10.2 Systems of Linear Equations

Size: px
Start display at page:

Download "10.2 Systems of Linear Equations"

Transcription

1 10.2 Systems of Linear Equations in Several Variables Copyright Cengage Learning. All rights reserved.

2 Objectives Solving a Linear System The Number of Solutions of a Linear System Modeling Using Linear Systems 2

3 Systems of Linear Equations in Several Variables A linear equation in n variables is an equation that can be put in the form a 1 x 1 + a 2 x a n x n = c where a 1, a 2,..., a n and c are real numbers, and x 1, x 2,..., x n are the variables. If we have only three or four variables, we generally use x, y, z, and ω instead of x 1, x 2, x 3, and x 4. Such equations are called linear because if we have just two variables, the equation is a 1 x + a 2 y = c, which is the equation of a line. 3

4 Systems of Linear Equations in Several Variables Here are some examples of equations in three variables that illustrate the difference between linear and nonlinear equations. 4

5 Solving a Linear System 5

6 Solving a Linear System The following are two examples of systems of linear equations in three variables. The second system is in triangular form; that is, the variable x doesn t appear in the second equation, and the variables x and y do not appear in the third equation. A system of linear A system in triangular equations form x 2y z = 1 x 2y z = 1 x + 3y + 3z = 4 y + 2z = 5 2x 3y + z = 10 z = 3 6

7 Solving a Linear System It s easy to solve a system that is in triangular form by using back-substitution. So our goal in this section is to start with a system of linear equations and change it to a system in triangular form that has the same solutions as the original system. We begin by showing how to use back-substitution to solve a system that is already in triangular form. 7

8 Example 1 Solving a Triangular System Using Back-Substitution Solve the system using back-substitution: x 2y z = 1 Equation 1 y + 2z = 5 Equation 2 z = 3 Equation 3 Solution: From the last equation we know that z = 3. We back-substitute this into the second equation and solve for y. y + 2(3) = 5 Back-substitute z = 3 into Equation 2 8

9 Example 1 Solution cont d y = 1 Solve for y Then we back-substitute y = 1 and z = 3 into the first equation and solve for x. x 2( 1) (3) = 1 x = 2 Back-substitute y = 1 and z = 3 into Equation 1 Solve for x The solution of the system is x = 2, y = 1, z = 3. We can also write the solution as the ordered triple (2, 1, 3). 9

10 Solving a Linear System To change a system of linear equations to an equivalent system (that is, a system with the same solutions as the original system), we use the elimination method. This means that we can use the following operations. 10

11 Solving a Linear System To solve a linear system, we use these operations to change the system to an equivalent triangular system. Then we use back-substitution as in Example 1. This process is called Gaussian elimination. 11

12 Example 2 Solving a System of Three Equations in Three Variables Solve the system using Gaussian elimination. x 2y + 3z = 1 x + 2y z = 13 3x + 2y 5z = 3 Equation 1 Equation 2 Equation 3 Solution: We need to change this to a triangular system, so we begin by eliminating the x-term from the second equation. 12

13 Example 2 Solution cont d x + 2y z = 13 x 2y + 3z = 1 4y 4z = 12 Equation 2 Equation 1 Equation 2 + ( 1) Equation 1 = new Equation 2 This gives us a new, equivalent system that is one step closer to triangular form. x 2y + 3z = 1 4y 4z = 12 3x + 2y 5z = 3 Equation 1 Equation 2 Equation 3 13

14 Example 2 Solution cont d Now we eliminate the x-term from the third equation. x 2y + 3z = 1 4y 4z = 12 8y 14z = 0 Equation 3 + ( 3) Equation 1 = new Equation 3 Then we eliminate the y-term from the third equation. x 2y + 3z = 1 4y 4z = 12 6z = 24 Equation 3 + ( 2) Equation 2 = new Equation 3 14

15 Example 2 Solution cont d The system is now in triangular form, but it will be easier to work with if we divide the second and third equations by the common factors of each term. x 2y + 3z = 1 y z = 3 Equation 2 = new Equation 2 z = 4 Equation 3 = new Equation 3 Now we use back-substitution to solve the system. From the third equation we get z = 4. We back-substitute this into the second equation and solve for y. y (4) = 3 Back-substitute z = 4 into Equation 2 15

