Integration. Copyright Cengage Learning. All rights reserved.

Size: px
Start display at page:

Download "Integration. Copyright Cengage Learning. All rights reserved."

Transcription

1 4 Integration Copyright Cengage Learning. All rights reserved. 1

2 4.3 Riemann Sums and Definite Integrals Copyright Cengage Learning. All rights reserved. 2

3 Objectives Understand the definition of a Riemann sum. Evaluate a definite integral using limits. Evaluate a definite integral using properties of definite integrals. 3

4 Riemann Sums In mathematics, a Riemann sum is a method for approximating the total area underneath a curve on a graph, otherwise known as an integral. It may also be used to define the integration operation. The method was named after German mathematician Bernhard Riemann. Some examples are Upper Sums, Lower Sums, and Midpoint Sums like we learned about in Section

5 Example 1 A Partition with Subintervals of Unequal Widths Consider the region bounded by the graph of x 1, as shown in Figure and the x axis for 0 Notice that the rectangles are not the same width. You don t have to have equal widths to do a Riemann Sum, (but it is easier to do if the subintervals have equal widths). Figure

6 Riemann Sums 6

7 Definite Integrals 7

8 Definite Integrals Basically, as we divide a region into an infinite number of rectangles, each having a width of, we get infinitely close to the actual area of the region. This is called the definite integral and is denoted by where a and b are upper and lower limits. 8

9 Definite Integrals 9

10 Definite Integrals Figure

11 Definite Integrals As an example of Theorem 4.5, consider the region bounded by the graph of f(x) = 4x x2 and the x axis, as shown in Figure Because f is continuous and nonnegative on the closed interval [0, 4], the area of the region is Figure

12 Definite Integrals You can evaluate a definite integral in two ways you can use the limit definition or you can check to see whether the definite integral represents the area of a common geometric region such as a rectangle, triangle, or semicircle. 12

13 Example 3 Areas of Common Geometric Figures Sketch the region corresponding to each definite integral. Then evaluate each integral using a geometric formula. a. b. (See next pages for solutions.) c. 13

14 Example 3(a) Solution This region is a rectangle of height 4 and width 2. Figure 4.23(a) 14

15 Example 3(b) Solution cont d This region is a trapezoid with an altitude of 3 and parallel bases of lengths 2 and 5. The formula for the area of a trapezoid is h(b1 + b2). Figure 4.23(b) 15

16 Example 3(c) Solution cont d This region is a semicircle of radius 2. The formula for the area of a semicircle is Figure 4.23(c) 16

17 Definite Integrals Because the definite integral in the example below is negative, it does not represent the area of the region shown in Figure Definite integrals can be positive, negative, or zero. For a definite integral to be interpreted as an area, the function f must be continuous and nonnegative on [a, b]. Figure

18 Properties of Definite Integrals 18

19 Properties of Definite Integrals The definition of the definite integral of f on the interval [a, b] specifies that a < b. Now, however, it is convenient to extend the definition to cover cases in which a = b or a > b. Geometrically, the following two definitions seem reasonable. For instance, it makes sense to define the area of a region of zero width and finite height to be 0. 19

20 Properties of Definite Integrals 20

21 Example 4 Evaluating Definite Integrals a. Because the sine function is defined at x = π, and the upper and lower limits of integration are equal, you can write b. The integral has a value of so you can write 21

22 Example 4 Evaluating Definite Integrals cont d In Figure 4.24, the larger region can be divided at x = c into two sub regions whose intersection is a line segment. Because the line segment has zero area, it follows that the area of the larger region is equal to the sum of the areas of the two smaller regions. Figure

23 Example 5 Using the Additive Interval Property 23

24 Properties of Definite Integrals Note that Property 2 of Theorem 4.7 can be extended to cover any finite number of functions. For example, 24

25 Example 6 Evaluation of a Definite Integral Evaluate using each of the following values. Solution: 25

26 Properties of Definite Integrals If f and g are continuous on the closed interval [a, b] and 0 f(x) g(x) for a x b, the following properties are true. First, the area of the region bounded by the graph of f and the x axis (between a and b) must be nonnegative. Second, this area must be less than or equal to the area of the region bounded by the graph of g and the x axis (between a and b ), as shown in Figure These two properties are generalized in Theorem 4.8. Figure

27 Properties of Definite Integrals 27

28 4.4 The Fundamental Theorem of Calculus Copyright Cengage Learning. All rights reserved. 28

29 Objectives Evaluate a definite integral using the Fundamental Theorem of Calculus. Find the average value of a function over a closed interval. Understand and use the Second Fundamental Theorem of Calculus. 29

30 The Fundamental Theorem of Calculus 30

31 The Fundamental Theorem of Calculus The two major branches of calculus: differential calculus and integral calculus. At this point, these two problems might seem unrelated but there is a very close connection. The connection was discovered independently by Isaac Newton and Gottfried Leibniz and is stated in a theorem that is appropriately called the Fundamental Theorem of Calculus. 31

