Trigger: A key to improving GCM MJO simulation? CRM Contribution to DYNAMO and AMIE

Convection Trigger: A key to improving GCM MJO simulation? CRM Contribution to DYNAMO and AMIE Convection Trigger: A key to improving GCM MJO simulation? CRM Contribution to DYNAMO and AMIE Xiaoqing Wu, Liping Deng and Sunwook Park Iowa State University 2009 DYNAMO Workshop Boulder, CO April 13-14,

More information

Upper-Ocean Processes and Air-Sea Interaction in the Indonesian Seas

Upper-Ocean Processes and Air-Sea Interaction in the Indonesian Seas Upper-Ocean Processes and Air-Sea Interaction in the Indonesian Seas Janet Sprintall, Scripps Institution of Oceanography, USA Arnold L. Gordon, Asmi M. Napitu, LDEO, USA Ariane Koch-Larrouy, LEGOS, France

More information

Mesoscale meteorological models. Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen

Mesoscale meteorological models. Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen Mesoscale meteorological models Claire L. Vincent, Caroline Draxl and Joakim R. Nielsen Outline Mesoscale and synoptic scale meteorology Meteorological models Dynamics Parametrizations and interactions

More information

Air Sea Process in the IndianI. Ocean and the Intraseasonal Oscillation. J.P. Duvel (LMD) H. Bellenger, J. Vialard, P.K. Xavier F.

Air Sea Process in the IndianI. Ocean and the Intraseasonal Oscillation. J.P. Duvel (LMD) H. Bellenger, J. Vialard, P.K. Xavier F. Air Sea Process in the IndianI Ocean and the Intraseasonal Oscillation J.P. Duvel (LMD) H. Bellenger, J. Vialard, P.K. Xavier F. Doblas Reyes Origin of the intraseasonal variability (ISV) of the convection?

More information

The Ocean-Atmosphere System II: Oceanic Heat Budget

The Ocean-Atmosphere System II: Oceanic Heat Budget The Ocean-Atmosphere System II: Oceanic Heat Budget C. Chen General Physical Oceanography MAR 555 School for Marine Sciences and Technology Umass-Dartmouth MAR 555 Lecture 2: The Oceanic Heat Budget Q

More information

Atmosphere-Ocean Interaction in Tropical Cyclones

Atmosphere-Ocean Interaction in Tropical Cyclones Atmosphere-Ocean Interaction in Tropical Cyclones Isaac Ginis University of Rhode Island Collaborators: T. Hara, Y.Fan, I-J Moon, R. Yablonsky. ECMWF, November 10-12, 12, 2008 Air-Sea Interaction in Tropical

More information

The 5th Research Meeting of Ultrahigh Precision Meso-scale Weather Prediction, Nagoya University, Higashiyama Campus, Nagoya, 9 March 2015

The 5th Research Meeting of Ultrahigh Precision Meso-scale Weather Prediction, Nagoya University, Higashiyama Campus, Nagoya, 9 March 2015 The 5th Research Meeting of Ultrahigh Precision Meso-scale Weather Prediction, Nagoya University, Higashiyama Campus, Nagoya, 9 March 2015 The effects of moisture conditions on the organization and intensity

More information

Evaluating Parametrizations using CEOP

Evaluating Parametrizations using CEOP Evaluating Parametrizations using CEOP Paul Earnshaw and Sean Milton Met Office, UK Crown copyright 2005 Page 1 Overview Production and use of CEOP data Results SGP Seasonal & Diurnal cycles Other extratopical

More information

Presentation A simple model of multiple climate regimes

Presentation A simple model of multiple climate regimes A simple model of multiple climate regimes Kerry Emanuel March 21, 2012 Overview 1. Introduction 2. Essential Climate Feedback Processes Ocean s Thermohaline Circulation, Large-Scale Circulation of the

More information

Lecture 1. Amplitude of the seasonal cycle in temperature

Lecture 1. Amplitude of the seasonal cycle in temperature Lecture 6 Lecture 1 Ocean circulation Forcing and large-scale features Amplitude of the seasonal cycle in temperature 1 Atmosphere and ocean heat transport Trenberth and Caron (2001) False-colour satellite