16 Example 2 Solution cont d y = 7 Solve for y Now we back-substitute y = 7 and z = 4 into the first equation and solve for x. x 2(7) + 3(4) = 1 Back-substitute y = 7 and z = 4 into Equation 1 x = 3 Solve for x The solution of the system is x = 3, y = 7, z = 4, which we can write as the ordered triple (3, 7, 4). 16

17 Example 2 Solution cont d Check Your Answer: x = 3, y = 7, z = 4: (3) 2(7) + 3(4) = 1 (3) + 2(7) (4) = 13 3(3) + 2(7) 5(4) = 3 17

18 The Number of Solutions of a Linear System 18

19 The Number of Solutions of a Linear System 19

20 The Number of Solutions of a Linear System A system with no solutions is said to be inconsistent, and a system with infinitely many solutions is said to be dependent. As we see in the next example, a linear system has no solution if we end up with a false equation after applying Gaussian elimination to the system. 20

21 Example 3 A System with No Solution Solve the following system. x + 2y 2z = 1 2x + 2y z = 6 3x + 4y 3z = 5 Equation 1 Equation 2 Equation 3 Solution: To put this in triangular form, we begin by eliminating the x-terms from the second equation and the third equation. 21

22 Example 3 Solution cont d x + 2y 2z = 1 2y + 3z = 4 3x + 4y + 3z = 5 x + 2y 2z = 1 2y + 3z = 4 2y + 3z = 2 Equation 2 + ( 2) Equation 1 = new Equation 2 Equation 3 + ( 3) Equation 1 = new Equation 3 Now we eliminate the y-term from the third equation. x + 2y 2z = 1 2y + 3z = 4 0 = 2 Equation 3 + ( 1) Equation 2 = new Equation 3 22

23 Example 3 Solution cont d The system is now in triangular form, but the third equation says 0 = 2, which is false. No matter what values we assign to x, y, and z, the third equation will never be true. This means that the system has no solution. 23

24 Example 4 A System with Infinitely Many Solutions Solve the following system. x y + 5z = 2 2x + y + 4z = 2 2x + 4y 2z = 8 Equation 1 Equation 2 Equation 3 Solution: To put this in triangular form, we begin by eliminating the x-terms from the second equation and the third equation. 24

25 Example 4 Solution cont d x y + 5z = 2 3y 6z = 6 2x + 4y 2z = 8 x y + 5z = 2 3y 6z = 6 6y 12z = 12 Equation 2 + ( 2) Equation 1 = new Equation 2 Equation 3 + ( 2) Equation 1 = new Equation 3 Now we eliminate the y-term from the third equation. x y + 5z = 2 3y 6z = 6 0 = 0 Equation 3 + ( 2) Equation 2 = new Equation 3 25

26 Example 4 Solution cont d The new third equation is true, but it gives us no new information, so we can drop it from the system. Only two equations are left. We can use them to solve for x and y in terms of z, but z can take on any value, so there are infinitely many solutions. To find the complete solution of the system, we begin by solving for y in terms of z, using the new second equation. 3y 6z = 6 Equation 2 y 2z = 2 Multiply by 26

27 Example 4 Solution cont d y = 2z + 2 Solve for y Then we solve for x in terms of z, using the first equation. x (2z + 2) + 5z = 2 Substitute y = 2z + 2 into Equation 1 x + 3z 2 = 2 Simplify x = 3z Solve for x 27

28 Example 4 Solution cont d To describe the complete solution, we let t represent any real number. The solution is x = 3t y = 2t + 2 z = t We can also write this as the ordered triple ( 3t, 2t + 2, t). 28

29 The Number of Solutions of a Linear System In the solution of Example 4 the variable t is called a parameter. To get a specific (so-called particular) solution, we give a specific (particular) value to the parameter t. For instance, if we set t = 2, we get x = 3(2) = 6 y = 2(2) + 2 = 6 z = 2 Thus ( 6, 6, 2) is a solution of the system. 29

30 The Number of Solutions of a Linear System Here are some other solutions of the system obtained by substituting other values for the parameter t. You should check that these points satisfy the original equations. Since there are infinitely many choices for the parameter t, the system has infinitely many solutions. 30

