rf kick of 3 rd harmonic cavities about kick factors, symmetries & compensation FLASH setup XFEL assumptions calculation of rf kick factors

Size: px
Start display at page:

Download "rf kick of 3 rd harmonic cavities about kick factors, symmetries & compensation FLASH setup XFEL assumptions calculation of rf kick factors"

Transcription

1 rf kick of 3 rd harmonic cavities about kick factors, smmetries & compensation FLASH setup XFEL assumptions calculation of rf kick factors summar

2 about kick factors, smmetries & compensation discrete coupler kick: (,, s) ( ϕ ks) cav cos cav { cav } i ϕ ks n { e, } i( ϕcav ks) ( n (,, s) Re e ) (, ) ( cav ) ( (,, s) Re ) ( ) cav Talor epansion: ( n) (, ) d 0 + d d (, ) f + f f + ( n) 0 + compensation of s- (or time-) dependent fields: iϕcav iϕ { d } = Re{ d e } cos ks + Im{ d e } sin ks i( ϕcav ks) (,0, s) Re e 0 cav Im cav iϕcav { d e } 0 cav 0 = 0 cav 0 cav 0 arg { d0} = ϕ cav depends on cavit phase depends on compression scenario

3 from summar comple coupler kick: cav cav+mirror- cav+rot -ais a,b arbitrar: (, ) d 0 + d d (, ) f + f f ( n) + ( n) 0 + SW: a=b, (equal for sub-structures) SW: a=b, (equal for sub-structures) ( Σ, n) (, ) 2i Im{ d0 + d d } (, ) 2i Im{ f + f f } ( Σ, n) + ( ) 2Re{ d } + 2i Im{ d } + 2Re{ d }, 0 d = d ( a, ), 0 0 b ( Σ, n) 0 + ( Σ, n) ( ) 2i Im{ f } + 2Re{ f } + 2i Im{ f }, 0 cav+mirror- cav+rot -ais a,b arbitrar (but equal for sub-str.) a,b arbitrar (but equal for sub-str.) (, ) d ( Σ, n) 2 ( ) 2 f + f ( Σ, n), 0 2 (, ) 2d + d (, ) 2 f + f ( Σ, n) 2 ( Σ, n) 2

4 FLASH setup side view: TESLA module & 3.9GH sstem

5 horiontal rotation = rot

6 XFEL assumptions initial particle distribution: tracked with ASTRA as described in Feb. 2008, beam dnamics seminar reference solution without coupler kicks in TESLA modules parameters for 20 5 compression (= present design) ϕ st 2deg; ϕ 3rd 46.6deg (spatial phases); 3rd 92 M 576Me 500Me β /m E/0Me β /m 3 rd harmonic section EXCEL table: 2 modules = 24 cavities discrete kicks of 48 couplers (effect depends on field not on number of cavities)

7 XFEL assumptions = rot = rot

8 from FEL Beam Dnamics Group Talks st Estimation of RF Coupler Kicks of 3rd Harmonic Cavit calculation of rf kick factors a) Timergali s HFSS calculation

9 calculation of rf kick factors a) Timergali s HFSS calculation - in detail onl forward wave (a=0): j44 upstream = 0 6+ j45 6 downstream 78 = 26 + j263 0 j99 6 onl backward wave (b=0): the numbers deviate less than 0-7 from the values for forward wave therefore: the coupler kick depends essentiall on the SW part of the field it does not depend on the reflection coefficient at the input coupler

10 calculation of rf kick factors b) MWS calculation for 2 cells, scaled onl forward wave (a=0): j202 upstream = j222 6 downstream 267 j672 = j340 6 results are quite uncertain: HFSS ver nois MWS two cells are not enough both calculations: discretied beam pipe is too short (cancellation effects in integrated kick) sstematic difference in accelerating field and in Qet

11 calculation of rf kick factors comparison of HFSS & MWS fields MWS, 2 cells, Cartesian mesh HFSS, 9 cells, tetraeder grid

12 calculation of rf kick factors b) MWS calculation for 2 cells, scaled but MWS results are smooth enough to estimate spatial derivatives of kicks: m j j upstream downstream m j j m j j m j j for one 3 rd harm. cavit is about 0 50 times larger for one 3 rd harm. cavit is about 5 0 times larger than for one TESLA cavit total kick (= ) of all 3 rd harm cavities before BC is about 00 to 200% of that of all TESLA cavities

13 calculation with HFSS kicks, offset independent upstream j44 = 0 6+ j45 6 downstream 78 = 26 + j263 0 j = 0 m = 0 m = 0 m = 0 m 3 ε n / µm ε n / µm no coupler kicks identical orientation rot of each second rot of each second

14 calculation with HFSS kicks, offset independent identical orientation ε n / ε n0 =.96 /m with kicks no coupler kicks ε n / ε n0 =.03 /m

15 calculation with HFSS kicks, offset independent rot of each 2 nd ε n / ε n0 =.38 /m with kicks no coupler kicks ε n / ε n0 =.04 /m