More information

MC-KPP: Efficient, flexible and accurate air-sea coupling

MC-KPP: Efficient, flexible and accurate air-sea coupling MC-KPP: Efficient, flexible and accurate air-sea coupling Nick Klingaman NCAS-Climate, University of Reading Shortwave Longwave Latent Sensible Wind Prescribe SSTs and sea ice Pro: Computationally inexpensive,

More information

Reynolds Averaging. Let u and v be two flow variables (which might or might not be velocity components), and suppose that. u t + x uv ( ) = S u,

Reynolds Averaging. Let u and v be two flow variables (which might or might not be velocity components), and suppose that. u t + x uv ( ) = S u, ! Revised January 23, 208 7:7 PM! Reynolds Averaging David Randall Introduction It is neither feasible nor desirable to consider in detail all of the small-scale fluctuations that occur in the atmosphere.

More information

BMKG Research on Air sea interaction modeling for YMC

BMKG Research on Air sea interaction modeling for YMC BMKG Research on Air sea interaction modeling for YMC Prof. Edvin Aldrian Director for Research and Development - BMKG First Scientific and Planning Workshop on Year of Maritime Continent, Singapore 27-3

More information

EFFECTS OF TROPICAL CYCLONES ON OCEAN HEAT TRANSPORT AS SIMULATED BY A HIGH RESOLUTION COUPLED GENERAL CIRCULATION MODEL

EFFECTS OF TROPICAL CYCLONES ON OCEAN HEAT TRANSPORT AS SIMULATED BY A HIGH RESOLUTION COUPLED GENERAL CIRCULATION MODEL ISTITUTO NAZIONALE di GEOFISICA e VULCANOLOGIA EFFECTS OF TROPICAL CYCLONES ON OCEAN HEAT TRANSPORT AS SIMULATED BY A HIGH RESOLUTION COUPLED GENERAL CIRCULATION MODEL E. Scoccimarro 1 S. Gualdi 12, A.

More information

THE FEASIBILITY OF EXTRACTING LOWLEVEL WIND BY TRACING LOW LEVEL MOISTURE OBSERVED IN IR IMAGERY OVER CLOUD FREE OCEAN AREA IN THE TROPICS

THE FEASIBILITY OF EXTRACTING LOWLEVEL WIND BY TRACING LOW LEVEL MOISTURE OBSERVED IN IR IMAGERY OVER CLOUD FREE OCEAN AREA IN THE TROPICS THE FEASIBILITY OF EXTRACTING LOWLEVEL WIND BY TRACING LOW LEVEL MOISTURE OBSERVED IN IR IMAGERY OVER CLOUD FREE OCEAN AREA IN THE TROPICS Toshiro Ihoue and Tetsuo Nakazawa Meteorological Research Institute

More information

Introduction to tropical meteorology and deep convection

Introduction to tropical meteorology and deep convection Introduction to tropical meteorology and deep convection TMD Lecture 1 Roger K. Smith University of Munich A satpix tour of the tropics The zonal mean circulation (Hadley circulation), Inter- Tropical

More information

HWRF Surface Layer Thermodynamics Evaluation. Eric W. Uhlhorn and Joseph J. Cione HFIP Hurricane Modeling Workshop September 2012

HWRF Surface Layer Thermodynamics Evaluation. Eric W. Uhlhorn and Joseph J. Cione HFIP Hurricane Modeling Workshop September 2012 HWRF Surface Layer Thermodynamics Evaluation Eric W. Uhlhorn and Joseph J. Cione HFIP Hurricane Modeling Workshop 17-18 September 2012 Special thanks. HRD HWRF modeling team Gopal, Xuejin Zhang, Thiago

