DESY/TEMF Meeting - Status 2011

Size: px
Start display at page:

Download "DESY/TEMF Meeting - Status 2011"

Transcription

1 Erion Gjonaj Technische Universität Darmstadt, Computational Electromagetics Laboratory (TEMF) Schlossgartenstr Darmstadt, Germany DESY/TEMF Meeting - Status 211 DESY, Hamburg,

2 Contents - Problem description - Simulation approaches - Results - Discussion Field map calculations - Mixed mesh high order FEM code - Field quality study for the 3.9 GHz 3 rd harmonic cavity Summary

3 Problem description Optimized machine parameters for Q = 1nC (simulations) talk from M. Krasilnikov, Zeuthen, 211

4 Problem description SPCH limit talk from M. Krasilnikov, Zeuthen, 211

5 Problem description Sources of discrepancy: Thermal energy spread at cathode Oxide layer effects and cathode impurities Limited knowledge of machine conditions during measurement Emittance measurement slit scan technique Wakefields Improper modeling of radiation fields? Inaccurate simulation of the emission process?

6 Problem description Bring particles to computational grid Solve for electrostatic field on the grid (DFT) Push particle positions and momenta Transform to average rest frame Transform (fields) back to lab frame Boosted frame approach (ASTRA): Retardation effects due to relative motion within bunch? Acceleration radiation? Relativistic correction for mirror charge fields?

7 Beam dynamics in the boosted frame Problem description Field of accelerated point charge: 2 ( )( 1 ) q n β β n ( n β) β E = πε ( 1 β n ) R ( 1 β n ) R retardation acceleration Retardation only wrt. mean bunch motion Effect is stronger when space charge is included t= t r v / c 1,9,8,7,6,5,4,3,2,1 Velocity sheer (space charge free simulation) Mean velocity Velocity sheer Beam uniformity assumption violated few mm away from cathode,2,4,6,8 1 1,2 1,4 1,6 1,8 2 z / (cm) Effect is stronger when mirror charges are considered

8 Effect of retardation for single electron fields.4 V ( ) p x F x m= m q F = e = e E E = 6 MV/m b x d x m = 1mm mv( x) v'( x) 2 vx ( ) (1 ) 2 c V p ( x) = 3/2 = F, v() = c F x( 2 c m+ F x) 2 2 cm+ Fx

9 Effect of retardation for single electron fields.8 V ( ) p x F x m= m q F = e = e E E = 6 MV/m X p t m.6.4 mv( x) v'( x) 2 vx ( ) (1 ) 2 c 3/2 = F, v() = μ μ μ μ μ μ 1-11 t s X () t = c( c m + F t cm) p F

10 t s Effect of retardation for single electron fields 3. μ μ μ μ μ μ1-12 t T r d,t V ( ) p x 5. μ μ μ μ μ μ1-11 t s observer F r x Retardation time at arbitrary observer position as a function of time: ( ) 2 ( T ( x, t), x X ( t) = 2 ( ct x) 2 c m+ F ( x ct) 2, ct > x > X p( t ) 2[ ccm+ F ( x ct)] 2 ct + x c m+ F x + ct) < 3 p 2c m+ 2 cf ( ct + x), x Xp[ Tr( x, t)] Tr (,) x t = t c x > ct

11 Effect of retardation for single electron fields Electron fields at fixed positions.12 Static LW x =.1 Static LW x = 1 mm E V m.6 E V m μ μ μ μ μ μ μ μ μ μ μ μ 1-11 t s t s

12 Effect of retardation for single electron fields F V () p t x.7.6 Driver and test particle trajectories X p t X 1 t X 2 t V ( p t Δ ) V ( p t+δ ).5 t =Δ Δ = 1 ps X t m.4.3 bunch tail bunch head x μ μ μ 1-11 t s

13 Effect of retardation for single electron fields Fields at head particle Fields at tail particle. Static.7 Static LW LW E (, Δ ) =.55 V/m s E V m E V m.4.3 E (, Δ =.86 V/ m lw ) t =Δ 5. μ μ μ μ μ μ 1-11 t s. 5. μ μ μ 1-1 t s

14 Effect of retardation for single electron fields Add mirror charge at conducting surface Retardation times of particle and its mirror V () p t F V () p t x 3. μ μ 1-11 t T r d,t T m d,t mirror charge V ( ) p t Δ V ( ) p t+δ t s 2. μ μ 1-11 Δ = 1 ps 1. μ μ μ μ μ μ μ μ 1-11 t s

15 Effect of retardation on single electron dynamics Total fields at head particle Total fields at tail particle..3 Static Static LW -.1 LW.25 E V m x 1 E V m.2.15 E (, Δ =.11V/m s ) E (, Δ =.17 V/ m lw ) t =Δ 5. μ μ μ μ μ μ 1-11 t s. 1. μ μ μ μ μ μ 1-11 t s

16 Lienard-Wiechert particle-particle approach r -ct now +ct Store full particle history huge memory r(t) R n r (t r ) macroparticles Search at every time step retarded times and positions for all particle positions - N p 2 N t operations cathode t r t n t n+1 t Full physics Accuracy depends only on Time step image charges Number of particles

17 The PIC approach Bring particles to computational grid Solve full set of Maxwell equations on the grid Push particle positions and momenta Includes all effects; can handle arbitrary geometry Numerically more efficient then LW approach Accuracy depends on: accuracy of field solution, number of particles, current smoothing, time step, 19. Juli 211 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder PD Dr.rer.nat. Erion Gjonaj

18 High order DG-FEM method Very accurate field solutions using piecewise high order polynomial approximation with grid cells (DG-FEM)* E Ii 1 I i Field resolution is given by approximation order not by grid step use sparse grids Ei (, ) 1 xt Ei ( x, t) Spectral convergence (wrt. order) Very low dispersion errors E( xt, ) x xi 1 x x i i + 1 * E. Gjonaj at al., New J. of Phys., Vol. 8, (26), pp Juli 211 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder PD Dr.rer.nat. Erion Gjonaj

19 Charge conserving current interpolation - Macroparticle current density: jr (,) t = Qpvp() t W p r rp() t p v q W q ( r rq) - DG-FEM current projection: ( ) j v r r r e 3 e i() t Qp p() t d Wp, t ϕi ( ) p Ω () t = ep Ω e Ω ep r p r q - Discrete current / time step / cell: J n+ 1 t e n n+ 1 e i( t, t ) = dtj ( ) n t i t v p W p ( r rp ) - Choice of particle size most critical parameter for simulation accuracy 19. Juli 211 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder PD Dr.rer.nat. Erion Gjonaj