32 The Fundamental Theorem of Calculus 32

33 The Fundamental Theorem of Calculus The following guidelines can help you understand the use of the Fundamental Theorem of Calculus. We don't need "+C" any more because it just subtracts to zero! 33

34 Example 1 Solution 34

35 Example 3(a) Solution This region is a rectangle of height 4 and width 2. Figure 4.23(a) 35

36 Example 3(b) Solution cont d This region is a trapezoid with an altitude of 3 and parallel bases of lengths 2 and 5. The formula for the area of a trapezoid is h(b1 + b2). Figure 4.23(b) 36

37 Example 3(c) Solution cont d This region is a semicircle of radius 2. The formula for the area of a semicircle is Figure 4.23(c) 37

38 Average Value of a Function 38

39 Average Value of a Function In Figure 4.31 the area of the region under the graph of f is equal to the area of the rectangle whose height is the average value. Average value is like average height. Figure

40 Average Value of a Function b a is just the total width of the area we are integrating. 40

41 Example 4 Finding the Average Value of a Function Find the average value of f(x) = 3 x 2 2 x on the interval [1, 4]. Solution: The average value is given by Figure

42 The Second Fundamental Theorem of Calculus 42

43 The Second Fundamental Theorem of Calculus The definite integral of f on the interval [a, b] is defined using the constant b as the upper limit of integration and x as the variable of integration. A slightly different situation may arise in which the variable x is used in the upper limit of integration. To avoid the confusion of using x in two different ways, t is temporarily used as the variable of integration. 43

44 The Second Fundamental Theorem of Calculus 44

45 The Second Fundamental Theorem of Calculus If we are just told to integrate, we evaluate using the First Fundamental Theorem of Calculus: But what if we are doing the derivative of an integral. Then what would happen? 45

46 The Second Fundamental Theorem of Calculus This result is generalized in the following theorem, called the Second Fundamental Theorem of Calculus. Remember, this only works if you are taking the derivative of an integral, not the other way around, (integral of a derivative). Also, there must be a constant for the lower limit and x in the upper limit. 46

47 Example 7 Using the Second Fundamental Theorem of Calculus Evaluate Solution: Note that is continuous on the entire real line. So, using the Second Fundamental Theorem of Calculus, you can write 47

48 1. Examples:

49 The Second Fundamental Theorem of Calculus Remember we said there must be a constant for the lower limit and an x in the upper limit to use the Second Fundamental Theorem of Calculus. It turns out that you can also use the theorem when the lower limit is a constant and the upper limit is a function of x. The only difference is that we plug in the function of x for t (instead of just the x), and we also multiply by the derivative of the function we plugged in. Here is an example: 49

50 1. Examples:

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives 4.3 Riemann Sums and Definite Integrals Objectives Understand the definition of a Riemann sum. Evaluate a definite integral using limits & Riemann Sums. Evaluate a definite integral using geometric formulas

More information

Integration. Tuesday, December 3, 13

Integration. Tuesday, December 3, 13 4 Integration 4.3 Riemann Sums and Definite Integrals Objectives n Understand the definition of a Riemann sum. n Evaluate a definite integral using properties of definite integrals. 3 Riemann Sums 4 Riemann

More information

We saw in Section 5.1 that a limit of the form. arises when we compute an area.

We saw in Section 5.1 that a limit of the form. arises when we compute an area. INTEGRALS 5 INTEGRALS Equation 1 We saw in Section 5.1 that a limit of the form n lim f ( x *) x n i 1 i lim[ f ( x *) x f ( x *) x... f ( x *) x] n 1 2 arises when we compute an area. n We also saw that

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus The Fundamental Theorem of Calculus Objectives Evaluate a definite integral using the Fundamental Theorem of Calculus. Understand and use the Mean Value Theorem for Integrals. Find the average value of

More information

Integration. Antiderivatives and Indefinite Integration 3/9/2015. Copyright Cengage Learning. All rights reserved.

Integration. Antiderivatives and Indefinite Integration 3/9/2015. Copyright Cengage Learning. All rights reserved. Integration Copyright Cengage Learning. All rights reserved. Antiderivatives and Indefinite Integration Copyright Cengage Learning. All rights reserved. 1 Objectives Write the general solution of a differential

More information

1.7 Inequalities. Copyright Cengage Learning. All rights reserved.

1.7 Inequalities. Copyright Cengage Learning. All rights reserved. 1.7 Inequalities Copyright Cengage Learning. All rights reserved. Objectives Solving Linear Inequalities Solving Nonlinear Inequalities Absolute Value Inequalities Modeling with Inequalities 2 Inequalities

More information

Pre Calculus. Intro to Integrals.