More information

Recent, current & future work with NorESM-L in Bergen

Recent, current & future work with NorESM-L in Bergen Recent, current & future work with NorESM-L in Bergen Thomas Toniazzo, Ingo Bethke, Mats Bentsen, Francois Counillon, Noel Keenlyside, and others... AMWG meeting Boulder, 10/2/2014 Low-resolution Norwegian

More information

An Introduction to Coupled Models of the Atmosphere Ocean System

An Introduction to Coupled Models of the Atmosphere Ocean System An Introduction to Coupled Models of the Atmosphere Ocean System Jonathon S. Wright jswright@tsinghua.edu.cn Atmosphere Ocean Coupling 1. Important to climate on a wide range of time scales Diurnal to

More information

Shifting the diurnal cycle of parameterized deep convection over land

Shifting the diurnal cycle of parameterized deep convection over land GEOPHYSICAL RESEARCH LETTERS, VOL. 36, L07809, doi:10.1029/2008gl036779, 2009 Shifting the diurnal cycle of parameterized deep convection over land C. Rio, 1 F. Hourdin, 1 J.-Y. Grandpeix, 1 and J.-P.

More information

The prognostic deep convection parametrization for operational forecast in horizontal resolutions of 8, 4 and 2 km

The prognostic deep convection parametrization for operational forecast in horizontal resolutions of 8, 4 and 2 km The prognostic deep convection parametrization for operational forecast in horizontal resolutions of 8, 4 and 2 km Martina Tudor, Stjepan Ivatek-Šahdan and Antonio Stanešić tudor@cirus.dhz.hr Croatian

More information

Forecasting Polar Lows. Gunnar Noer The Norwegian Meteorological Institute in Tromsø

Forecasting Polar Lows. Gunnar Noer The Norwegian Meteorological Institute in Tromsø Forecasting Polar Lows Gunnar Noer The Norwegian Meteorological Institute in Tromsø Longyearbyen Hopen Bear Island Jan Mayen Tromsø Gunnar Noer Senior forecaster / developer for polar meteorology The Norwegian

More information

Coastal Antarctic polynyas: A coupled process requiring high model resolution in the ocean and atmosphere

Coastal Antarctic polynyas: A coupled process requiring high model resolution in the ocean and atmosphere Coastal Antarctic polynyas: A coupled process requiring high model resolution in the ocean and atmosphere Mike Dinniman and John Klinck Center for Coastal Physical Oceanography Old Dominion University

More information

Challenges in model development

Challenges in model development Challenges in model development Andy Brown 29/6/10 Contents How do we try to improve a model? Bottom up Top down Examples (Sensitivity to drag) Bottom up Develop new (and hopefully improved) parametrization

More information

ENSO Outlook by JMA. Hiroyuki Sugimoto. El Niño Monitoring and Prediction Group Climate Prediction Division Japan Meteorological Agency

ENSO Outlook by JMA. Hiroyuki Sugimoto. El Niño Monitoring and Prediction Group Climate Prediction Division Japan Meteorological Agency ENSO Outlook by JMA Hiroyuki Sugimoto El Niño Monitoring and Prediction Group Climate Prediction Division Outline 1. ENSO impacts on the climate 2. Current Conditions 3. Prediction by JMA/MRI-CGCM 4. Summary

More information

Moist static energy budget diagnostics for. monsoon research. H. Annamalai

Moist static energy budget diagnostics for. monsoon research. H. Annamalai Moist static energy budget diagnostics for monsoon research H. Annamalai JJAS Precipitation and SST Climatology I III II Multiple regional heat sources - EIO and SPCZ still experience high precipitation

More information

An Introduction to Physical Parameterization Techniques Used in Atmospheric Models

An Introduction to Physical Parameterization Techniques Used in Atmospheric Models An Introduction to Physical Parameterization Techniques Used in Atmospheric Models J. J. Hack National Center for Atmospheric Research Boulder, Colorado USA Outline Frame broader scientific problem Hierarchy

More information

Introduction to climate modeling. ECOLMAS Course 1-4 April 2008

Introduction to climate modeling. ECOLMAS Course 1-4 April 2008 Introduction to climate modeling ECOLMAS Course 1-4 April 2008 Course description Goal: To equipe you with a comfortable basic knowledge in the trade of climate modeling Course web site: http://www.geo.unibremen.de/~apau/ecolmas_modeling2