16 calculation with HFSS kicks, offset independent rot of each 2 nd ε n / ε n0 =.02 /m with kicks no coupler kicks ε n / ε n0 =.02 /m

17 calculation with MWS kicks upstream j202 = j222 6 downstream 267 j672 = j j34 = 28 j67 0 m j53 = 33 + j75 0 m 3 28 = 44 + j66 0 j34 m j75 0 = j53 m 3 ε n / µm ε n / µm no coupler kicks identical orientation rot of each second rot of each second

18 calculation with MWS kicks identical orientation ε n / ε n0 = 3.57 /m with kicks no coupler kicks ε n / ε n0 =.42 /m

19 calculation with MWS kicks rot of each 2 nd ε n / ε n0 = 2.0 /m with kicks no coupler kicks ε n / ε n0 =.46 /m

20 calculation with MWS kicks rot of each 2 nd ε n / ε n0 =.03 /m with kicks no coupler kicks ε n / ε n0 =.02 /m

21 calculation with MWS / HFFS rot of each 2 nd with kicks, MWS with kicks, HFFS offset independent no coupler kicks /m

22 calculation with MWS / HFFS rot of each 2 nd with kicks, MWS with kicks, HFFS offset independent no coupler kicks

23 calculation with MWS / HFFS rot of each 2 nd with kicks, MWS with kicks, HFFS offset independent no coupler kicks /m

24 calculation with MWS / HFFS rot of each 2 nd with kicks, MWS with kicks, HFFS offset independent no coupler kicks

25 summar off crest operation of cavities: onl rot setup compensates offset independent kick completel; reduction of Re or Im does not help in general! imprecise & uncertain calculation of rf kick factors offset independent kicks ~ 5..0 larger than in TESLA cavities significant emittance growth for identical orientation and rot setup below 3% emittance growth for rot setup even for the worst kick numbers weak influence of offset dependenc rot setup foreseen in FLASH; effects not investigated here rot setup recommended for XFEL

LOLA: Past, present and future operation

LOLA: Past, present and future operation LOLA: Past, present and future operation FLASH Seminar 1/2/29 Christopher Gerth, DESY 8/5/29 FLASH Seminar Christopher Gerth 1 Outline Past Present Future 8/5/29 FLASH Seminar Christopher Gerth 2 Past

More information

Cavity Field Maps (TESLA & 3 rd Harmonic Cavity) Undulator Wakes. Estimation of CSR Effects for FLASH2HGHG

Cavity Field Maps (TESLA & 3 rd Harmonic Cavity) Undulator Wakes. Estimation of CSR Effects for FLASH2HGHG Cavity Field Maps (TESLA & 3 rd Harmonic Cavity) Undulator Wakes Estimation of CSR Effects for FLASHHGHG Cavity Field Maps (TESLA & 3 rd Harmonic Cavity) 3D field map files for ASTRA in E3D format files

More information

Thorsten Hellert intra-bunch-train orbit distortion at FLASH FEL Seminar,

Thorsten Hellert intra-bunch-train orbit distortion at FLASH FEL Seminar, Thorsten Hellert intra-bunch-train orbit distortion at FLASH FEL Seminar, 23.6.215 table of contents > motivation > analysis of multi-bunch data recorded from DAQ > RF dynamics > data modeling > plan for

More information

compensation of rf coupler kicks 1 st attempt, further continued

compensation of rf coupler kicks 1 st attempt, further continued compensation of rf coupler kicks 1 st attempt, further continued about I1 & L1 calculations I1 & L1 calculations: the 1.3 GHz part I1&L1: standard configuration I1: module with yrot, L1: standard configuration

More information

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems Martin Dohlus DESY, Hamburg SC and CSR effects are crucial for design & simulation of BC systems CSR and

More information

Velocity Bunching Studies at FLASH. Bolko Beutner, DESY XFEL Beam Dynamics Meeting

Velocity Bunching Studies at FLASH. Bolko Beutner, DESY XFEL Beam Dynamics Meeting Velocity Bunching Studies at FLASH Contents Introduction ASTRA simulations Semi-Analytic Model CSR microbunch instability studies Experiments at FLASH Summary and Outlook Introduction At low beam energies

More information

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY Longitudinal Impedance Budget and Simulations for XFEL Igor Zagorodnov 14.3.211 DESY Beam dynamics simulations for the European XFEL Full 3D simulation method (2 CPU, ~1 hours) Gun LH M 1,1 M 1,3 E1 13

More information

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting Dark Current at Injector Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting Considerations for the guns Ultra-low slice emittance of electron beams higher gradient at the gun cavity solenoid field

More information

modeling of space charge effects and CSR in bunch compression systems

modeling of space charge effects and CSR in bunch compression systems modeling of space charge effects and CSR in bunch compression systems SC and CSR effects are crucial for the simulation of BC systems CSR and related effects are challenging for EM field calculation non-csr