20 Beam dynamics in the gun: LW simulations 3,5 Projected transverse emittance for different particle numbers Q = 1 nc XY_rms =.75 mm non-optimized setup (data from 21) 3 εn / (mm mrad) 2,5 2 1,5 1,5 1. particles 5. particles 1. particles 2. particles 5. particles ~ 2 TB,5 1 1,5 2 2,5 3 3,5 4 4,5 5 z / (cm) t =.1 ps

21 Beam dynamics in the gun: LW simulations systematic different 3,5 behavior at the cathode 3 Projected transverse emittance: comparison with ASTRA Q = 1 nc XY_rms =.75 mm non-optimized setup (data from 21) 2,5 εn / (mm mrad) 2 1,5 1,5 1. particles 5. particles 1. particles 2. particles 5. particles ASTRA,5 1 1,5 2 2,5 3 3,5 4 4,5 5 z / (cm) t =.1 ps

22 Beam dynamics in the gun: PIC simulations 4 Projected transverse emittance for different approximation orders Q = 1 nc XY_rms =.75 mm non-optimized setup (data from 21) 3,5 3 εn / (mm mrad) 2,5 2 1,5 1,5 PIC - P1 PIC - P2 PIC - P3 PIC - P4,5 1 1,5 2 2,5 3 3,5 4 4,5 5 z / (cm) z = 1 mm s = 1 mm N p = 5.

23 Beam dynamics in the gun: PIC simulations 4 Projected transverse emittance for different approximation orders Q = 1 nc XY_rms =.75 mm non-optimized setup (data from 21) 3,5 3 εn / (mm mrad) 2,5 2 1,5 1,5 PIC - P1 PIC - P2 PIC - P3 PIC - P4 Lienard-Wiechert ASTRA,5 1 1,5 2 2,5 3 3,5 4 4,5 5 z / (cm) z = 1 mm s = 2 mm N p = 5.

24 Beam dynamics in the gun Q = 1 nc XY_rms =.75 mm ASTRA (z = 5cm) LW (z = 5cm) PIC (z = 5cm)

25 Beam dynamics in the gun Q = 1 nc XY_rms =.75 mm ASTRA (z = 5cm) LW (z = 5cm) PIC (z = 5cm)

26 Beam dynamics in the gun Slice emittances for the different codes (z = 5 cm) Q = 1 nc XY_rms =.75 mm non-optimized setup (data from 21)

27 Beam dynamics for PITZ-1.8 setup no SPCH limiting at XY_rms =.3 mm Projected transverse emittance for different XY_rms sizes Q = 1 nc PITZ-1.8 setup (M. Krasilnikov, 211)

28 Beam dynamics for PITZ-1.8 setup no SPCH limiting at XY_rms =.3 mm Projected transverse emittance for different XY_rms sizes Q = 1 nc PITZ-1.8 setup (M. Krasilnikov, 211)

29 Beam dynamics for PITZ-1.8 setup no SPCH limiting at XY_rms =.3 mm Projected transverse emittance for different XY_rms sizes Q = 1 nc PITZ-1.8 setup (M. Krasilnikov, 211)

30 Beam dynamics for PITZ-1.8 setup Restarted ASTRA simulations with LW bunch as initial distribution Q = 1 nc XY_rms =.4 mm PITZ-1.8 setup (M. Krasilnikov, 211) Emittance at EMSY1 vs. z EMSY1 (z = 5.74m)

31 Beam dynamics for PITZ-1.8 setup ASTRA (z = 5.74 m) LW (z = 5.74m) Q = 1 nc XY_rms =.4 mm PITZ-1.8 setup (M. Krasilnikov, 211)

32 Beam dynamics for PITZ-1.8 setup ASTRA (z = 5.74 m) LW (z = 5.74m) Q = 1 nc XY_rms =.4 mm PITZ-1.8 setup (M. Krasilnikov, 211)

33 Beam dynamics for PITZ-1.8 setup Slice emittances for the different codes (z = 5.74 m) Q = 1 nc XY_rms =.4 mm PITZ-1.8 setup (M. Krasilnikov, 211)

34 2,2 Beam dynamics in the injector 2 1,8 Q = 1 nc PITZ-1.8 setup (M. Krasilnikov, 211) 1,6 1,4 1,2 1,8,6 restarted LW,4,2,1,2,3,4,5,6,7,8

35 Beam dynamics for PITZ-1.8 setup Still no good agreement with experiment Could extract full bunch charge at XY_rms =.3 mm Slightly larger emittance than ASTRA Emittance minimum and curve pattern same as ASTRA Are other effects responsible for the discrepancy (wakefields?) Restart positions too close to cathode backplane Longitudinal density oscillations not fully understood Convergence of LW vs. time step is unclear 19. Juli 211 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder PD Dr.rer.nat. Erion Gjonaj

36 Discussion on space charge at the cathode dt =.1 ps Np = 5 K dt =.1 ps Np = 5K z = 1cm dt =.5 ps Np = 5 K dt =.5 ps Np = 5K z = 1cm Q = 1 nc XY_rms =.3 mm dt =.1 ps Np = 1 M dt =.1 ps Np = 1M z = 1cm

37 Discussion on space charge at the cathode No convergence: need to refine dt and N p simultaneously LW slice emittances for different parameters (z = 1cm) Q = 1 nc XY_rms =.3 mm PITZ-1.8 setup (M. Krasilnikov, 211)

38 Discussion on space charge at the cathode V () p t σ F V () p t x mv( x) v'( x) 2 vx ( ) (1 ) 2 c 3/2 = F + F ( ), m x v() = cloud mirror charge Point charge emission from ideal surface not possible: Need a cloud mirror charge distribution v( x) = 1 2 2x 2x 2 Erf ( ) ( ) σ k ke Fm x = σ 2 2πxσ 4x Main branch solution π cmxσ 2x ( πσ (4cmx+ kerf( ) + 4 F x ) 2 2 π kx) σ 2 2 2

39 Discussion on space charge at the cathode Wall force modified by cloud charge Usual trajectory: small wall interaction -2. μ 1-17 Cloud force Coulomb force.4 σ = 1μm E = 6MV/m -4. μ F x V m -6. μ 1-17 b x.2-8. μ μ μ μ μ μ μ 1-6 x m. 2.μ μ μ μ x m