Pre Calculus. Intro to Integrals. 1 Pre Calculus Intro to Integrals 2015 03 24 www.njctl.org 2 Riemann Sums Trapezoid Rule Table of Contents click on the topic to go to that section Accumulation Function Antiderivatives & Definite Integrals

More information

Day 2 Notes: Riemann Sums In calculus, the result of f ( x)

Day 2 Notes: Riemann Sums In calculus, the result of f ( x) AP Calculus Unit 6 Basic Integration & Applications Day 2 Notes: Riemann Sums In calculus, the result of f ( x) dx is a function that represents the anti-derivative of the function f(x). This is also sometimes

More information

Distance and Velocity

Distance and Velocity Distance and Velocity - Unit #8 : Goals: The Integral Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite integral and

More information

Infinite Series. Copyright Cengage Learning. All rights reserved.

Infinite Series. Copyright Cengage Learning. All rights reserved. Infinite Series Copyright Cengage Learning. All rights reserved. Taylor and Maclaurin Series Copyright Cengage Learning. All rights reserved. Objectives Find a Taylor or Maclaurin series for a function.

More information

AP Calculus AB. Slide 1 / 175. Slide 2 / 175. Slide 3 / 175. Integration. Table of Contents

AP Calculus AB. Slide 1 / 175. Slide 2 / 175. Slide 3 / 175. Integration. Table of Contents Slide 1 / 175 Slide 2 / 175 AP Calculus AB Integration 2015-11-24 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 175 Riemann Sums Trapezoid Approximation Area Under

More information

Slope Fields and Differential Equations. Copyright Cengage Learning. All rights reserved.

Slope Fields and Differential Equations. Copyright Cengage Learning. All rights reserved. Slope Fields and Differential Equations Copyright Cengage Learning. All rights reserved. Objectives Review verifying solutions to differential equations. Review solving differential equations. Review using

More information

AP Calculus AB Integration

AP Calculus AB Integration Slide 1 / 175 Slide 2 / 175 AP Calculus AB Integration 2015-11-24 www.njctl.org Slide 3 / 175 Table of Contents click on the topic to go to that section Riemann Sums Trapezoid Approximation Area Under

More information

9.1 Circles and Parabolas. Copyright Cengage Learning. All rights reserved.

9.1 Circles and Parabolas. Copyright Cengage Learning. All rights reserved. 9.1 Circles and Parabolas Copyright Cengage Learning. All rights reserved. What You Should Learn Recognize a conic as the intersection of a plane and a double-napped cone. Write equations of circles in

More information

AP Calculus AB. Integration. Table of Contents

AP Calculus AB. Integration.  Table of Contents AP Calculus AB Integration 2015 11 24 www.njctl.org Table of Contents click on the topic to go to that section Riemann Sums Trapezoid Approximation Area Under a Curve (The Definite Integral) Antiderivatives

More information

CN#5 Objectives 5/11/ I will be able to describe the effect on perimeter and area when one or more dimensions of a figure are changed.

CN#5 Objectives 5/11/ I will be able to describe the effect on perimeter and area when one or more dimensions of a figure are changed. CN#5 Objectives I will be able to describe the effect on perimeter and area when one or more dimensions of a figure are changed. When the dimensions of a figure are changed proportionally, the figure will

More information

4 Integration. Copyright Cengage Learning. All rights reserved.

4 Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 4.1 Antiderivatives and Indefinite Integration Copyright Cengage Learning. All rights reserved. Objectives! Write the general solution of

More information

1 Approximating area under curves and Riemann sums

1 Approximating area under curves and Riemann sums Professor Jennifer Balakrishnan, jbala@bu.edu What is on today 1 Approximating area under curves and Riemann sums 1 1.1 Riemann sums................................... 1 1.2 Area under the velocity curve..........................

More information

The Fundamental Theorem of Calculus and Mean Value Theorem 2

The Fundamental Theorem of Calculus and Mean Value Theorem 2 1 The Fundamental Theorem of Calculus and Mean Value Theorem We ve learned two different branches of calculus so far: differentiation and integration. Finding slopes of tangent lines and finding areas

More information

Steps for finding area using Summation

Steps for finding area using Summation Steps for finding area using Summation 1) Identify a o and a 0 = starting point of the given interval [a, b] where n = # of rectangles 2) Find the c i 's Right: Left: 3) Plug each c i into given f(x) >

More information

Objective SWBAT find distance traveled, use rectangular approximation method (RAM), volume of a sphere, and cardiac output.

Objective SWBAT find distance traveled, use rectangular approximation method (RAM), volume of a sphere, and cardiac output. 5.1 Estimating with Finite Sums Objective SWBAT find distance traveled, use rectangular approximation method (RAM), volume of a sphere, and cardiac output. Distance Traveled We know that pondering motion

More information

2.3 Differentiation Formulas. Copyright Cengage Learning. All rights reserved.

2.3 Differentiation Formulas. Copyright Cengage Learning. All rights reserved. 2.3 Differentiation Formulas Copyright Cengage Learning. All rights reserved. Differentiation Formulas Let s start with the simplest of all functions, the constant function f (x) = c. The graph of this

More information

Linear Systems and Matrices. Copyright Cengage Learning. All rights reserved.