More information

ASTRA BASED SWARM OPTIMIZATIONS OF THE BERLinPro INJECTOR

ASTRA BASED SWARM OPTIMIZATIONS OF THE BERLinPro INJECTOR ASTRA BASED SWARM OPTIMIZATIONS OF THE BERLinPro INJECTOR M. Abo-Bakr FRAAC4 Michael Abo-Bakr 2012 ICAP Warnemünde 1 Content: Introduction ERL s Introduction BERLinPro Motivation Computational Aspects

More information

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018 Fast Simulation of FEL Linacs with Collective Effects M. Dohlus FLS 2018 A typical X-FEL gun environment photo cathode cavity, solenoid, drift straight cavity, quadrupole, drift dispersive bend, quadrupole,

More information

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY Beam Dynamics and SASE Simulations for XFEL Igor Zagorodnov 4.. DESY Beam dynamics simulations for the European XFEL Full 3D simulation method ( CPU, ~ hours) Gun LH M, M,3 E = 3 MeV E = 7 MeV E 3 = 4

More information

Large Bandwidth Radiation at XFEL

Large Bandwidth Radiation at XFEL Large Bandwidth Radiation at XFEL Usage of corrugated structure for increase of the energy chirp Igor Zagorodnov S2E Meeting DESY 8. April 26 Energy spread and Radiation Bandwidth FEL bandwidth for negligible

More information

Introduction to the benchmark problem

Introduction to the benchmark problem Introduction to the benchmark problem M. Krasilnikov (DESY) Working group 4: Low emittance electron guns 37th ICFA Beam Dynamics Workshop Future Light Sources 15 19 May 6 DESY, Hamburg, Germany Outline

More information

X-band Photoinjector Beam Dynamics

X-band Photoinjector Beam Dynamics X-band Photoinjector Beam Dynamics Feng Zhou SLAC Other contributors: C. Adolphsen, Y. Ding, Z. Li, T. Raubenheimer, and A. Vlieks, Thank Ji Qiang (LBL) for help of using ImpactT code ICFA FLS2010, SLAC,

More information

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ Orlova Ksenia Lomonosov Moscow State University GSP-, Leninskie Gory, Moscow, 11999, Russian Federation Email: ks13orl@list.ru

More information

Linac optimisation for the New Light Source

Linac optimisation for the New Light Source Linac optimisation for the New Light Source NLS source requirements Electron beam requirements for seeded cascade harmonic generation LINAC optimisation (2BC vs 3 BC) CSR issues energy chirp issues jitter

More information

Accelerator Physics Issues of ERL Prototype

Accelerator Physics Issues of ERL Prototype Accelerator Physics Issues of ERL Prototype Ivan Bazarov, Geoffrey Krafft Cornell University TJNAF ERL site visit (Mar 7-8, ) Part I (Bazarov). Optics. Space Charge Emittance Compensation in the Injector

More information

Towards a Low Emittance X-ray FEL at PSI

Towards a Low Emittance X-ray FEL at PSI Towards a Low Emittance X-ray FEL at PSI A. Adelmann, A. Anghel, R.J. Bakker, M. Dehler, R. Ganter, C. Gough, S. Ivkovic, F. Jenni, C. Kraus, S.C. Leemann, A. Oppelt, F. Le Pimpec, K. Li, P. Ming, B. Oswald,

More information

Impedance & Instabilities

Impedance & Instabilities Impedance & Instabilities The concept of wakefields and impedance Wakefield effects and their relation to important beam parameters Beam-pipe geometry and materials and their impact on impedance An introduction

More information

Dark current at the Euro-XFEL

Dark current at the Euro-XFEL Dark current at the Euro-XFEL Jang-Hui Han DESY, MPY Observations at PITZ and FLASH Estimation for the European XFEL Ideas to reduce dark current at the gun DC at FLASH RF gun M1 M2 M3 M4 M5 M6 M7 6 undulator

More information

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Case Study of IR/THz source for Pump-Probe Experiment at the European XFEL Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Introduction Outline Simulations of High-gain FEL (SASE) Simulation

More information

Low slice emittance preservation during bunch compression

Low slice emittance preservation during bunch compression Low slice emittance preservation during bunch compression S. Bettoni M. Aiba, B. Beutner, M. Pedrozzi, E. Prat, S. Reiche, T. Schietinger Outline. Introduction. Experimental studies a. Measurement procedure

More information

6 Bunch Compressor and Transfer to Main Linac

6 Bunch Compressor and Transfer to Main Linac II-159 6 Bunch Compressor and Transfer to Main Linac 6.1 Introduction The equilibrium bunch length in the damping ring (DR) is 6 mm, too long by an order of magnitude for optimum collider performance (σ

More information

X-Band RF Harmonic Compensation for Linear Bunch Compression in the LCLS

X-Band RF Harmonic Compensation for Linear Bunch Compression in the LCLS SLAC-TN-5- LCLS-TN-1-1 November 1,1 X-Band RF Harmonic Compensation for Linear Bunch Compression in the LCLS Paul Emma SLAC November 1, 1 ABSTRACT An X-band th harmonic RF section is used to linearize