40 Discussion on space charge at the cathode Small size particle trajectory SPCH limited trajectory.1.8 σ = 2nm.1.5 σ = 17 nm E = 6MV/m E = 6MV/m b x.6 b x μ μ μ μ μ μ μ μ μ μ 1-8 x m x m

41 Discussion on space charge at the cathode Low field / large size particle trajectory SPCH limited trajectory.8.6 σ = 1μm σ = 1μm.5 E = E = 21 V/m 24 V/m b x.4 b x μ μ μ μ x m 2.μ μ μ μ x m

42 Discussion on space charge at the cathode Minimum separation distance between particle and its mirror: LW: ~time step PIC: macroparticle shape ASTRA: longitudinal grid step (?) Needs to be reduced at high charge densities: but end up with individual particle interactions σ < λ D No numerical convergence Only cure, increase number of particles in the simulation Full charge extraction at.3 mm possible with ASTRA (?) 19. Juli 211 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder PD Dr.rer.nat. Erion Gjonaj

43 Field map calculations Field noise in eigenmode simulations E / [kv / m] Typical field noise on-axis for computations with unstructured grids k - quadratic E x E y z / [cm] Example tetrahedral mesh for the 3.9 GHz 3 rd harmonic cavity Need huge amount of DoFs to compensate for mesh asymmetry Special treatment for the coupler kicks (PAC 29, DESY / TEMF 21) So far completely noise-free field maps only possible with Cartesian grids

44 Field map calculations Mixed mesh high order FEM approach Data already available for field map at structured points Cartesian mesh: no near field noise Low frequency noise from far fields close to the boundary Tetrahedral mesh: necessary for fine geometry

45 Field map calculations Mixed mesh high order FEM approach

46 Field map calculations Mixed mesh high order FEM approach

47 Field map calculations Mixed mesh high order FEM approach

48 Field map calculations Mixed mesh high order FEM approach

49 Field map calculations Field quality study for the 3.9 GHz cavity Fields on axis: Mixed mesh with 35K elements Fields on axis: Tetrahedral mesh with 45K elements

50 Field map calculations Field quality study for the 3.9 GHz cavity Fields on axis: Mixed mesh with 35K elements Fields on axis: Tetrahedral mesh with 45K elements

51 Field map calculations Field quality study for the 3.9 GHz cavity Fields on axis: Mixed mesh with 35K elements Fields on axis: Tetrahedral mesh with 45K elements

52 Field map calculations Field quality study for the 3.9 GHz cavity Use of different orders in different parts of the mesh to increase smoothness (not accuracy),1,8,6,4 E / a.u.,2 -,2 -,4 -,6 E y : P-P E y : P-P2 -,8 E y : P-P3 E y : P3-P3 -,1 -,55 -,45 -,35 -,25 -,15 -,5,5,15 z / m

53 Field map calculations Field quality study for the 3.9 GHz cavity Transversal fields off axis: Mixed mesh with 35K elements Transversal fields off axis: Tetrahedral mesh with 45K elements

54 Thank you for your attention 23. Juli 21 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder PD Dr.rer.nat. Erion Gjonaj

Beam dynamics studies for PITZ using a 3D full-wave Lienard-Wiechert PP code

Beam dynamics studies for PITZ using a 3D full-wave Lienard-Wiechert PP code Beam dynamics studies for PITZ using a 3D full-wave Lienard-Wiechert PP code Y. Chen, E. Gjonaj, H. De Gersem, T. Weiland TEMF, Technische Universität Darmstadt, Germany DESY-TEMF Collaboration Meeting

More information

Current Status of Bunch Emission Simulation for the PITZ Gun

Current Status of Bunch Emission Simulation for the PITZ Gun TUD-DESY Meeting 2013 ROOM 114, Darmstadt, Germany, 19.12.2013 Current Status of Bunch Emission Simulation for the PITZ Gun Ye Chen, Erion Gjonaj, Wolfgang Müller,Thomas Weiland 19. Dec. 2013 TU Darmstadt

More information

DESY/TEMF Meeting Status 2012

DESY/TEMF Meeting Status 2012 DESY/TEMF Meeting Status 2012 PIC Simulation for the Electron Source of PITZ DESY, Hamburg, 17.12.2012 Ye Chen, Erion Gjonaj, Wolfgang Müller,Thomas Weiland Technische Universität Darmstadt, Computational

More information

Lab Report TEMF - TU Darmstadt

Lab Report TEMF - TU Darmstadt Institut für Theorie Elektromagnetischer Felder Lab Report TEMF - TU Darmstadt W. Ackermann, R. Hampel, M. Kunze T. Lau, W.F.O. Müller, S. Setzer, T. Weiland, I. Zagorodnov TESLA Collaboration Meeting

More information

Electron Emission Studies Using Enhanced QE Models

Electron Emission Studies Using Enhanced QE Models Y. Chen, E. Gjonaj, H. De Gersem, W.F.O. Müller, T. Weiland Computational Electromagnetics Laboratory (TEMF) Technische Universität Darmstadt, Germany Electron Emission Studies Using Enhanced QE Models

More information

Numerical modelling of photoemission for the PITZ photoinjector

Numerical modelling of photoemission for the PITZ photoinjector Numerical modelling of photoemission for the PITZ photoinjector Ye Chen, Erion Gjonaj, Wolfgang Müller, Herbert De Gersem, Thomas Weiland TEMF, TU Darmstadt DESY-TEMF Collaboration Meeting DESY, Hamburg,

More information

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018

Fast Simulation of FEL Linacs with Collective Effects. M. Dohlus FLS 2018 Fast Simulation of FEL Linacs with Collective Effects M. Dohlus FLS 2018 A typical X-FEL gun environment photo cathode cavity, solenoid, drift straight cavity, quadrupole, drift dispersive bend, quadrupole,

More information

Introduction to the benchmark problem

Introduction to the benchmark problem Introduction to the benchmark problem M. Krasilnikov (DESY) Working group 4: Low emittance electron guns 37th ICFA Beam Dynamics Workshop Future Light Sources 15 19 May 6 DESY, Hamburg, Germany Outline

More information

Motivation of emission studies at PITZ

Motivation of emission studies at PITZ Motivation of emission studies at PITZ PITZ activities to understand the discrepancies between measurements and simulations in: Transverse phase space Optimum machine parameters Auxiliary measurements