31 Modeling Using Linear Systems 31

32 Modeling Using Linear Systems Linear systems are used to model situations that involve several varying quantities. In the next example we consider an application of linear systems to finance. 32

33 Example 5 Modeling a Financial Problem Using a Linear System Jason receives an inheritance of $50,000. His financial advisor suggests that he invest this in three mutual funds: a money-market fund, a blue-chip stock fund, and a high-tech stock fund. The advisor estimates that the money-market fund will return 5% over the next year, the blue-chip fund 9%, and the high-tech fund 16%. Jason wants a total first-year return of $4000. To avoid excessive risk, he decides to invest three times as much in the money-market fund as in the high-tech stock fund. How much should he invest in each fund? 33

34 Example 5 Solution Let x = amount invested in the money-market fund y = amount invested in the blue-chip stock fund z = amount invested in the high-tech stock fund We convert each fact given in the problem into an equation. x + y + z = 50, x y z = 4000 Total amount invested is $50,000 Total investment return is $4000 x = 3z Money-market amount is 3 high-tech amount 34

35 Example 5 Solution cont d Multiplying the second equation by 100 and rewriting the third gives the following system, which we solve using Gaussian elimination. x + y + z = 50,000 5x + 9y + 16z = 400,000 x 3z = Equation 2 Subtract 3z x + y + z = 50,000 4y + 11z = 150,000 y 4z = 50,000 Equation 2 + ( 5) Equation 1 = new Equation 2 Equation 3 + ( 1) Equation 1 = new Equation 3 35

36 Example 5 Solution cont d x + y + z = 50,000 5z = 50,000 y 4z = 50,000 Equation Equation 3 = new Equation 3 x + y + z = 50,000 z = 10,000 y + 4z = 50,000 Equation 2 ( 1) Equation 3 x + y + z = 50,000 y + 4z = 50,000 z = 10,000 Interchange Equations 2 and 3 36

37 Example 5 Solution cont d Now that the system is in triangular form, we use back-substitution to find that x = 30,000, y = 10,000, and z = 10,000. This means that Jason should invest $30,000 in the money-market fund $10,000 in the blue-chip stock fund $10,000 in the high-tech stock fund 37

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved.

7.5 Operations with Matrices. Copyright Cengage Learning. All rights reserved. 7.5 Operations with Matrices Copyright Cengage Learning. All rights reserved. What You Should Learn Decide whether two matrices are equal. Add and subtract matrices and multiply matrices by scalars. Multiply

More information

6.3. MULTIVARIABLE LINEAR SYSTEMS

6.3. MULTIVARIABLE LINEAR SYSTEMS 6.3. MULTIVARIABLE LINEAR SYSTEMS What You Should Learn Use back-substitution to solve linear systems in row-echelon form. Use Gaussian elimination to solve systems of linear equations. Solve nonsquare

More information

Unit 4 Systems of Equations Systems of Two Linear Equations in Two Variables

Unit 4 Systems of Equations Systems of Two Linear Equations in Two Variables Unit 4 Systems of Equations Systems of Two Linear Equations in Two Variables Solve Systems of Linear Equations by Graphing Solve Systems of Linear Equations by the Substitution Method Solve Systems of

More information

System of Equations: An Introduction

System of Equations: An Introduction System of Equations: An Introduction Many books on linear algebra will introduce matrices via systems of linear equations. We tried a different approach. We hope this way you will appreciate matrices as

More information

7.6 The Inverse of a Square Matrix

7.6 The Inverse of a Square Matrix 7.6 The Inverse of a Square Matrix Copyright Cengage Learning. All rights reserved. What You Should Learn Verify that two matrices are inverses of each other. Use Gauss-Jordan elimination to find inverses

More information

1.7 Inequalities. Copyright Cengage Learning. All rights reserved.

1.7 Inequalities. Copyright Cengage Learning. All rights reserved. 1.7 Inequalities Copyright Cengage Learning. All rights reserved. Objectives Solving Linear Inequalities Solving Nonlinear Inequalities Absolute Value Inequalities Modeling with Inequalities 2 Inequalities

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION x 1,, x n A linear equation in the variables equation that can be written in the form a 1 x 1 + a 2 x 2 + + a n x n

More information

Linear Systems and Matrices. Copyright Cengage Learning. All rights reserved.