More information

Accelerator Theory and Simulation at Rostock University

Accelerator Theory and Simulation at Rostock University Accelerator Theory and Simulation at Rostock University Hans-Walter Glock, Thomas Flisgen Gisela Pöplau Linear Collider Forum, 1st Meeting, June 14-15, 2010 DESY, Hamburg 15.06.2010 2010 UNIVERSITÄT ROSTOCK

More information

DESY FEL Seminar Progress in Optics Setup / Pt.1

DESY FEL Seminar Progress in Optics Setup / Pt.1 DESY FEL Sem 2019-02-26 / M.Vogt (MFL) J.Zemella (MPY1) / Optics Setup Pt.1 1 DESY FEL Seminar 2019-02-26 Progress in Optics Setup / Pt.1 Mathias Vogt (MFL) & Johann Zemella (MPY1) Reminder: Motivation

More information

Beam physics design of the Optimus+ SC linac

Beam physics design of the Optimus+ SC linac Beam phsics design of the Optimus+ SC linac M. Eshraqi ESS, Lund, Sweden November 18, 13 Abstract The ESS linac has eperienced several changes in the architecture and the latest modification was performed

More information

Wakefield induced Losses in the Manual Valves of the TESLA Cryomodule

Wakefield induced Losses in the Manual Valves of the TESLA Cryomodule Wakefield induced Losses in the Manual Valves of the TESLA Cryomodule Abstract M. Dohlus, H.-P. Wedekind, K. Zapfe Deutsches Elektronen Synchrotron Notkestr. 85, D-22603 Hamburg, Germany The beam pipe

More information

ILC Beam Dynamics Studies Using PLACET

ILC Beam Dynamics Studies Using PLACET ILC Beam Dynamics Studies Using PLACET Andrea Latina (CERN) July 11, 2007 John Adams Institute for Accelerator Science - Oxford (UK) Introduction Simulations Results Conclusions and Outlook PLACET Physical

More information

OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM

OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM LCLS-II TN-15-41 11/23/2015 J. Qiang, M. Venturini November 23, 2015 LCLSII-TN-15-41 1 Introduction L C L S - I I T E C H N I C

More information

Evaluating the Emittance Increase Due to the RF Coupler Fields

Evaluating the Emittance Increase Due to the RF Coupler Fields Evaluating the Emittance Increase Due to the RF Coupler Fields David H. Dowell May 2014 Revised June 2014 Final Revision November 11, 2014 Abstract This technical note proposes a method for evaluating

More information

Ultra-Short Low Charge Operation at FLASH and the European XFEL

Ultra-Short Low Charge Operation at FLASH and the European XFEL Ultra-Short Low Charge Operation at FLASH and the uropean XFL Igor Zagorodnov DSY, Hamburg, Germany 5.8. The 3nd FL Conference, Malmö Outline FLASH layout and desired beam parameters Technical constraints

More information

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Introduction Outline Simulations of SASE FEL Simulations of CTR Summary Issues for Discussion Mini-Workshop on THz Option at PITZ DESY, Zeuthen

More information

DESY/TEMF Meeting - Status 2011

DESY/TEMF Meeting - Status 2011 Erion Gjonaj Technische Universität Darmstadt, Computational Electromagetics Laboratory (TEMF) Schlossgartenstr. 8 64289 Darmstadt, Germany DESY/TEMF Meeting - Status 211 DESY, Hamburg, 16.12.211 Contents

More information

Alignment requirement for the SRF cavities of the LCLS-II injector LCLSII-TN /16/2014

Alignment requirement for the SRF cavities of the LCLS-II injector LCLSII-TN /16/2014 Alignment requirement for the SRF cavities of the LCLS-II injector LCLS-II TN-14-16 12/16/2014 R. K. Li, C. Papadopoulos, T. O. Raubenheimer, J. F. Schmerge, and F. Zhou December 16, 2014 LCLSII-TN-14-16

More information

LCLS S-band Structure Coupler

LCLS S-band Structure Coupler LCLS S-band Structure Coupler Zenghai Li Advanced Computations Department Stanford Linear Accelerator Center LCLS S-band L01/L02 Coupler Review Nov. 03, 2004 Overview Motivation Modeling tools Multipole

More information

Transverse Beam Optics of the FLASH Facility

Transverse Beam Optics of the FLASH Facility Transverse Beam Optics of the FLASH Facility ( current status and possible updates ) Nina Golubeva and Vladimir Balandin XFEL Beam Dynamics Group Meeting, 18 June 2007 Outline Different optics solutions

More information

INVESTIGATIONS OF THE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES LONGITUDINAL CHARGE

INVESTIGATIONS OF THE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES LONGITUDINAL CHARGE INVESTIGATIONS OF THE LONGITUDINAL CHARGE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES Markus Hüning III. Physikalisches Institut RWTH Aachen IIIa and DESY Invited talk at the DIPAC 2001 Methods to obtain

More information

Laser acceleration of electrons at Femilab/Nicadd photoinjector

Laser acceleration of electrons at Femilab/Nicadd photoinjector Laser acceleration of electrons at Femilab/Nicadd photoinjector P. Piot (FermiLab), R. Tikhoplav (University of Rochester) and A.C. Melissinos (University of Rochester) FNPL energy upgrade Laser acceleration