Linear Systems and Matrices. Copyright Cengage Learning. All rights reserved. 7 Linear Systems and Matrices Copyright Cengage Learning. All rights reserved. 7.1 Solving Systems of Equations Copyright Cengage Learning. All rights reserved. What You Should Learn Use the methods of

More information

Logarithmic, Exponential, and Other Transcendental Functions

Logarithmic, Exponential, and Other Transcendental Functions 5 Logarithmic, Exponential, and Other Transcendental Functions Copyright Cengage Learning. All rights reserved. 1 5.3 Inverse Functions Copyright Cengage Learning. All rights reserved. 2 Objectives Verify

More information

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx Antiderivatives and The Integral Antiderivatives Objective: Use indefinite integral notation for antiderivatives. Use basic integration rules to find antiderivatives. Another important question in calculus

More information

Test 2 Review Math 1111 College Algebra

Test 2 Review Math 1111 College Algebra Test 2 Review Math 1111 College Algebra 1. Begin by graphing the standard quadratic function f(x) = x 2. Then use transformations of this graph to graph the given function. g(x) = x 2 + 2 *a. b. c. d.

More information

Sequences and Series. Copyright Cengage Learning. All rights reserved.

Sequences and Series. Copyright Cengage Learning. All rights reserved. Sequences and Series Copyright Cengage Learning. All rights reserved. 12.1 Sequences and Summation Notation Copyright Cengage Learning. All rights reserved. Objectives Sequences Recursively Defined Sequences

More information

Integration. 2. The Area Problem

Integration. 2. The Area Problem Integration Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math2. Two Fundamental Problems of Calculus First

More information

7.1 Indefinite Integrals Calculus

7.1 Indefinite Integrals Calculus 7.1 Indefinite Integrals Calculus Learning Objectives A student will be able to: Find antiderivatives of functions. Represent antiderivatives. Interpret the constant of integration graphically. Solve differential

More information

INTRO TO LIMITS & CALCULUS MR. VELAZQUEZ AP CALCULUS

INTRO TO LIMITS & CALCULUS MR. VELAZQUEZ AP CALCULUS INTRO TO LIMITS & CALCULUS MR. VELAZQUEZ AP CALCULUS WHAT IS CALCULUS? Simply put, Calculus is the mathematics of change. Since all things change often and in many ways, we can expect to understand a wide

More information

INTEGRALS5 INTEGRALS

INTEGRALS5 INTEGRALS INTEGRALS5 INTEGRALS INTEGRALS Equation 1 We saw in Section 5.1 that a limit of the form n $ lim(*) n!" i = 1 =#+#++# lim[(*)(*)...(*)] fxxfxxfxx n!" fxx i 12 # arises when we compute an area. n!we also

More information

Brunswick School Department: Grades Essential Understandings

Brunswick School Department: Grades Essential Understandings Understandings Questions Knowledge Vocabulary Skills Mathematics The concept of an integral as the operational inverse of a derivative and as a summation model is introduced using antiderivatives. Students

More information

Area and Integration

Area and Integration Area and Integration Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math229. Two Fundamental Problems of Calculus

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION APPLICATIONS OF INTEGRATION 6.5 Average Value of a Function In this section, we will learn about: Applying integration to find out the average value of a function. AVERAGE

More information

The Integral of a Function. The Indefinite Integral

The Integral of a Function. The Indefinite Integral The Integral of a Function. The Indefinite Integral Undoing a derivative: Antiderivative=Indefinite Integral Definition: A function is called an antiderivative of a function on same interval,, if differentiation

More information

15.9. Triple Integrals in Spherical Coordinates. Spherical Coordinates. Spherical Coordinates. Spherical Coordinates. Multiple Integrals

15.9. Triple Integrals in Spherical Coordinates. Spherical Coordinates. Spherical Coordinates. Spherical Coordinates. Multiple Integrals 15 Multiple Integrals 15.9 Triple Integrals in Spherical Coordinates Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Triple Integrals in Another useful

More information

Successful completion of the core function transformations unit. Algebra manipulation skills with squares and square roots.