Linear Systems and Matrices. Copyright Cengage Learning. All rights reserved. 7 Linear Systems and Matrices Copyright Cengage Learning. All rights reserved. 7.1 Solving Systems of Equations Copyright Cengage Learning. All rights reserved. What You Should Learn Use the methods of

More information

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved.

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved. Exponential and Logarithmic Functions Copyright Cengage Learning. All rights reserved. 4.5 Exponential and Logarithmic Equations Copyright Cengage Learning. All rights reserved. Objectives Exponential

More information

Math 2331 Linear Algebra

Math 2331 Linear Algebra 1.1 Linear System Math 2331 Linear Algebra 1.1 Systems of Linear Equations Shang-Huan Chiu Department of Mathematics, University of Houston schiu@math.uh.edu math.uh.edu/ schiu/ Shang-Huan Chiu, University

More information

5.3 SOLVING TRIGONOMETRIC EQUATIONS

5.3 SOLVING TRIGONOMETRIC EQUATIONS 5.3 SOLVING TRIGONOMETRIC EQUATIONS Copyright Cengage Learning. All rights reserved. What You Should Learn Use standard algebraic techniques to solve trigonometric equations. Solve trigonometric equations

More information

Section 6.2 Larger Systems of Linear Equations

Section 6.2 Larger Systems of Linear Equations Section 6.2 Larger Systems of Linear Equations Gaussian Elimination In general, to solve a system of linear equations using its augmented matrix, we use elementary row operations to arrive at a matrix

More information

Gauss-Jordan Row Reduction and Reduced Row Echelon Form

Gauss-Jordan Row Reduction and Reduced Row Echelon Form Gauss-Jordan Row Reduction and Reduced Row Echelon Form If we put the augmented matrix of a linear system in reduced row-echelon form, then we don t need to back-substitute to solve the system. To put

More information

Solving Linear Systems Using Gaussian Elimination

Solving Linear Systems Using Gaussian Elimination Solving Linear Systems Using Gaussian Elimination DEFINITION: A linear equation in the variables x 1,..., x n is an equation that can be written in the form a 1 x 1 +...+a n x n = b, where a 1,...,a n

More information

The Method of Substitution. Linear and Nonlinear Systems of Equations. The Method of Substitution. The Method of Substitution. Example 2.

The Method of Substitution. Linear and Nonlinear Systems of Equations. The Method of Substitution. The Method of Substitution. Example 2. The Method of Substitution Linear and Nonlinear Systems of Equations Precalculus 7.1 Here is an example of a system of two equations in two unknowns. Equation 1 x + y = 5 Equation 3x y = 4 A solution of

More information

Linear Equations in Linear Algebra

Linear Equations in Linear Algebra 1 Linear Equations in Linear Algebra 1.1 SYSTEMS OF LINEAR EQUATIONS LINEAR EQUATION,, 1 n A linear equation in the variables equation that can be written in the form a a a b 1 1 2 2 n n a a is an where

More information

10.3 Matrices and Systems Of

10.3 Matrices and Systems Of 10.3 Matrices and Systems Of Linear Equations Copyright Cengage Learning. All rights reserved. Objectives Matrices The Augmented Matrix of a Linear System Elementary Row Operations Gaussian Elimination

More information

Systems of Linear Equations

Systems of Linear Equations 4 Systems of Linear Equations Copyright 2014, 2010, 2006 Pearson Education, Inc. Section 4.1, Slide 1 1-1 4.1 Systems of Linear Equations in Two Variables R.1 Fractions Objectives 1. Decide whether an

More information

3.3 Dividing Polynomials. Copyright Cengage Learning. All rights reserved.

3.3 Dividing Polynomials. Copyright Cengage Learning. All rights reserved. 3.3 Dividing Polynomials Copyright Cengage Learning. All rights reserved. Objectives Long Division of Polynomials Synthetic Division The Remainder and Factor Theorems 2 Dividing Polynomials In this section

More information

A linear equation in two variables is generally written as follows equation in three variables can be written as

A linear equation in two variables is generally written as follows equation in three variables can be written as System of Equations A system of equations is a set of equations considered simultaneously. In this course, we will discuss systems of equation in two or three variables either linear or quadratic or a