More information

Boundary layer equilibrium [2005] over tropical oceans

Boundary layer equilibrium [2005] over tropical oceans Boundary layer equilibrium [2005] over tropical oceans Alan K. Betts [akbetts@aol.com] Based on: Betts, A.K., 1997: Trade Cumulus: Observations and Modeling. Chapter 4 (pp 99-126) in The Physics and Parameterization

More information

Validation of KPP in a coastal area

Validation of KPP in a coastal area Validation of KPP in a coastal area By (Météo France/SHOM) and Rémy Baraille (SHOM), Yves Morel (SHOM), Gwenaëlle Hello (Météo France), Hervé Giordani (Météo France) Contents I. Data from MOUTON2007; II.

More information

Moisture modes, cloud-radiative feedbacks and the MJO

Moisture modes, cloud-radiative feedbacks and the MJO Moisture modes, cloud-radiative feedbacks and the MJO Adam Sobel Eric Maloney with bits from Shuguang Wang, Jim Benedict; thanks also Gilles Bellon, Dargan Frierson, Daehyun Kim EUCLIPSE summer school

More information

Comparison of Convection Characteristics at the Tropical Western Pacific Darwin Site Between Observation and Global Climate Models Simulations

Comparison of Convection Characteristics at the Tropical Western Pacific Darwin Site Between Observation and Global Climate Models Simulations Comparison of Convection Characteristics at the Tropical Western Pacific Darwin Site Between Observation and Global Climate Models Simulations G.J. Zhang Center for Atmospheric Sciences Scripps Institution

More information

A New Ocean Mixed-Layer Model Coupled into WRF

A New Ocean Mixed-Layer Model Coupled into WRF ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2012, VOL. 5, NO. 3, 170 175 A New Ocean Mixed-Layer Model Coupled into WRF WANG Zi-Qian 1,2 and DUAN An-Min 1 1 The State Key Laboratory of Numerical Modeling

More information

CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR

CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR CHAPTER 8 NUMERICAL SIMULATIONS OF THE ITCZ OVER THE INDIAN OCEAN AND INDONESIA DURING A NORMAL YEAR AND DURING AN ENSO YEAR In this chapter, comparisons between the model-produced and analyzed streamlines,

More information

Theoretical and Modeling Issues Related to ISO/MJO

Theoretical and Modeling Issues Related to ISO/MJO Theoretical and Modeling Issues Related to ISO/MJO Tim Li Department of Meteorology and IPRC University of Hawaii DYNAMO workshop, April 13-14, Boulder, Colorado 1. MJO Initiation issue: Role of air- sea

More information

Reduced Complexity Frameworks for Exploring Physics Dynamics Coupling Sensitivities

Reduced Complexity Frameworks for Exploring Physics Dynamics Coupling Sensitivities Reduced Complexity Frameworks for Exploring Physics Dynamics Coupling Sensitivities Kevin A. Reed & Adam R. Herrington School of Marine and Atmospheric Sciences Stony Brook University, Stony Brook, New

More information

Air-Sea Interaction: Physics of air-surface interactions and coupling to ocean/atmosphere BL processes

Air-Sea Interaction: Physics of air-surface interactions and coupling to ocean/atmosphere BL processes Air-Sea Interaction: Physics of air-surface interactions and coupling to ocean/atmosphere BL processes Emphasize surface fluxes Statement of problem Present status Parameterization issues An amusing case

More information

Effects of transfer processes on marine atmospheric boundary layer or Effects of boundary layer processes on air-sea exchange

Effects of transfer processes on marine atmospheric boundary layer or Effects of boundary layer processes on air-sea exchange Effects of transfer processes on marine atmospheric boundary layer or Effects of boundary layer processes on air-sea exchange Ann-Sofi Smedman Uppsala University Uppsala, Sweden Effect of transfer process