Successful completion of the core function transformations unit. Algebra manipulation skills with squares and square roots. Extension A: Circles and Ellipses Algebra ; Pre-Calculus Time required: 35 50 min. Learning Objectives Math Objectives Students will write the general forms of Cartesian equations for circles and ellipses,

More information

MA 137 Calculus 1 with Life Science Applications. (Section 6.1)

MA 137 Calculus 1 with Life Science Applications. (Section 6.1) MA 137 Calculus 1 with Life Science Applications (Section 6.1) Alberto Corso alberto.corso@uky.edu Department of Mathematics University of Kentucky December 2, 2015 1/17 Sigma (Σ) Notation In approximating

More information

AP Calculus BC Fall Final Part IIa

AP Calculus BC Fall Final Part IIa AP Calculus BC 18-19 Fall Final Part IIa Calculator Required Name: 1. At time t = 0, there are 120 gallons of oil in a tank. During the time interval 0 t 10 hours, oil flows into the tank at a rate of

More information

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved.

Taylor and Maclaurin Series. Copyright Cengage Learning. All rights reserved. 11.10 Taylor and Maclaurin Series Copyright Cengage Learning. All rights reserved. We start by supposing that f is any function that can be represented by a power series f(x)= c 0 +c 1 (x a)+c 2 (x a)

More information

INTEGRALS5 INTEGRALS

INTEGRALS5 INTEGRALS INTEGRALS5 INTEGRALS INTEGRALS 5.3 The Fundamental Theorem of Calculus In this section, we will learn about: The Fundamental Theorem of Calculus and its significance. FUNDAMENTAL THEOREM OF CALCULUS The

More information

9.7 Extension: Writing and Graphing the Equations

9.7 Extension: Writing and Graphing the Equations www.ck12.org Chapter 9. Circles 9.7 Extension: Writing and Graphing the Equations of Circles Learning Objectives Graph a circle. Find the equation of a circle in the coordinate plane. Find the radius and

More information

INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS

INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS APPROXIMATING AREA For today s lesson, we will be using different approaches to the area problem. The area problem is to definite integrals

More information

Chapter 6: The Definite Integral

Chapter 6: The Definite Integral Name: Date: Period: AP Calc AB Mr. Mellina Chapter 6: The Definite Integral v v Sections: v 6.1 Estimating with Finite Sums v 6.5 Trapezoidal Rule v 6.2 Definite Integrals 6.3 Definite Integrals and Antiderivatives

More information

Pre-AP Algebra 2 Lesson 1-5 Linear Functions

Pre-AP Algebra 2 Lesson 1-5 Linear Functions Lesson 1-5 Linear Functions Objectives: Students will be able to graph linear functions, recognize different forms of linear functions, and translate linear functions. Students will be able to recognize

More information

Complex Numbers. Copyright Cengage Learning. All rights reserved.

Complex Numbers. Copyright Cengage Learning. All rights reserved. 4 Complex Numbers Copyright Cengage Learning. All rights reserved. 4.1 Complex Numbers Copyright Cengage Learning. All rights reserved. Objectives Use the imaginary unit i to write complex numbers. Add,

More information

Motion with Integrals Worksheet 4: What you need to know about Motion along the x-axis (Part 2)

Motion with Integrals Worksheet 4: What you need to know about Motion along the x-axis (Part 2) Motion with Integrals Worksheet 4: What you need to know about Motion along the x-axis (Part 2) 1. Speed is the absolute value of. 2. If the velocity and acceleration have the sign (either both positive

More information

Chapter 5 - Integration

Chapter 5 - Integration Chapter 5 - Integration 5.1 Approximating the Area under a Curve 5.2 Definite Integrals 5.3 Fundamental Theorem of Calculus 5.4 Working with Integrals 5.5 Substitution Rule for Integrals 1 Q. Is the area

More information

Chapter 4 Integration

Chapter 4 Integration Chapter 4 Integration SECTION 4.1 Antiderivatives and Indefinite Integration Calculus: Chapter 4 Section 4.1 Antiderivative A function F is an antiderivative of f on an interval I if F '( x) f ( x) for

More information

Infinite Series. Copyright Cengage Learning. All rights reserved.

Infinite Series. Copyright Cengage Learning. All rights reserved. Infinite Series Copyright Cengage Learning. All rights reserved. Sequences Copyright Cengage Learning. All rights reserved. Objectives List the terms of a sequence. Determine whether a sequence converges

More information

Subsequences and Limsups. Some sequences of numbers converge to limits, and some do not. For instance,

Subsequences and Limsups. Some sequences of numbers converge to limits, and some do not. For instance, Subsequences and Limsups Some sequences of numbers converge to limits, and some do not. For instance,,, 3, 4, 5,,... converges to 0 3, 3., 3.4, 3.4, 3.45, 3.459,... converges to π, 3,, 3.,, 3.4,... does

More information

AP Calculus AB. Limits & Continuity. Table of Contents

AP Calculus AB. Limits & Continuity.   Table of Contents AP Calculus AB Limits & Continuity 2016 07 10 www.njctl.org www.njctl.org Table of Contents click on the topic to go to that section Introduction The Tangent Line Problem Definition of a Limit and Graphical

More information

10.2 Systems of Linear Equations

10.2 Systems of Linear Equations 10.2 Systems of Linear Equations in Several Variables Copyright Cengage Learning. All rights reserved. Objectives Solving a Linear System The Number of Solutions of a Linear System Modeling Using Linear

More information

Logarithmic, Exponential, and Other Transcendental Functions. Copyright Cengage Learning. All rights reserved.