More information

Andreas Kabel Stanford Linear Accelerator Center

Andreas Kabel Stanford Linear Accelerator Center Numerical Calculation of CSR Effects Andreas Kabel Stanford Linear Accelerator Center 1. Motivation 2. CSR Effects 3. Considerations for Numerical Calculations 4. The Simulation Code TraFiC 4 5. Examples

More information

Review of proposals of ERL injector cryomodules. S. Belomestnykh

Review of proposals of ERL injector cryomodules. S. Belomestnykh Review of proposals of ERL injector cryomodules S. Belomestnykh ERL 2005 JLab, March 22, 2005 Introduction In this presentation we will review injector cryomodule designs either already existing or under

More information

CSR Benchmark Test-Case Results

CSR Benchmark Test-Case Results CSR Benchmark Test-Case Results Paul Emma SLAC January 4, 2 BERLIN CSR Workshop Chicane CSR Test-Case Chicane parameters symbol value unit Bend magnet length (not curved length) L B.5 m Drift length (projected;

More information

Parameter Study and Coupled S-Parameter Calculations of Superconducting RF Cavities

Parameter Study and Coupled S-Parameter Calculations of Superconducting RF Cavities Parameter Study and Coupled S-Parameter Calculations of Superconducting RF Cavities Tomasz Galek, Thomas Flisgen, Korinna Brackebusch, Kai Papke and Ursula van Rienen CST European User Conference 24.05.2012,

More information

Simulations for a bunch compressor at PITZ Study of high transformer ratios

Simulations for a bunch compressor at PITZ Study of high transformer ratios Simulations for a bunch compressor at PITZ Study of high transformer ratios G.Asova, A.Oppelt Zeuthen, 22.09.2015 Transformer Ratio (TR) Bunches with symmetric current profile drive pulse witness pulse

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Introduction Outline Optimization of Electron Beams Calculations of CTR/CDR Pulse Energy Summary & Outlook Prach Boonpornprasert

More information

Start2End Simulations for Micro Bunching Experiments at FLASH. reloaded :-(

Start2End Simulations for Micro Bunching Experiments at FLASH. reloaded :-( XFEL BD meeting 9..7 / M.Vogt / SE for µ bunching reloaded StartEnd Simulations for Micro Bunching Experiments at FLASH reloaded :-( 9..7 Mathias Vogt (MPY) Two Slides of Theory... A Revised Set Up (thanx

More information

Introduction. Thermoionic gun vs RF photo gun Magnetic compression vs Velocity bunching. Probe beam design options

Introduction. Thermoionic gun vs RF photo gun Magnetic compression vs Velocity bunching. Probe beam design options Introduction Following the 19/05/04 meeting at CERN about the "CTF3 accelerated programme", a possible french contribution has been envisaged to the 200 MeV Probe Beam Linac Two machine options were suggested,

More information

Expected properties of the radiation from VUV-FEL / femtosecond mode of operation / E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov

Expected properties of the radiation from VUV-FEL / femtosecond mode of operation / E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov Expected properties of the radiation from VUV-FEL / femtosecond mode of operation / E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov TESLA Collaboration Meeting, September 6-8, 2004 Experience from TTF FEL,

More information

Laser Heater Integration into XFEL. Update. Yauhen Kot XFEL Beam Dynamics Meeting

Laser Heater Integration into XFEL. Update. Yauhen Kot XFEL Beam Dynamics Meeting Laser Heater Integration into XFEL. Update. Yauhen Kot XFEL Beam Dynamics Meeting 5..8 Outline Overview about the main components and space margins Optics at the laser heater and diagnostics - FODO + parabola-like

More information

Generation and characterization of ultra-short electron and x-ray x pulses

Generation and characterization of ultra-short electron and x-ray x pulses Generation and characterization of ultra-short electron and x-ray x pulses Zhirong Huang (SLAC) Compact XFEL workshop July 19-20, 2010, Shanghai, China Ultra-bright Promise of XFELs Ultra-fast LCLS Methods

More information

What have we learned from the LCLS injector?*

What have we learned from the LCLS injector?* SLAC-PUB-14644 LCLS-TN-11-4 October 19, 2011 What have we learned from the LCLS injector?* Feng Zhou and Axel Brachmann for the LCLS injector team The LCLS injector reliably delivered a high quality electron

More information

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE Proceedings of FEL03, New York, NY, USA SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE S. Bettoni, M. Pedrozzi, S. Reiche, PSI, Villigen, Switzerland Abstract The first section of FEL injectors driven

More information

Simple limits on achieving a quasi-linear magnetic compression for an FEL driver

Simple limits on achieving a quasi-linear magnetic compression for an FEL driver SLAC-PUB-14445 Simple limits on achieving a quasi-linear magnetic compression for an FEL driver Yipeng Sun (yisun@slac.stanford.edu) SLAC National Accelerator Laboratory, Menlo Park, California 94025,