More information

5. General Circulation Models

5. General Circulation Models 5. General Circulation Models I. 3-D Climate Models (General Circulation Models) To include the full three-dimensional aspect of climate, including the calculation of the dynamical transports, requires

More information

What you need to know in Ch. 12. Lecture Ch. 12. Atmospheric Heat Engine

What you need to know in Ch. 12. Lecture Ch. 12. Atmospheric Heat Engine Lecture Ch. 12 Review of simplified climate model Revisiting: Kiehl and Trenberth Overview of atmospheric heat engine Current research on clouds-climate Curry and Webster, Ch. 12 For Wednesday: Read Ch.

More information

A diurnally corrected highresolution

A diurnally corrected highresolution A diurnally corrected highresolution SST analysis Andy Harris 1, Jonathan Mittaz 1,4, Gary Wick 3, Prabhat Koner 1, Eileen Maturi 2 1 NOAA-CICS, University of Maryland 2 NOAA/NESDIS/STAR 3 NOAA/OAR/ESRL

More information

Subgrid Surface Fluxes in Fair Weather Conditions during TOGA COARE: Observational Estimates and Parameterization

Subgrid Surface Fluxes in Fair Weather Conditions during TOGA COARE: Observational Estimates and Parameterization 62 MONTHLY WEATHER REVIEW VOLUME 26 Subgrid Surface Fluxes in Fair Weather Conditions during TOGA COARE: Observational Estimates and Parameterization DEAN VICKERS AND STEVEN K. ESBENSEN College of Oceanic

More information

Convective Fluxes: Sensible and Latent Heat Convective Fluxes Convective fluxes require Vertical gradient of temperature / water AND Turbulence ( mixing ) Vertical gradient, but no turbulence: only very

More information

Where does the memory of convection stem from? Why can it be useful for parameterizations?

Where does the memory of convection stem from? Why can it be useful for parameterizations? Where does the memory of convection stem from? Why can it be useful for parameterizations? D'où vient la mémoire de la convection? En quoi cela peut-il être utile pour les paramétrisations? Maxime Colin,

More information

Boundary layer parameterization and climate. Chris Bretherton. University of Washington

Boundary layer parameterization and climate. Chris Bretherton. University of Washington Boundary layer parameterization and climate Chris Bretherton University of Washington Some PBL-related climate modeling issues PBL cloud feedbacks on tropical circulations, climate sensitivity and aerosol

More information

Tropical Cyclones-Ocean interaction as represented by a 25km resolution CGCM: the role of the coupling frequency

Tropical Cyclones-Ocean interaction as represented by a 25km resolution CGCM: the role of the coupling frequency HRCP Workshop 13-15 April 2016 Tropical Cyclones-Ocean interaction as represented by a 25km resolution CGCM: the role of the coupling frequency Enrico Scoccimarro (1,2), P.G. Fogli (2), K. Reed (3), S.

More information

Assessing the Influence of Surface Wind Waves to the Global Climate by Incorporating WAVEWATCH III in CESM! Phase I: Langmuir Mixing in KPP

Assessing the Influence of Surface Wind Waves to the Global Climate by Incorporating WAVEWATCH III in CESM! Phase I: Langmuir Mixing in KPP Assessing the Influence of Surface Wind Waves to the Global Climate by Incorporating WAVEWATCH III in CESM Phase I: Langmuir Mixing in KPP Image: NPR.org, Deep Water Horizon Spill Qing Li Baylor Fox-Kemper,

More information

Evaluation of modeled diurnally varying sea surface temperatures and the influence of surface winds

Evaluation of modeled diurnally varying sea surface temperatures and the influence of surface winds Evaluation of modeled diurnally varying sea surface temperatures and the influence of surface winds Rachel R. Weihs and Mark A. Bourassa Center for Ocean-Atmospheric Prediction Studies IOVWST Meeting 6-8

More information

Efficient and Accurate Bulk Parameterizations of Air Sea Fluxes for Use in General Circulation Models