More information

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ

ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ ASTRA simulations of the slice longitudinal momentum spread along the beamline for PITZ Orlova Ksenia Lomonosov Moscow State University GSP-, Leninskie Gory, Moscow, 11999, Russian Federation Email: ks13orl@list.ru

More information

Selected Beam Studies at PITZ in 2017

Selected Beam Studies at PITZ in 2017 Selected Beam Studies at PITZ in 7 Ye Chen and Mikhail Krasilnikov for the PITZ Team TEMF-DESY Collaboration Meeting..7, TEMF, Darmstadt, Germany Contents Photoemission modeling in the gun Updates on beam

More information

Method of Perturbative-PIC Simulation for CSR Effect

Method of Perturbative-PIC Simulation for CSR Effect Method of Perturbative-PIC Simulation for CSR Effect Jack J. Shi Department of Physics & Astronomy, University of Kansas OUTLINE Why Do We Want to Do This? Perturbation Expansion of the Retardation of

More information

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site

Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site 1 Diagnostic Systems for Characterizing Electron Sources at the Photo Injector Test Facility at DESY, Zeuthen site Sakhorn Rimjaem (on behalf of the PITZ team) Motivation Photo Injector Test Facility at

More information

Progress towards slice emittance measurements at PITZ. Raffael Niemczyk for the PITZ team, Würzburg, March 20 th 2018

Progress towards slice emittance measurements at PITZ. Raffael Niemczyk for the PITZ team, Würzburg, March 20 th 2018 Progress towards slice emittance measurements at PITZ Raffael Niemczyk for the PITZ team, Würzburg, March 20 th 2018 PITZ Overview Photo-Injector Test Facility at DESY, Zeuthen Site > Three Emittance Measurement

More information

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ

Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Experimental Optimization of Electron Beams for Generating THz CTR and CDR with PITZ Introduction Outline Optimization of Electron Beams Calculations of CTR/CDR Pulse Energy Summary & Outlook Prach Boonpornprasert

More information

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg

Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems. Martin Dohlus DESY, Hamburg Modeling of Space Charge Effects and Coherent Synchrotron Radiation in Bunch Compression Systems Martin Dohlus DESY, Hamburg SC and CSR effects are crucial for design & simulation of BC systems CSR and

More information

Dark current at the Euro-XFEL

Dark current at the Euro-XFEL Dark current at the Euro-XFEL Jang-Hui Han DESY, MPY Observations at PITZ and FLASH Estimation for the European XFEL Ideas to reduce dark current at the gun DC at FLASH RF gun M1 M2 M3 M4 M5 M6 M7 6 undulator

More information

Andreas Kabel Stanford Linear Accelerator Center

Andreas Kabel Stanford Linear Accelerator Center Numerical Calculation of CSR Effects Andreas Kabel Stanford Linear Accelerator Center 1. Motivation 2. CSR Effects 3. Considerations for Numerical Calculations 4. The Simulation Code TraFiC 4 5. Examples

More information

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting

Dark Current at Injector. Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting Dark Current at Injector Jang-Hui Han 27 November 2006 XFEL Beam Dynamics Meeting Considerations for the guns Ultra-low slice emittance of electron beams higher gradient at the gun cavity solenoid field

More information

Photo Injector Test facility at DESY, Zeuthen site

Photo Injector Test facility at DESY, Zeuthen site Photo Injector Test facility at DESY, Zeuthen site PITZ EXPERIENCE ON THE EXPERIMENTAL OPTIMIZATION OF THE RF PHOTO INJECTOR FOR THE EUROPEAN XFEL Mikhail Krasilnikov (DESY) for the PITZ Team FEL 2013

More information

Juliane Rönsch Hamburg University. Investigations of the longitudinal phase space at a photo injector for the X-FEL

Juliane Rönsch Hamburg University. Investigations of the longitudinal phase space at a photo injector for the X-FEL Juliane Rönsch Hamburg University Investigations of the longitudinal phase space at a photo injector for the X-FEL Juliane Rönsch 1/15/28 1 Contents Introduction PITZ Longitudinal phase space of a photoinjector

More information

Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL

Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL Juliane Rönsch Universität Hamburg / DESY Investigations on the electron bunch distribution in the longitudinal phase space at a laser driven RF-electron source for the European X-FEL 5/27/2009 1 Contents

More information

Lab Report TEMF, TU Darmstadt

Lab Report TEMF, TU Darmstadt Fachgebiet Theorie Elektromagnetischer Felder Lab Report Wolfgang F.O. Müller Thomas Weiland TESLA Collaboration Meeting Daresbury, 09/23/02 Technische Universität Darmstadt, Fachbereich Elektrotechnik

More information

An Introduction to Plasma Accelerators

An Introduction to Plasma Accelerators An Introduction to Plasma Accelerators Humboldt University Research Seminar > Role of accelerators > Working of plasma accelerators > Self-modulation > PITZ Self-modulation experiment > Application Gaurav

More information

Simulations for photoinjectors C.Limborg

Simulations for photoinjectors C.Limborg Simulations for photoinjectors C.Limborg 1- GTF Simulations Parmela modeling improvements Comparison to experimental results: 2ps & 4ps Sensitivity study Plans for future simulations 2- LCLS Injector Simulations

More information

Tomographic transverse phase space measurements at PITZ.

Tomographic transverse phase space measurements at PITZ. Tomographic transverse phase space measurements at PITZ. > Photo-Injector Test facility at DESY in Zeuthen - PITZ > Tomography in beam diagnostics > Hardware > Measurements & evaluation Georgios Kourkafas,

More information

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Case Study of IR/THz source for Pump-Probe Experiment at the European XFEL Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) Introduction Outline Simulations of High-gain FEL (SASE) Simulation

More information

Alignment requirement for the SRF cavities of the LCLS-II injector LCLSII-TN /16/2014

Alignment requirement for the SRF cavities of the LCLS-II injector LCLSII-TN /16/2014 Alignment requirement for the SRF cavities of the LCLS-II injector LCLS-II TN-14-16 12/16/2014 R. K. Li, C. Papadopoulos, T. O. Raubenheimer, J. F. Schmerge, and F. Zhou December 16, 2014 LCLSII-TN-14-16

More information

Projected and slice emittance measurements using multi-quadrupole scan and streak readout at PITZ

Projected and slice emittance measurements using multi-quadrupole scan and streak readout at PITZ Projected and slice emittance measurements using multi-quadrupole scan and streak readout at PITZ R. Spesyvtsev, DESY, Zeuthen site September 14, 29 1 Introduction The Photo Injector Test Facility at DESY,

More information

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ

START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ Proceedings of FEL2014, Basel, Switzerland MOP055 START-TO-END SIMULATIONS FOR IR/THZ UNDULATOR RADIATION AT PITZ P. Boonpornprasert, M. Khojoyan, M. Krasilnikov, F. Stephan, DESY, Zeuthen, Germany B.