More information

Emittance preservation in TESLA

Emittance preservation in TESLA Emittance preservation in TESLA R.Brinkmann Deutsches Elektronen-Synchrotron DESY,Hamburg, Germany V.Tsakanov Yerevan Physics Institute/CANDLE, Yerevan, Armenia The main approaches to the emittance preservation

More information

SCSS Prototype Accelerator -- Its outline and achieved beam performance --

SCSS Prototype Accelerator -- Its outline and achieved beam performance -- SCSS Prototype Accelerator -- Its outline and achieved beam performance -- Hitoshi TANAKA RIKEN, XFEL Project Office 1 Content 1. Light Quality; SPring-8 v.s. XFEL 2. What are the critical issues? 3. Mission

More information

Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL

Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL Juliane Rönsch Universität Hamburg / DESY Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL 5/27/2009 1 Contents

More information

Fast Space Charge Calculations with a Multigrid Poisson Solver & Applications

Fast Space Charge Calculations with a Multigrid Poisson Solver & Applications Fast Space Charge Calculations with a Multigrid Poisson Solver & Applications Gisela Pöplau Ursula van Rienen Rostock University DESY, Hamburg, April 26, 2005 Bas van der Geer Marieke de Loos Pulsar Physics

More information

LCLS Injector Prototyping at the GTF

LCLS Injector Prototyping at the GTF LCLS Injector Prototyping at at the GTF John John Schmerge, SLAC SLAC November 3, 3, 23 23 GTF GTF Description Summary of of Previous Measurements Longitudinal Emittance Transverse Emittance Active LCLS

More information

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

PAL LINAC UPGRADE FOR A 1-3 Å XFEL PAL LINAC UPGRADE FOR A 1-3 Å XFEL J. S. Oh, W. Namkung, Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Korea Y. Kim, Deutsches Elektronen-Synchrotron DESY, D-603 Hamburg, Germany Abstract With

More information

Start-to-End Simulations

Start-to-End Simulations AKBP 9.3 Case Study for 100 µm SASE FEL Based on PITZ Accelerator for Pump-Probe Experiment at the European XFEL Start-to-End Simulations Outline Introduction Beam Optimization Beam Transport Simulation

More information

Resonant Excitation of High Order Modes in Superconducting RF Cavities of LCLS II Linac

Resonant Excitation of High Order Modes in Superconducting RF Cavities of LCLS II Linac Resonant Excitation of High Order Modes in Superconducting RF Cavities of LCLS II Linac LCLS-II TN-4-XX 3/2/5 Alexander Sukhanov, Alexander Vostrikov, Timergali Khabiboulline, Andrei Lunin, Nikolay Solyak,

More information

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV

$)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV $)ODW%HDP(OHFWURQ6RXUFHIRU/LQHDU&ROOLGHUV R. Brinkmann, Ya. Derbenev and K. Flöttmann, DESY April 1999 $EVWUDFW We discuss the possibility of generating a low-emittance flat (ε y

More information

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1 Beam Physics at SLAC Yunhai Cai Beam Physics Department Head July 8, 2008 SLAC Annual Program Review Page 1 Members in the ABP Department * Head: Yunhai Cai * Staff: Gennady Stupakov Karl Bane Zhirong

More information

New Metamaterials (MMs) based on. an Extended Transmission Line (TL) Approach. for Novel Microwave. Components, Antennas and Reflectors.

New Metamaterials (MMs) based on. an Extended Transmission Line (TL) Approach. for Novel Microwave. Components, Antennas and Reflectors. New Metamaterials (MMs) based on an Etended Transmission e (T) Approach for Novel Microwave Components, Antennas and eflectors Applications Microwave Electronics ab Outle I. Anisotropic H / H D Structures

More information

BERLinPro. An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN

BERLinPro. An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN BERLinPro An ERL Demonstration facility at the HELMHOLTZ ZENTRUM BERLIN BERLinPro: ERL demonstration facility to prepare the ground for a few GeV ERL @ Berlin-Adlershof Goal: 100MeV, 100mA beam Small emittance,

More information

Modeling of the secondary electron emission in rf photocathode guns

Modeling of the secondary electron emission in rf photocathode guns Modeling of the secondary electron emission in rf photocathode guns J.-H. Han, DESY Zeuthen 8 June 2004 Joint Uni. Hamburg and DESY Accelerator Physics Seminar Contents 1. Necessity of secondary electron

More information

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012

X-band RF driven hard X-ray FELs. Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 X-band RF driven hard X-ray FELs Yipeng Sun ICFA Workshop on Future Light Sources March 5-9, 2012 Motivations & Contents Motivations Develop more compact (hopefully cheaper) FEL drivers, L S C X-band (successful

More information

Status of X-ray FEL/SPring-8 Machine Construction

Status of X-ray FEL/SPring-8 Machine Construction T. Shintake@ Oct 2008 Status of X-ray FEL/SPring-8 Machine Construction Representing JASRI+RIKEN Joint Team T. Shintake RIKEN/SPring-8 Status of 8 GeV XFEL/SPring-8 Construction What we learned from SCSS

More information

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab.