Logarithmic, Exponential, and Other Transcendental Functions. Copyright Cengage Learning. All rights reserved. 5 Logarithmic, Exponential, and Other Transcendental Functions Copyright Cengage Learning. All rights reserved. 5.5 Bases Other Than e and Applications Copyright Cengage Learning. All rights reserved.

More information

6.2 Their Derivatives

6.2 Their Derivatives Exponential Functions and 6.2 Their Derivatives Copyright Cengage Learning. All rights reserved. Exponential Functions and Their Derivatives The function f(x) = 2 x is called an exponential function because

More information

6.3. MULTIVARIABLE LINEAR SYSTEMS

6.3. MULTIVARIABLE LINEAR SYSTEMS 6.3. MULTIVARIABLE LINEAR SYSTEMS What You Should Learn Use back-substitution to solve linear systems in row-echelon form. Use Gaussian elimination to solve systems of linear equations. Solve nonsquare

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

Trigonometric Functions. Copyright Cengage Learning. All rights reserved.

Trigonometric Functions. Copyright Cengage Learning. All rights reserved. 4 Trigonometric Functions Copyright Cengage Learning. All rights reserved. 4.1 Radian and Degree Measure Copyright Cengage Learning. All rights reserved. What You Should Learn Describe angles. Use radian

More information

Calculus: Area. Mathematics 15: Lecture 22. Dan Sloughter. Furman University. November 12, 2006

Calculus: Area. Mathematics 15: Lecture 22. Dan Sloughter. Furman University. November 12, 2006 Calculus: Area Mathematics 15: Lecture 22 Dan Sloughter Furman University November 12, 2006 Dan Sloughter (Furman University) Calculus: Area November 12, 2006 1 / 7 Area Note: formulas for the areas of

More information

5.3 Definite Integrals and Antiderivatives

5.3 Definite Integrals and Antiderivatives 5.3 Definite Integrals and Antiderivatives Objective SWBAT use properties of definite integrals, average value of a function, mean value theorem for definite integrals, and connect differential and integral

More information

Fundamentals. Copyright Cengage Learning. All rights reserved.

Fundamentals. Copyright Cengage Learning. All rights reserved. Fundamentals Copyright Cengage Learning. All rights reserved. 1.11 Making Models Using Variation Copyright Cengage Learning. All rights reserved. Objectives Direct Variation Inverse Variation Joint Variation

More information

Calculus for the Life Sciences

Calculus for the Life Sciences Calculus for the Life Sciences Integration Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State

More information

1 5 π 2. 5 π 3. 5 π π x. 5 π 4. Figure 1: We need calculus to find the area of the shaded region.

1 5 π 2. 5 π 3. 5 π π x. 5 π 4. Figure 1: We need calculus to find the area of the shaded region. . Area In order to quantify the size of a 2-dimensional object, we use area. Since we measure area in square units, we can think of the area of an object as the number of such squares it fills up. Using

More information

Integral. For example, consider the curve y = f(x) between x = 0 and x = 1, with f(x) = x. We ask:

Integral. For example, consider the curve y = f(x) between x = 0 and x = 1, with f(x) = x. We ask: Integral Integration is an important concept in mathematics, specifically in the field of calculus and, more broadly, mathematical analysis. Given a function ƒ of a real variable x and an interval [a,

More information

56 CHAPTER 3. POLYNOMIAL FUNCTIONS

56 CHAPTER 3. POLYNOMIAL FUNCTIONS 56 CHAPTER 3. POLYNOMIAL FUNCTIONS Chapter 4 Rational functions and inequalities 4.1 Rational functions Textbook section 4.7 4.1.1 Basic rational functions and asymptotes As a first step towards understanding

More information

1.1 Radical Expressions: Rationalizing Denominators

1.1 Radical Expressions: Rationalizing Denominators 1.1 Radical Expressions: Rationalizing Denominators Recall: 1. A rational number is one that can be expressed in the form a, where b 0. b 2. An equivalent fraction is determined by multiplying or dividing

More information

2tdt 1 y = t2 + C y = which implies C = 1 and the solution is y = 1

2tdt 1 y = t2 + C y = which implies C = 1 and the solution is y = 1 Lectures - Week 11 General First Order ODEs & Numerical Methods for IVPs In general, nonlinear problems are much more difficult to solve than linear ones. Unfortunately many phenomena exhibit nonlinear

More information

Sections 8.1 & 8.2 Systems of Linear Equations in Two Variables

Sections 8.1 & 8.2 Systems of Linear Equations in Two Variables Sections 8.1 & 8.2 Systems of Linear Equations in Two Variables Department of Mathematics Porterville College September 7, 2014 Systems of Linear Equations in Two Variables Learning Objectives: Solve Systems

More information

Area. A(2) = sin(0) π 2 + sin(π/2)π 2 = π For 3 subintervals we will find

Area. A(2) = sin(0) π 2 + sin(π/2)π 2 = π For 3 subintervals we will find Area In order to quantify the size of a -dimensional object, we use area. Since we measure area in square units, we can think of the area of an object as the number of such squares it fills up. Using this

More information

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved.