Efficient and Accurate Bulk Parameterizations of Air Sea Fluxes for Use in General Circulation Models OCTOBER 2000 KARA ET AL. 1421 Efficient and Accurate Bulk Parameterizations of Air Sea Fluxes for Use in General Circulation Models A. BIROL KARA Sverdrup Technology Incorporated, Stennis Space Center,

More information

MJO Discussion. Eric Maloney Colorado State University. Thanks: Matthew Wheeler, Adrian Matthews, WGNE MJOTF

MJO Discussion. Eric Maloney Colorado State University. Thanks: Matthew Wheeler, Adrian Matthews, WGNE MJOTF MJO Discussion Eric Maloney Colorado State University Thanks: Matthew Wheeler, Adrian Matthews, WGNE MJOTF Intraseasonal OLR and Precipitation Variance Sobel et al. (2010) Peatman et al. (2013) MJO cycle

More information

Modelling suppressed and active convection. Comparing a numerical weather prediction, cloud-resolving and single-column model

Modelling suppressed and active convection. Comparing a numerical weather prediction, cloud-resolving and single-column model QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY Q. J. R. Meteorol. Soc. 33: 7 (7) Published online in Wiley InterScience (www.interscience.wiley.com) DOI:./qj.9 Modelling suppressed and active convection.

More information

The Role of Water Droplets in Air-sea Interaction: Rain and Sea Spray

The Role of Water Droplets in Air-sea Interaction: Rain and Sea Spray The Role of Water Droplets in Air-sea Interaction: Rain and Sea Spray Fabrice Veron Air-Sea Interaction Laboratory School of Marine Science and Policy College of Earth, Ocean, & Environment University

More information

The Effect of Sea Spray on Tropical Cyclone Intensity

The Effect of Sea Spray on Tropical Cyclone Intensity The Effect of Sea Spray on Tropical Cyclone Intensity Jeffrey S. Gall, Young Kwon, and William Frank The Pennsylvania State University University Park, Pennsylvania 16802 1. Introduction Under high-wind

More information

Parameterizing large-scale dynamics using the weak temperature gradient approximation

Parameterizing large-scale dynamics using the weak temperature gradient approximation Parameterizing large-scale dynamics using the weak temperature gradient approximation Adam Sobel Columbia University NCAR IMAGe Workshop, Nov. 3 2005 In the tropics, our picture of the dynamics should

More information

Northern Arabian Sea Circulation Autonomous Research (NASCar) DRI: A Study of Vertical Mixing Processes in the Northern Arabian Sea

Northern Arabian Sea Circulation Autonomous Research (NASCar) DRI: A Study of Vertical Mixing Processes in the Northern Arabian Sea DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Northern Arabian Sea Circulation Autonomous Research (NASCar) DRI: A Study of Vertical Mixing Processes in the Northern

More information

An extended re-forecast set for ECMWF system 4. in the context of EUROSIP

An extended re-forecast set for ECMWF system 4. in the context of EUROSIP An extended re-forecast set for ECMWF system 4 in the context of EUROSIP Tim Stockdale Acknowledgements: Magdalena Balmaseda, Susanna Corti, Laura Ferranti, Kristian Mogensen, Franco Molteni, Frederic

More information

Model error and seasonal forecasting

Model error and seasonal forecasting Model error and seasonal forecasting Antje Weisheimer European Centre for Medium-Range Weather Forecasts ECMWF, Reading, UK with thanks to Paco Doblas-Reyes and Tim Palmer Model error and model uncertainty

More information

ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Lecture 19. Learning objectives: develop a physical understanding of ocean thermodynamic processes

ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Lecture 19. Learning objectives: develop a physical understanding of ocean thermodynamic processes ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 19 Learning objectives: develop a physical understanding of ocean thermodynamic processes 1. Ocean surface heat fluxes; 2. Mixed layer temperature

More information

Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world

Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world R. Krishnan Centre for Climate Change Research (CCCR) Indian Institute of Tropical Meteorology, Pune Collaborators:

More information

A Numerical Study of a TOGA-COARE Squall-Line Using a Coupled Mesoscale Atmosphere-Ocean Model

A Numerical Study of a TOGA-COARE Squall-Line Using a Coupled Mesoscale Atmosphere-Ocean Model ADVANCES IN ATMOSPHERIC SCIENCES, VOL. 21, NO. 5, 2004, 708 716 A Numerical Study of a TOGA-COARE Squall-Line Using a Coupled Mesoscale Atmosphere-Ocean Model Shaowu BAO, Lian XIE, and Sethu RAMAN Department

More information

--Manuscript Draft-- parametrization for the LMDZ GCM. Columbia University New York, NY UNITED STATES. Jean-Yves Grandpeix

--Manuscript Draft-- parametrization for the LMDZ GCM. Columbia University New York, NY UNITED STATES. Jean-Yves Grandpeix Journal of the Atmospheric Sciences Deep convection triggering by boundary layer thermals. Part 2: Stochastic triggering parametrization for the LMDZ GCM --Manuscript Draft-- Manuscript Number: Full Title:

More information

Correspondence between short and long timescale systematic errors in CAM4/CAM5 explored by YOTC data

Correspondence between short and long timescale systematic errors in CAM4/CAM5 explored by YOTC data Correspondence between short and long timescale systematic errors in CAM4/CAM5 explored by YOTC data Hsi-Yen Ma In collaboration with Shaocheng Xie, James Boyle, Stephen Klein, and Yuying Zhang Program

More information

8 Mechanisms for tropical rainfall responses to equatorial

8 Mechanisms for tropical rainfall responses to equatorial 8 Mechanisms for tropical rainfall responses to equatorial heating More reading: 1. Hamouda, M. and Kucharski, F. (2019) Ekman pumping Mechanism driving Precipitation anomalies in Response to Equatorial

More information

OCN/ATM/ESS 587. Ocean circulation, dynamics and thermodynamics.

OCN/ATM/ESS 587. Ocean circulation, dynamics and thermodynamics. OCN/ATM/ESS 587 Ocean circulation, dynamics and thermodynamics. Equation of state for seawater General T/S properties of the upper ocean Heat balance of the upper ocean Upper ocean circulation Deep circulation

More information

Tropical cyclone simulations and predictions with GFDL s prototype global cloud resolving model

Tropical cyclone simulations and predictions with GFDL s prototype global cloud resolving model Tropical cyclone simulations and predictions with GFDL s prototype global cloud resolving model S.-J. Lin and GFDL model development teams NOAA/Geophysical Fluid Dynamics Laboratory Workshop on High-Resolution

More information

P R O L O G U E CORRELATION COEF. dsst/dt during wintertime (i.e., end of Feb. minus beginning of Dec, using 11-day averaged climatology)

P R O L O G U E CORRELATION COEF. dsst/dt during wintertime (i.e., end of Feb. minus beginning of Dec, using 11-day averaged climatology) P R O L O G U E dsst/dt during wintertime (i.e., end of Feb. minus beginning of Dec, using 11-day averaged climatology) Correlation between total precipitable water (from NVAP-M) and total cloud (from

More information

GFDL, NCEP, & SODA Upper Ocean Assimilation Systems

GFDL, NCEP, & SODA Upper Ocean Assimilation Systems GFDL, NCEP, & SODA Upper Ocean Assimilation Systems Jim Carton (UMD) With help from Gennady Chepurin, Ben Giese (TAMU), David Behringer (NCEP), Matt Harrison & Tony Rosati (GFDL) Description Goals Products

More information

TC/PR/RB Lecture 3 - Simulation of Random Model Errors

TC/PR/RB Lecture 3 - Simulation of Random Model Errors TC/PR/RB Lecture 3 - Simulation of Random Model Errors Roberto Buizza (buizza@ecmwf.int) European Centre for Medium-Range Weather Forecasts http://www.ecmwf.int Roberto Buizza (buizza@ecmwf.int) 1 ECMWF