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab. VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab. Yuri Saveliev on behalf of VELA and CLARA teams STFC, ASTeC, Cockcroft Institute Daresbury Lab., UK Outline VELA (Versatile Electron

More information

Notes 7 Analytic Continuation

Notes 7 Analytic Continuation ECE 6382 Fall 27 David R. Jackson Notes 7 Analtic Continuation Notes are from D. R. Wilton, Dept. of ECE Analtic Continuation of Functions We define analtic continuation as the process of continuing a

More information

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ 1. Motivation 2. Transverse deflecting structure 3. Longitudinal phase space tomography 4.

More information

Motivation of emission studies at PITZ

Motivation of emission studies at PITZ Motivation of emission studies at PITZ PITZ activities to understand the discrepancies between measurements and simulations in: Transverse phase space Optimum machine parameters Auxiliary measurements

More information

A Two-Stage Bunch Compressor Option for the US Cold LC

A Two-Stage Bunch Compressor Option for the US Cold LC LCC-0151 SLAC-TN-0-048 June 2004 Linear Collider Collaboration Tech Notes A Two-Stage Bunch Compressor Option for the US Cold LC Abstract This note documents a set of expressions used to explore the issue

More information

3. Synchrotrons. Synchrotron Basics

3. Synchrotrons. Synchrotron Basics 1 3. Synchrotrons Synchrotron Basics What you will learn about 2 Overview of a Synchrotron Source Losing & Replenishing Electrons Storage Ring and Magnetic Lattice Synchrotron Radiation Flux, Brilliance

More information

Start-to-end beam optics development and multi-particle tracking for the ILC undulator-based positron source*

Start-to-end beam optics development and multi-particle tracking for the ILC undulator-based positron source* SLAC-PUB-12239 January 27 (A) Start-to-end beam optics development and multi-particle tracking for the ILC undulator-based positron source* F. Zhou, Y. Batygin, Y. Nosochkov, J. C. Sheppard, and M. D.

More information

Microbunching Workshop 2010 March 24, 2010, Frascati, Italy. Zhirong Huang

Microbunching Workshop 2010 March 24, 2010, Frascati, Italy. Zhirong Huang Measurements of the LCLS Laser Heater and its impact on the LCLS FEL Performance Z. Huang for the LCLS commissioning team LCLS 1 1 Outline Introduction LCLS setup and measurements Effects on FEL performance

More information

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract SLAC National Accelerator Lab LCLS-II TN-17-4 February 217 LCLS-II SCRF start-to-end simulations and global optimization as of September 216 G. Marcus SLAC, Menlo Park, CA 9425 J. Qiang LBNL, Berkeley,

More information

Ballistic Orbit at FLASH: Latest Results. P. Castro (MPY)

Ballistic Orbit at FLASH: Latest Results. P. Castro (MPY) Ballistic Orbit at FLASH: Latest Results P. Castro (MPY) Contents of this talk: What ballistic orbit is Our Motivation A little bit of history Last Results Outlook What ballistic orbit is: a beam trajectory

More information

Wakefield computations for the LCLS Injector (Part I) *

Wakefield computations for the LCLS Injector (Part I) * LCLS-TN-05-17 Wakefield computations for the LCLS Injector (Part I) * June 13 th 005 (reedited May 007) C.Limborg-Deprey, K.Bane Abstract In this document, we report on basic wakefield computations used

More information

FLASH/DESY, Hamburg. Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team -

FLASH/DESY, Hamburg. Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team - First Lasing below 7nm Wavelength at FLASH/DESY, Hamburg Jörg Rossbach University of Hamburg & DESY, Germany - For the FLASH Team - email: joerg.rossbach@desy.de FLASH: The first FEL user facility for

More information

Angular momentum dominated electron beam and flat beam generation. FNPL video conference Feb. 28, 2005 Yin-e Sun 1

Angular momentum dominated electron beam and flat beam generation. FNPL video conference Feb. 28, 2005 Yin-e Sun 1 Angular momentum dominated electron beam and flat beam generation yinesun@uchicago.edu FNPL video conference Feb. 8, 5 Yin-e Sun 1 outline angular momentum dominated electron beam and its applications

More information

Femto-second FEL Generation with Very Low Charge at LCLS

Femto-second FEL Generation with Very Low Charge at LCLS Femto-second FEL Generation with Very Low Charge at LCLS Yuantao Ding, For the LCLS commissioning team X-ray Science at the Femtosecond to Attosecond Frontier workshop May 18-20, 2009, UCLA SLAC-PUB-13525;

More information

OCTUPOLE/QUADRUPOLE/ ACTING IN ONE DIRECTION Alexander Mikhailichenko Cornell University, LEPP, Ithaca, NY 14853

OCTUPOLE/QUADRUPOLE/ ACTING IN ONE DIRECTION Alexander Mikhailichenko Cornell University, LEPP, Ithaca, NY 14853 October 13, 3. CB 3-17 OCTUPOLE/QUADRUPOLE/ ACTIG I OE DIRECTIO Aleander Mikhailichenko Cornell Universit, LEPP, Ithaca, Y 14853 We propose to use elements of beam optics (quads, setupoles, octupoles,