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved. 3 Exponential and Logarithmic Functions Copyright Cengage Learning. All rights reserved. 3.2 Logarithmic Functions and Their Graphs Copyright Cengage Learning. All rights reserved. What You Should Learn

More information

TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved.

TRIGONOMETRIC FUNCTIONS. Copyright Cengage Learning. All rights reserved. 12 TRIGONOMETRIC FUNCTIONS Copyright Cengage Learning. All rights reserved. 12.2 The Trigonometric Functions Copyright Cengage Learning. All rights reserved. The Trigonometric Functions and Their Graphs

More information

Indicate whether the statement is true or false.

Indicate whether the statement is true or false. PRACTICE EXAM IV Sections 6.1, 6.2, 8.1 8.4 Indicate whether the statement is true or false. 1. For a circle, the constant ratio of the circumference C to length of diameter d is represented by the number.

More information

WARM UP!! 12 in 2 /sec

WARM UP!! 12 in 2 /sec WARM UP!! One leg of a right triangle is twice the length of the other. If the hypotenuse is growing at a rate of 3 in/sec, how fast is the area of the triangle growing when the hypotenuse is 10 in? 12

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

AP Calculus. Area Accumulation and Approximation

AP Calculus. Area Accumulation and Approximation AP Calculus Area Accumulation and Approximation Student Handout 26 27 EDITION Use the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss

More information

A. Incorrect! Replacing is not a method for solving systems of equations.

A. Incorrect! Replacing is not a method for solving systems of equations. ACT Math and Science - Problem Drill 20: Systems of Equations No. 1 of 10 1. What methods were presented to solve systems of equations? (A) Graphing, replacing, and substitution. (B) Solving, replacing,

More information

The total differential

The total differential The total differential The total differential of the function of two variables The total differential gives the full information about rates of change of the function in the -direction and in the -direction.

More information

v(t) v(t) Assignment & Notes 5.2: Intro to Integrals Due Date: Friday, 1/10

v(t) v(t) Assignment & Notes 5.2: Intro to Integrals Due Date: Friday, 1/10 Assignment & Notes 5.2: Intro to Integrals 1. The velocity function (in miles and hours) for Ms. Hardtke s Christmas drive to see her family is shown at the right. Find the total distance Ms. H travelled

More information

2.1 Functions and Their Graphs. Copyright Cengage Learning. All rights reserved.

2.1 Functions and Their Graphs. Copyright Cengage Learning. All rights reserved. 2.1 Functions and Their Graphs Copyright Cengage Learning. All rights reserved. Functions A manufacturer would like to know how his company s profit is related to its production level; a biologist would

More information

AP Physics C Mechanics Calculus Basics

AP Physics C Mechanics Calculus Basics AP Physics C Mechanics Calculus Basics Among other things, calculus involves studying analytic geometry (analyzing graphs). The above graph should be familiar to anyone who has studied elementary algebra.

More information

Spring 2015, Math 111 Lab 9: The Definite Integral as the Are. the Area under a Curve

Spring 2015, Math 111 Lab 9: The Definite Integral as the Are. the Area under a Curve Spring 2015, Math 111 Lab 9: The Definite Integral as the Area under a Curve William and Mary April 14, 2015 Historical Outline Intuition Learning Objectives Today, we will be looking at applications of

More information

HOMEWORK 7 SOLUTIONS

HOMEWORK 7 SOLUTIONS HOMEWORK 7 SOLUTIONS MA11: ADVANCED CALCULUS, HILARY 17 (1) Using the method of Lagrange multipliers, find the largest and smallest values of the function f(x, y) xy on the ellipse x + y 1. Solution: The

More information

Science One Integral Calculus. January 8, 2018

Science One Integral Calculus. January 8, 2018 Science One Integral Calculus January 8, 2018 Last time a definition of area Key ideas Divide region into n vertical strips Approximate each strip by a rectangle Sum area of rectangles Take limit for n

More information

Project 1: Riemann Sums

Project 1: Riemann Sums MS 00 Integral Calculus and Differential Equations 1 Project 1: Riemann Sums In this project you prove some summation identities and then apply them to calculate various integrals from first principles.