More information

Simulations of the IR/THz source at PITZ (SASE FEL and CTR)

Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Simulations of the IR/THz source at PITZ (SASE FEL and CTR) Introduction Outline Simulations of SASE FEL Simulations of CTR Summary Issues for Discussion Mini-Workshop on THz Option at PITZ DESY, Zeuthen

More information

1. Beam based alignment Laser alignment Solenoid alignment 2. Dark current 3. Thermal emittance

1. Beam based alignment Laser alignment Solenoid alignment 2. Dark current 3. Thermal emittance Beam based alignment, Dark current and Thermal emittance measurements J-H.Han,M.Krasilnikov,V.Miltchev, PITZ, DESY, Zeuthen 1. Beam based alignment Laser alignment Solenoid alignment 2. Dark current 3.

More information

Impedance & Instabilities

Impedance & Instabilities Impedance & Instabilities The concept of wakefields and impedance Wakefield effects and their relation to important beam parameters Beam-pipe geometry and materials and their impact on impedance An introduction

More information

Emission-related Activities at PITZ Proposals for the DFG-Networking "Hi 2 PE"

Emission-related Activities at PITZ Proposals for the DFG-Networking Hi 2 PE Emission-related Activities at PITZ Proposals for the DFG-Networking "Hi 2 PE" Ye Chen for the PITZ team 22.09.2017, Helmholtz-Zentrum Berlin, Germany Contents Photoemission (PE) Dark Current (DC) Other

More information

LCLS Injector Prototyping at the GTF

LCLS Injector Prototyping at the GTF LCLS Injector Prototyping at at the GTF John John Schmerge, SLAC SLAC November 3, 3, 23 23 GTF GTF Description Summary of of Previous Measurements Longitudinal Emittance Transverse Emittance Active LCLS

More information

Large Scale Parallel Wake Field Computations with PBCI

Large Scale Parallel Wake Field Computations with PBCI Large Scale Parallel Wake Field Computations with PBCI E. Gjonaj, X. Dong, R. Hampel, M. Kärkkäinen, T. Lau, W.F.O. Müller and T. Weiland ICAP `06 Chamonix, 2-6 October 2006 Technische Universität Darmstadt,

More information

Simulation of transverse emittance measurements using the single slit method

Simulation of transverse emittance measurements using the single slit method Simulation of transverse emittance measurements using the single slit method Rudolf Höfler Vienna University of Technology DESY Zeuthen Summer Student Program 007 Abstract Emittance measurements using

More information

Injector Experimental Progress

Injector Experimental Progress Injector Experimental Progress LCLS TAC Meeting December 10-11 2001 John Schmerge for the GTF Team GTF Group John Schmerge Paul Bolton Steve Gierman Cecile Limborg Brendan Murphy Dave Dowell Leader Laser

More information

Modeling of the secondary electron emission in rf photocathode guns

Modeling of the secondary electron emission in rf photocathode guns Modeling of the secondary electron emission in rf photocathode guns J.-H. Han, DESY Zeuthen 8 June 2004 Joint Uni. Hamburg and DESY Accelerator Physics Seminar Contents 1. Necessity of secondary electron

More information

Simulations for a bunch compressor at PITZ Study of high transformer ratios

Simulations for a bunch compressor at PITZ Study of high transformer ratios Simulations for a bunch compressor at PITZ Study of high transformer ratios G.Asova, A.Oppelt Zeuthen, 22.09.2015 Transformer Ratio (TR) Bunches with symmetric current profile drive pulse witness pulse

More information

High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P

High-Fidelity RF Gun Simulations with the Parallel 3D Finite Element Particle-In-Cell Code Pic3P High-Fidelity RF Gun Simulations with the Parallel D Finite Element Particle-In-Cell Code PicP SLAC-PUB-668 June 9 A. Candel, A. Kabel, L. Lee, Z. Li, C. Limborg, C. Ng, G. Schussman and K. Ko SLAC National

More information

Phase space measurements with tomographic reconstruction at PITZ.

Phase space measurements with tomographic reconstruction at PITZ. Phase space measurements with tomographic reconstruction at PITZ. > PITZ Photo-Injector Test facility @ DESY in Zeuthen > Emittance measurements at PITZ > Tomographic reconstruction with 2 quadrupoles

More information

Simulations of the Microbunching Instability in FEL Beam Delivery Systems

Simulations of the Microbunching Instability in FEL Beam Delivery Systems Simulations of the Microbunching Instability in FEL Beam Delivery Systems Ilya Pogorelov Tech-X Corporation Workshop on High Average Power & High Brightness Beams UCLA, January 2009 Outline The setting:

More information

INVESTIGATIONS OF THE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES LONGITUDINAL CHARGE

INVESTIGATIONS OF THE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES LONGITUDINAL CHARGE INVESTIGATIONS OF THE LONGITUDINAL CHARGE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES Markus Hüning III. Physikalisches Institut RWTH Aachen IIIa and DESY Invited talk at the DIPAC 2001 Methods to obtain

More information

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ 1. Motivation 2. Transverse deflecting structure 3. Longitudinal phase space tomography 4.

More information

Coupling Impedance of Ferrite Devices Description of Simulation Approach

Coupling Impedance of Ferrite Devices Description of Simulation Approach Coupling Impedance of Ferrite Devices Description of Simulation Approach 09 May 2012 TU Darmstadt Fachbereich 18 Institut Theorie Elektromagnetischer Felder Uwe Niedermayer 1 Content Coupling Impedance

More information

Tomography module for transverse phase-space measurements at PITZ.