More information

Twentieth-Century Sea Surface Temperature Trends M.A. Cane, et al., Science 275, pp (1997) Jason P. Criscio GEOS Apr 2006

Twentieth-Century Sea Surface Temperature Trends M.A. Cane, et al., Science 275, pp (1997) Jason P. Criscio GEOS Apr 2006 Twentieth-Century Sea Surface Temperature Trends M.A. Cane, et al., Science 275, pp. 957-960 (1997) Jason P. Criscio GEOS 513 12 Apr 2006 Questions 1. What is the proposed mechanism by which a uniform

More information

More on Diabatic Processes

More on Diabatic Processes More on Diabatic Processes Chapter 3 Write Qtotal = Qrad + Qcond + Qsen total heating radiative heating condensationa l heating sensible heating While diabatic processes drive atmospheric motions, the

More information

Uncertainties in sea surface turbulent flux algorithms and data sets

Uncertainties in sea surface turbulent flux algorithms and data sets JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. C10, 3141, doi:10.1029/2001jc000992, 2002 Uncertainties in sea surface turbulent flux algorithms and data sets Michael A. Brunke and Xubin Zeng Institute

More information

777 GROUNDSCHOOL Temperature, Stability, Fronts, & Thunderstorms

777 GROUNDSCHOOL Temperature, Stability, Fronts, & Thunderstorms 777 GROUNDSCHOOL 2018 Temperature, Stability, Fronts, & Thunderstorms The Atmosphere Heating Transfer of heat occurs thru Radiation Advection Convection Matter changes states due to the amount of heat

More information

Dynamical versus Land-Surface Factors in the African Monsoon

Dynamical versus Land-Surface Factors in the African Monsoon http://www.atmos.ucla.edu/~csi Dynamical versus Land-Surface Factors in the African Monsoon J. David Neelin,, UCLA Collaborators: Chia Chou, Academia Sinica, Taiwan; Hui Su, UCLA; Ning Zeng, U. Maryland

More information

Air sea satellite flux datasets and what they do (and don't) tell us about the air sea interface in the Southern Ocean

Air sea satellite flux datasets and what they do (and don't) tell us about the air sea interface in the Southern Ocean Air sea satellite flux datasets and what they do (and don't) tell us about the air sea interface in the Southern Ocean Carol Anne Clayson Woods Hole Oceanographic Institution Southern Ocean Workshop Seattle,

More information

A Method for Improving Simulation of PNA Teleconnection Interannual Variation in a Climate Model

A Method for Improving Simulation of PNA Teleconnection Interannual Variation in a Climate Model ATMOSPHERIC AND OCEANIC SCIENCE LETTERS, 2011, VOL. 4, NO. 2, 86 90 A Method for Improving Simulation of PNA Teleconnection Interannual Variation in a Climate Model LI Zhong-Xian 1, 2, ZHOU Tian-Jun 2,

More information

18A.2 PREDICTION OF ATLANTIC TROPICAL CYCLONES WITH THE ADVANCED HURRICANE WRF (AHW) MODEL

18A.2 PREDICTION OF ATLANTIC TROPICAL CYCLONES WITH THE ADVANCED HURRICANE WRF (AHW) MODEL 18A.2 PREDICTION OF ATLANTIC TROPICAL CYCLONES WITH THE ADVANCED HURRICANE WRF (AHW) MODEL Jimy Dudhia *, James Done, Wei Wang, Yongsheng Chen, Qingnong Xiao, Christopher Davis, Greg Holland, Richard Rotunno,

More information

SST Trend Based on High-resolution Datasets and Numerical Simulations

SST Trend Based on High-resolution Datasets and Numerical Simulations SST Trend Based on High-resolution Datasets and Numerical Simulations Figure 1 offers the AVHRR(0.25-degree daily)-based SST trend estimates, which is roughly agree with the estimate based on Pathfinder

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Figure S1. Summary of the climatic responses to the Gulf Stream. On the offshore flank of the SST front (black dashed curve) of the Gulf Stream (green long arrow), surface wind convergence associated with

More information