More information

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE*

FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* Proceedings of FEL014, Basel, Switzerland FURTHER UNDERSTANDING THE LCLS INJECTOR EMITTANCE* F. Zhou, K. Bane, Y. Ding, Z. Huang, and H. Loos, SLAC, Menlo Park, CA 9405, USA Abstract Coherent optical transition

More information

Photo Injector Test facility at DESY, Zeuthen site

Photo Injector Test facility at DESY, Zeuthen site Photo Injector Test facility at DESY, Zeuthen site PITZ EXPERIENCE ON THE EXPERIMENTAL OPTIMIZATION OF THE RF PHOTO INJECTOR FOR THE EUROPEAN XFEL Mikhail Krasilnikov (DESY) for the PITZ Team FEL 2013

More information

DESY/TEMF Meeting Status 2012

DESY/TEMF Meeting Status 2012 DESY/TEMF Meeting Status 2012 PIC Simulation for the Electron Source of PITZ DESY, Hamburg, 17.12.2012 Ye Chen, Erion Gjonaj, Wolfgang Müller,Thomas Weiland Technische Universität Darmstadt, Computational

More information

TTF and VUV-FEL Injector Commissioning

TTF and VUV-FEL Injector Commissioning TESLA Collaboration Meeting Sep. 6-8, 2004 Orsay TTF and VUV-FEL Injector Commissioning Siegfried Schreiber, Klaus Floettmann DESY Brief description of the injector Basic measurements Preliminary results

More information

PROBLEMS ON EQUILIBRIUM OF PARTICLES

PROBLEMS ON EQUILIBRIUM OF PARTICLES O EQUILIBRIUM O PRICLES 1. ind the angle of tilt q with the horiontal so that the contact force at B will be one-half that at for the smooth clinder. (3/15) q?, contact force at B will be one-half that

More information

FEL R&D goals and potential in UK Institutes

FEL R&D goals and potential in UK Institutes FEL R&D goals and potential in UK Institutes Brian McNeil, Department of Physics, University of Strathclyde For: Peter Ratoff, Director, Cockcroft Institute, Daresbury Laboratory UK-XFEL R&D goals Critically

More information

A comparison of estimation accuracy by the use of KF, EKF & UKF filters

A comparison of estimation accuracy by the use of KF, EKF & UKF filters Computational Methods and Eperimental Measurements XIII 779 A comparison of estimation accurac b the use of KF EKF & UKF filters S. Konatowski & A. T. Pieniężn Department of Electronics Militar Universit

More information

High gradient, high average power structure development at UCLA and Univ. Rome in X-X. band

High gradient, high average power structure development at UCLA and Univ. Rome in X-X. band High gradient, high average power structure development at UCLA and Univ. Rome in X-X and S-S band May 23-25, 25, 2007 US High Gradient Research Collaboration Workshop Atsushi Fukasawa, James Rosenzweig,

More information

Parameter selection and longitudinal phase space simulation for a single stage X-band FEL driver at 250 MeV

Parameter selection and longitudinal phase space simulation for a single stage X-band FEL driver at 250 MeV Parameter selection and longitudinal phase space simulation for a single stage X-band FEL driver at 25 MeV Yipeng Sun and Tor Raubenheimer, Juhao Wu SLAC, Stanford, CA 9425, USA Hard x-ray Free electron

More information

Simulation of transverse emittance measurements using the single slit method

Simulation of transverse emittance measurements using the single slit method Simulation of transverse emittance measurements using the single slit method Rudolf Höfler Vienna University of Technology DESY Zeuthen Summer Student Program 007 Abstract Emittance measurements using

More information

WG2 on ERL light sources CHESS & LEPP

WG2 on ERL light sources CHESS & LEPP Charge: WG2 on ERL light sources Address and try to answer a list of critical questions for ERL light sources. Session leaders can approach each question by means of (a) (Very) short presentations (b)

More information

Problems (Equilibrium of Particles)

Problems (Equilibrium of Particles) 1. he 4kg block rests on the rough surface. Length of the spring is 18 mm in the position shown. Unstretched length of the spring is 2 mm. Determine the coefficient of friction required for the equilibrium.

More information

Linac Driven Free Electron Lasers (III)

Linac Driven Free Electron Lasers (III) Linac Driven Free Electron Lasers (III) Massimo.Ferrario@lnf.infn.it SASE FEL Electron Beam Requirements: High Brightness B n ( ) 1+ K 2 2 " MIN r #$ % &B! B n 2 n K 2 minimum radiation wavelength energy

More information

DESIGN STUDY OF LCLS CHIRP-CONTROL WITH A CORRUGATED STRUCTURE

DESIGN STUDY OF LCLS CHIRP-CONTROL WITH A CORRUGATED STRUCTURE DESIGN STUDY OF LCLS CHIRP-CONTROL WITH A CORRUGATED STRUCTURE Z. Zhang, K. Bane, Y. Ding, Z. Huang, R. Iverson, T. Maxwell, G. Stupakov, L. Wang SLAC National Accelerator Laboratory, Menlo Park, CA 9425,

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information