Tomography module for transverse phase-space measurements at PITZ. Tomography module for transverse phase-space measurements at PITZ. > Photo-Injector Test facility @ DESY in Zeuthen - PITZ > Tomography module > Measurement results > Conclusions and outlook G. Asova for

More information

RF-Gun Experience at PITZ - Longitudinal Phase Space

RF-Gun Experience at PITZ - Longitudinal Phase Space - Collaboration meeting 9th of October 2006 Hamburg University Juliane Rönsch 1 Motivation special device to measure the longitudinal phase space at low momentum typical high energy diagnostics can not

More information

PARALLEL HIGHER-ORDER FINITE ELEMENT METHOD FOR ACCURATE FIELD COMPUTATIONS IN WAKEFIELD AND PIC SIMULATIONS

PARALLEL HIGHER-ORDER FINITE ELEMENT METHOD FOR ACCURATE FIELD COMPUTATIONS IN WAKEFIELD AND PIC SIMULATIONS PARALLEL HIGHER-ORDER FINITE ELEMENT METHOD FOR ACCURATE FIELD COMPUTATIONS IN WAKEFIELD AND PIC SIMULATIONS A. Candel, A. Kabel, L. Lee, Z. Li, C. Limborg, C. Ng, E. Prudencio, G. Schussman, R. Uplenchwar

More information

Tracking. Particle In Cell. Wakefield

Tracking. Particle In Cell. Wakefield CST PARTICLE STUDIO STUDIO SOLVERS & APPLICATIONS 1 www.cst.com Mar-09 CST PARTICLE STUDIO Solvers Tracking Simulation of DC Particle Guns, Collectors, Magnets Tracking in static E/H fields (incl. space

More information

Velocity Bunching Studies at FLASH. Bolko Beutner, DESY XFEL Beam Dynamics Meeting

Velocity Bunching Studies at FLASH. Bolko Beutner, DESY XFEL Beam Dynamics Meeting Velocity Bunching Studies at FLASH Contents Introduction ASTRA simulations Semi-Analytic Model CSR microbunch instability studies Experiments at FLASH Summary and Outlook Introduction At low beam energies

More information

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract

LCLS-II SCRF start-to-end simulations and global optimization as of September Abstract SLAC National Accelerator Lab LCLS-II TN-17-4 February 217 LCLS-II SCRF start-to-end simulations and global optimization as of September 216 G. Marcus SLAC, Menlo Park, CA 9425 J. Qiang LBNL, Berkeley,

More information

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE

SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE Proceedings of FEL03, New York, NY, USA SwissFEL INJECTOR DESIGN: AN AUTOMATIC PROCEDURE S. Bettoni, M. Pedrozzi, S. Reiche, PSI, Villigen, Switzerland Abstract The first section of FEL injectors driven

More information

Laser acceleration of electrons at Femilab/Nicadd photoinjector

Laser acceleration of electrons at Femilab/Nicadd photoinjector Laser acceleration of electrons at Femilab/Nicadd photoinjector P. Piot (FermiLab), R. Tikhoplav (University of Rochester) and A.C. Melissinos (University of Rochester) FNPL energy upgrade Laser acceleration

More information

Review of proposals of ERL injector cryomodules. S. Belomestnykh

Review of proposals of ERL injector cryomodules. S. Belomestnykh Review of proposals of ERL injector cryomodules S. Belomestnykh ERL 2005 JLab, March 22, 2005 Introduction In this presentation we will review injector cryomodule designs either already existing or under

More information

Recent Developments on Beam Dynamics and Wake Field Simulations at TEMF

Recent Developments on Beam Dynamics and Wake Field Simulations at TEMF Recent Developments on Beam Dynamics and Wake Field Simulations at TEMF Institut für Theorie Elektromagnetischer Felder (TEMF) Technische Universität Darmstadt Joint DESY and University of Hamburg Accelerator

More information

modeling of space charge effects and CSR in bunch compression systems

modeling of space charge effects and CSR in bunch compression systems modeling of space charge effects and CSR in bunch compression systems SC and CSR effects are crucial for the simulation of BC systems CSR and related effects are challenging for EM field calculation non-csr

More information

Fast Space Charge Calculations with a Multigrid Poisson Solver & Applications

Fast Space Charge Calculations with a Multigrid Poisson Solver & Applications Fast Space Charge Calculations with a Multigrid Poisson Solver & Applications Gisela Pöplau Ursula van Rienen Rostock University DESY, Hamburg, April 26, 2005 Bas van der Geer Marieke de Loos Pulsar Physics

More information

!"#$%$!&'()$"('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS

!#$%$!&'()$('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS LONGITUDINAL BEAM DYNAMICS Elias Métral BE Department CERN The present transparencies are inherited from Frank Tecker (CERN-BE), who gave this course last year and who inherited them from Roberto Corsini

More information

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1 Beam Physics at SLAC Yunhai Cai Beam Physics Department Head July 8, 2008 SLAC Annual Program Review Page 1 Members in the ABP Department * Head: Yunhai Cai * Staff: Gennady Stupakov Karl Bane Zhirong

More information

Accelerator Physics Issues of ERL Prototype

Accelerator Physics Issues of ERL Prototype Accelerator Physics Issues of ERL Prototype Ivan Bazarov, Geoffrey Krafft Cornell University TJNAF ERL site visit (Mar 7-8, ) Part I (Bazarov). Optics. Space Charge Emittance Compensation in the Injector

More information

Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun. Abstract

Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun. Abstract SLAC PUB 868 October 7 Analysis of Slice Transverse Emittance Evolution in a Photocathode RF Gun Z. Huang, Y. Ding Stanford Linear Accelerator Center, Stanford, CA 9439 J. Qiang Lawrence Berkeley National

More information

Low slice emittance preservation during bunch compression

Low slice emittance preservation during bunch compression Low slice emittance preservation during bunch compression S. Bettoni M. Aiba, B. Beutner, M. Pedrozzi, E. Prat, S. Reiche, T. Schietinger Outline. Introduction. Experimental studies a. Measurement procedure

More information

Emittance and photocathodes

Emittance and photocathodes Cornell Laboratory for Accelerator-based ScienceS and Education () Emittance and photocathodes Ivan Bazarov Where we are today Injector performance Ongoing work Venues for improvements Next generation

More information

1. (16) A point charge e moves with velocity v(t) on a trajectory r(t), where t is the time in some lab frame.