More information

Sequences and Series

Sequences and Series Sequences and Series What do you think of when you read the title of our next unit? In case your answers are leading us off track, let's review the following IB problems. 1 November 2013 HL 2 3 November

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

Limits and Continuity

Limits and Continuity Chapter 1 Limits and Continuity 1.1 Introduction 1.1.1 What is Calculus? The origins of calculus can be traced back to ancient Greece. The ancient Greeks raised many questions about tangents, motion, area,

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

Quadratic Model To Solve Equations Of Degree n In One Variable

Quadratic Model To Solve Equations Of Degree n In One Variable Quadratic Model To Solve Equations Of Degree n In One Variable This paper introduces a numeric method to solving equations of degree n in one variable. Because the method is based on a quadratic model,

More information

Final Exam 12/11/ (16 pts) Find derivatives for each of the following: (a) f(x) = 3 1+ x e + e π [Do not simplify your answer.

Final Exam 12/11/ (16 pts) Find derivatives for each of the following: (a) f(x) = 3 1+ x e + e π [Do not simplify your answer. Math 105 Final Exam 1/11/1 Name Read directions carefully and show all your work. Partial credit will be assigned based upon the correctness, completeness, and clarity of your answers. Correct answers

More information

3.3 Dividing Polynomials. Copyright Cengage Learning. All rights reserved.

3.3 Dividing Polynomials. Copyright Cengage Learning. All rights reserved. 3.3 Dividing Polynomials Copyright Cengage Learning. All rights reserved. Objectives Long Division of Polynomials Synthetic Division The Remainder and Factor Theorems 2 Dividing Polynomials In this section

More information

3.2. Polynomial Functions and Their Graphs. Copyright Cengage Learning. All rights reserved.

3.2. Polynomial Functions and Their Graphs. Copyright Cengage Learning. All rights reserved. 3.2 Polynomial Functions and Their Graphs Copyright Cengage Learning. All rights reserved. Objectives Graphing Basic Polynomial Functions End Behavior and the Leading Term Using Zeros to Graph Polynomials

More information

Origin of the Fundamental Theorem of Calculus Math 121 Calculus II Spring 2015

Origin of the Fundamental Theorem of Calculus Math 121 Calculus II Spring 2015 Origin of the Fundamental Theorem of alculus Math 121 alculus II Spring 2015 alculus has a long history. lthough Newton and Leibniz are credited with the invention of calculus in the late 1600s, almost

More information

Calculus Honors Curriculum Guide Dunmore School District Dunmore, PA

Calculus Honors Curriculum Guide Dunmore School District Dunmore, PA Calculus Honors Dunmore School District Dunmore, PA Calculus Honors Prerequisite: Successful completion of Trigonometry/Pre-Calculus Honors Major topics include: limits, derivatives, integrals. Instruction

More information

l Hǒpital s Rule and Limits of Riemann Sums (Textbook Supplement)

l Hǒpital s Rule and Limits of Riemann Sums (Textbook Supplement) l Hǒpital s Rule and Limits of Riemann Sums Textbook Supplement The 0/0 Indeterminate Form and l Hǒpital s Rule Some weeks back, we already encountered a fundamental 0/0 indeterminate form, namely the

More information

t dt Estimate the value of the integral with the trapezoidal rule. Use n = 4.

t dt Estimate the value of the integral with the trapezoidal rule. Use n = 4. Trapezoidal Rule We have already found the value of an integral using rectangles in the first lesson of this module. In this section we will again be estimating the value of an integral using geometric

More information

Solutions to Homework 1

Solutions to Homework 1 Solutions to Homework 1 1. Let f(x) = x 2, a = 1, b = 2, and let x = a = 1, x 1 = 1.1, x 2 = 1.2, x 3 = 1.4, x 4 = b = 2. Let P = (x,..., x 4 ), so that P is a partition of the interval [1, 2]. List the

More information

In this section you will learn the following : 40.1Double integrals

In this section you will learn the following : 40.1Double integrals Module 14 : Double Integrals, Applilcations to Areas and Volumes Change of variables Lecture 40 : Double integrals over rectangular domains [Section 40.1] Objectives In this section you will learn the

More information

Answer Explanations for: ACT June 2012, Form 70C

Answer Explanations for: ACT June 2012, Form 70C Answer Explanations for: ACT June 2012, Form 70C Mathematics 1) C) A mean is a regular average and can be found using the following formula: (average of set) = (sum of items in set)/(number of items in

More information

Index. Excerpt from "Calculus" 2013 AoPS Inc. Copyrighted Material INDEX

Index. Excerpt from Calculus 2013 AoPS Inc.  Copyrighted Material INDEX Index #, 2 \, 5, 4 [, 4 - definition, 38 ;, 2 indeterminate form, 2 22, 24 indeterminate form, 22 23, see Euler s Constant 2, 2, see infinity, 33 \, 6, 3, 2 3-6-9 triangle, 2 4-dimensional sphere, 85 45-45-9

More information