1. (16) A point charge e moves with velocity v(t) on a trajectory r(t), where t is the time in some lab frame. Electrodynamics II Exam 3. Part A (120 pts.) Closed Book Radiation from Acceleration Name KSU 2016/05/10 14:00-15:50 Instructions: Some small derivations here, state your responses clearly, define your

More information

Ellipsoidal Laser Status & Results Introduction Laser system & on-table data Results Redesign Outlook

Ellipsoidal Laser Status & Results Introduction Laser system & on-table data Results Redesign Outlook Ellipsoidal Laser Status & Results Introduction Laser system & on-table data Results Redesign Outlook James Good PITZ Collaboration Meeting 14 Jun 2017 Introduction > Motivation: Further improvement of

More information

LOLA: Past, present and future operation

LOLA: Past, present and future operation LOLA: Past, present and future operation FLASH Seminar 1/2/29 Christopher Gerth, DESY 8/5/29 FLASH Seminar Christopher Gerth 1 Outline Past Present Future 8/5/29 FLASH Seminar Christopher Gerth 2 Past

More information

Ultra-Short Low Charge Operation at FLASH and the European XFEL

Ultra-Short Low Charge Operation at FLASH and the European XFEL Ultra-Short Low Charge Operation at FLASH and the uropean XFL Igor Zagorodnov DSY, Hamburg, Germany 5.8. The 3nd FL Conference, Malmö Outline FLASH layout and desired beam parameters Technical constraints

More information

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* E. Panofski #, A. Jankowiak, T. Kamps, Helmholtz-Zentrum Berlin, Berlin, Germany P.N. Lu, J. Teichert, Helmholtz-Zentrum Dresden-Rossendorf,

More information

arxiv: v1 [physics.acc-ph] 21 Oct 2014

arxiv: v1 [physics.acc-ph] 21 Oct 2014 SIX-DIMENSIONAL WEAK STRONG SIMULATIONS OF HEAD-ON BEAM BEAM COMPENSATION IN RHIC arxiv:.8v [physics.acc-ph] Oct Abstract Y. Luo, W. Fischer, N.P. Abreu, X. Gu, A. Pikin, G. Robert-Demolaize BNL, Upton,

More information

Cavity Field Maps (TESLA & 3 rd Harmonic Cavity) Undulator Wakes. Estimation of CSR Effects for FLASH2HGHG

Cavity Field Maps (TESLA & 3 rd Harmonic Cavity) Undulator Wakes. Estimation of CSR Effects for FLASH2HGHG Cavity Field Maps (TESLA & 3 rd Harmonic Cavity) Undulator Wakes Estimation of CSR Effects for FLASHHGHG Cavity Field Maps (TESLA & 3 rd Harmonic Cavity) 3D field map files for ASTRA in E3D format files

More information

EXPERIMENTAL STUDIES WITH SPATIAL GAUSSIAN-CUT LASER FOR THE LCLS PHOTOCATHODE GUN*

EXPERIMENTAL STUDIES WITH SPATIAL GAUSSIAN-CUT LASER FOR THE LCLS PHOTOCATHODE GUN* SLAC-PUB-14571 EXPERIMETAL STUDIES WITH SPATIAL GAUSSIA-CUT LASER FOR THE LCLS PHOTOCATHODE GU* F. Zhou +, A. Brachmann, P. Emma, S. Gilevich, and Z. Huang SLAC ational Accelerator Laboratory, 575 Sand

More information

3. Synchrotrons. Synchrotron Basics

3. Synchrotrons. Synchrotron Basics 1 3. Synchrotrons Synchrotron Basics What you will learn about 2 Overview of a Synchrotron Source Losing & Replenishing Electrons Storage Ring and Magnetic Lattice Synchrotron Radiation Flux, Brilliance

More information

Multivariate Optimization of High Brightness High Current DC Photoinjector. Ivan Bazarov Cornell University

Multivariate Optimization of High Brightness High Current DC Photoinjector. Ivan Bazarov Cornell University Multivariate Optimization of High Brightness High Current DC Photoinjector Ivan Bazarov Cornell University Talk Outline: Motivation Parallel Evolutionary Algorithms Results & Outlook Ivan Bazarov, Multivariate

More information

Multi-quadrupole scan for emittance determination at PITZ

Multi-quadrupole scan for emittance determination at PITZ Multi-quadrupole scan for emittance determination at PITZ Susan Skelton University of St Andrews, Scotland Email: ses@st-andrews.ac.uk DESY Zeuthen Summer Student Program th th July 5 September 8 7 PITZ

More information

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme.

Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. Recent developments in the Dutch Laser Wakefield Accelerators program at the University of Twente: New external bunch injection scheme. A.G. Khachatryan, F.A. van Goor, J.W.J. Verschuur and K.-J. Boller

More information

ERL FOR LOW ENERGY ELECTRON COOLING AT RHIC (LEREC)*

ERL FOR LOW ENERGY ELECTRON COOLING AT RHIC (LEREC)* ERL FOR LOW ENERGY ELECTRON COOLING AT RHIC (LEREC)* J. Kewisch, M. Blaskiewicz, A. Fedotov, D. Kayran, C. Montag, V. Ranjbar Brookhaven National Laboratory, Upton, New York Abstract Low-energy RHIC Electron

More information

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY

Longitudinal Impedance Budget and Simulations for XFEL. Igor Zagorodnov DESY Longitudinal Impedance Budget and Simulations for XFEL Igor Zagorodnov 14.3.211 DESY Beam dynamics simulations for the European XFEL Full 3D simulation method (2 CPU, ~1 hours) Gun LH M 1,1 M 1,3 E1 13

More information

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun

The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun The New Superconducting RF Photoinjector a High-Average Current & High-Brightness Gun Jochen Teichert for the BESSY-DESY-FZD-MBI collaboration and the ELBE crew High-Power Workshop, UCLA, Los Angeles 14

More information

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem

Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem Experimental Measurements of the ORION Photoinjector Drive Laser Oscillator Subsystem D.T Palmer and R. Akre Laser Issues for Electron RF Photoinjectors October 23-25, 2002 Stanford Linear Accelerator

More information

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab.

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab. VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab. Yuri Saveliev on behalf of VELA and CLARA teams STFC, ASTeC, Cockcroft Institute Daresbury Lab., UK Outline VELA (Versatile Electron

More information

Accelerator Activities at PITZ

Accelerator Activities at PITZ Accelerator Activities at PITZ Plasma acceleration etc. Outline > Motivation / Accelerator Research & Development (ARD) > Plasma acceleration Basic Principles Activities SINBAD > ps-fs electron and photon

More information

PAL LINAC UPGRADE FOR A 1-3 Å XFEL

PAL LINAC UPGRADE FOR A 1-3 Å XFEL PAL LINAC UPGRADE FOR A 1-3 Å XFEL J. S. Oh, W. Namkung, Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Korea Y. Kim, Deutsches Elektronen-Synchrotron DESY, D-603 Hamburg, Germany Abstract With

More information

Introduction. Thermoionic gun vs RF photo gun Magnetic compression vs Velocity bunching. Probe beam design options

Introduction. Thermoionic gun vs RF photo gun Magnetic compression vs Velocity bunching. Probe beam design options Introduction Following the 19/05/04 meeting at CERN about the "CTF3 accelerated programme", a possible french contribution has been envisaged to the 200 MeV Probe Beam Linac Two machine options were suggested,

More information

Expected properties of the radiation from VUV-FEL / femtosecond mode of operation / E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov

Expected properties of the radiation from VUV-FEL / femtosecond mode of operation / E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov Expected properties of the radiation from VUV-FEL / femtosecond mode of operation / E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov TESLA Collaboration Meeting, September 6-8, 2004 Experience from TTF FEL,

More information

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY

Beam Dynamics and SASE Simulations for XFEL. Igor Zagorodnov DESY Beam Dynamics and SASE Simulations for XFEL Igor Zagorodnov 4.. DESY Beam dynamics simulations for the European XFEL Full 3D simulation method ( CPU, ~ hours) Gun LH M, M,3 E = 3 MeV E = 7 MeV E 3 = 4

More information

LCLS Injector Straight Ahead Spectrometer C.Limborg-Deprey Stanford Linear Accelerator Center 8 th June 2005

LCLS Injector Straight Ahead Spectrometer C.Limborg-Deprey Stanford Linear Accelerator Center 8 th June 2005 LCLS Injector Straight Ahead Spectrometer C.Limborg-Deprey Stanford Linear Accelerator Center 8 th June 2005 Summary The spectrometer design was modified to allow the measurement of uncorrelated energy

More information

Multivariate Optimization of High Brightness High Current DC Photoinjector. Ivan Bazarov

Multivariate Optimization of High Brightness High Current DC Photoinjector. Ivan Bazarov Multivariate Optimization of High Brightness High Current DC Photoinjector Ivan Bazarov Talk Outline: Motivation Evolutionary Algorithms Optimization Results 1 ERL Injector 750 kv DC Gun Goal: provide

More information

Emittance Compensation. J.B. Rosenzweig ERL Workshop, Jefferson Lab 3/20/05

Emittance Compensation. J.B. Rosenzweig ERL Workshop, Jefferson Lab 3/20/05 Emittance Compensation J.B. Rosenzweig ERL Workshop, Jefferson Lab 3//5 Emittance minimization in the RF photoinjector Thermal emittance limit Small transverse beam size Avoid metal cathodes? " n,th #

More information

OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM

OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM OPTIMIZATION OF COMPENSATION CHICANES IN THE LCLS-II BEAM DELIVERY SYSTEM LCLS-II TN-15-41 11/23/2015 J. Qiang, M. Venturini November 23, 2015 LCLSII-TN-15-41 1 Introduction L C L S - I I T E C H N I C

More information

Index. Accelerator model 8 Adiabatic damping 32, 141 Air-bag model 338 Alternating explicit time scheme 112 Azimuthal modes, see Modes

Index. Accelerator model 8 Adiabatic damping 32, 141 Air-bag model 338 Alternating explicit time scheme 112 Azimuthal modes, see Modes Index Accelerator model 8 Adiabatic damping 32, 141 Air-bag model 338 Alternating explicit time scheme 112 Azimuthal modes, see Modes Beam breakup in linacs dipole mode 136 higher modes 160 quadrupole

More information

Space Charge Mi-ga-on

Space Charge Mi-ga-on Space Charge Mi-ga-on Massimo.Ferrario@LNF.INFN.IT Hamburg June nd 016 OUTLINE The rms emicance concept rms envelope equa-on Space charge forces Space charge induced emicance oscilla-ons Matching condi-ons

More information

Start-to-End Simulations

Start-to-End Simulations AKBP 9.3 Case Study for 100 µm SASE FEL Based on PITZ Accelerator for Pump-Probe Experiment at the European XFEL Start-to-End Simulations Outline Introduction Beam Optimization Beam Transport Simulation

More information

Using IMPACT T to perform an optimization of a DC gun system Including merger

Using IMPACT T to perform an optimization of a DC gun system Including merger Using IMPACT T to perform an optimization of a DC gun system Including merger Xiaowei Dong and Michael Borland Argonne National Laboratory Presented at ERL09 workshop June 10th, 2009 Introduction An energy

More information

Towards a Low Emittance X-ray FEL at PSI

Towards a Low Emittance X-ray FEL at PSI Towards a Low Emittance X-ray FEL at PSI A. Adelmann, A. Anghel, R.J. Bakker, M. Dehler, R. Ganter, C. Gough, S. Ivkovic, F. Jenni, C. Kraus, S.C. Leemann, A. Oppelt, F. Le Pimpec, K. Li, P. Ming, B. Oswald,

More information

Linac Driven Free Electron Lasers (III)

Linac Driven Free Electron Lasers (III) Linac Driven Free Electron Lasers (III) Massimo.Ferrario@lnf.infn.it SASE FEL Electron Beam Requirements: High Brightness B n ( ) 1+ K 2 2 " MIN r #$ % &B! B n 2 n K 2 minimum radiation wavelength energy

More information

Emittance preservation in TESLA

Emittance preservation in TESLA Emittance preservation in TESLA R.Brinkmann Deutsches Elektronen-Synchrotron DESY,Hamburg, Germany V.Tsakanov Yerevan Physics Institute/CANDLE, Yerevan, Armenia The main approaches to the emittance preservation

More information

Electron Linear Accelerators & Free-Electron Lasers

Electron Linear Accelerators & Free-Electron Lasers Electron Linear Accelerators & Free-Electron Lasers Bryant Garcia Wednesday, July 13 2016. SASS Summer Seminar Bryant Garcia Linacs & FELs 1 of 24 Light Sources Why? Synchrotron Radiation discovered in

More information

Femto second X ray Pulse Generation by Electron Beam Slicing. F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA

Femto second X ray Pulse Generation by Electron Beam Slicing. F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA Femto second X ray Pulse Generation by Electron Beam Slicing F. Willeke, L.H. Yu, NSLSII, BNL, Upton, NY 11973, USA r 2 r 1 y d x z v Basic Idea: When short electron bunch from linac (5MeV, 50pC,100fs)

More information

CSR calculation by paraxial approximation

CSR calculation by paraxial approximation CSR calculation by paraxial approximation Tomonori Agoh (KEK) Seminar at Stanford Linear Accelerator Center, March 3, 2006 Short Bunch Introduction Colliders for high luminosity ERL for short duration

More information