More information

Methods for Solving Linear Systems Part 2

Methods for Solving Linear Systems Part 2 Methods for Solving Linear Systems Part 2 We have studied the properties of matrices and found out that there are more ways that we can solve Linear Systems. In Section 7.3, we learned that we can use

More information

11.4 The Comparison Tests. Copyright Cengage Learning. All rights reserved.

11.4 The Comparison Tests. Copyright Cengage Learning. All rights reserved. 11.4 The Comparison Tests Copyright Cengage Learning. All rights reserved. The Comparison Tests In the comparison tests the idea is to compare a given series with a series that is known to be convergent

More information

Sections 8.1 & 8.2 Systems of Linear Equations in Two Variables

Sections 8.1 & 8.2 Systems of Linear Equations in Two Variables Sections 8.1 & 8.2 Systems of Linear Equations in Two Variables Department of Mathematics Porterville College September 7, 2014 Systems of Linear Equations in Two Variables Learning Objectives: Solve Systems

More information

CHAPTER 1 Systems of Linear Equations

CHAPTER 1 Systems of Linear Equations CHAPTER Systems of Linear Equations Section. Introduction to Systems of Linear Equations. Because the equation is in the form a x a y b, it is linear in the variables x and y. 0. Because the equation cannot

More information

Chapter 7 Linear Systems and Matrices

Chapter 7 Linear Systems and Matrices Chapter 7 Linear Systems and Matrices Overview: 7.1 Solving Systems of Equations 7.2 Systems of Linear Equations in Two Variables 7.3 Multivariable Linear Systems 7.1 Solving Systems of Equations What

More information

Integration. Copyright Cengage Learning. All rights reserved.

Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 1 4.3 Riemann Sums and Definite Integrals Copyright Cengage Learning. All rights reserved. 2 Objectives Understand the definition of a Riemann

More information

5x 2 = 10. x 1 + 7(2) = 4. x 1 3x 2 = 4. 3x 1 + 9x 2 = 8

5x 2 = 10. x 1 + 7(2) = 4. x 1 3x 2 = 4. 3x 1 + 9x 2 = 8 1 To solve the system x 1 + x 2 = 4 2x 1 9x 2 = 2 we find an (easier to solve) equivalent system as follows: Replace equation 2 with (2 times equation 1 + equation 2): x 1 + x 2 = 4 Solve equation 2 for

More information

Notes on Row Reduction

Notes on Row Reduction Notes on Row Reduction Francis J. Narcowich Department of Mathematics Texas A&M University September The Row-Reduction Algorithm The row-reduced form of a matrix contains a great deal of information, both

More information

x y = 2 x + 2y = 14 x = 2, y = 0 x = 3, y = 1 x = 4, y = 2 x = 5, y = 3 x = 6, y = 4 x = 7, y = 5 x = 0, y = 7 x = 2, y = 6 x = 4, y = 5

x y = 2 x + 2y = 14 x = 2, y = 0 x = 3, y = 1 x = 4, y = 2 x = 5, y = 3 x = 6, y = 4 x = 7, y = 5 x = 0, y = 7 x = 2, y = 6 x = 4, y = 5 List six positive integer solutions for each of these equations and comment on your results. Two have been done for you. x y = x + y = 4 x =, y = 0 x = 3, y = x = 4, y = x = 5, y = 3 x = 6, y = 4 x = 7,

More information

Infinite Series. Copyright Cengage Learning. All rights reserved.

Infinite Series. Copyright Cengage Learning. All rights reserved. Infinite Series Copyright Cengage Learning. All rights reserved. Sequences Copyright Cengage Learning. All rights reserved. Objectives List the terms of a sequence. Determine whether a sequence converges

More information

A. Incorrect! Replacing is not a method for solving systems of equations.

A. Incorrect! Replacing is not a method for solving systems of equations. ACT Math and Science - Problem Drill 20: Systems of Equations No. 1 of 10 1. What methods were presented to solve systems of equations? (A) Graphing, replacing, and substitution. (B) Solving, replacing,

More information

Fundamentals. Copyright Cengage Learning. All rights reserved.

Fundamentals. Copyright Cengage Learning. All rights reserved. Fundamentals Copyright Cengage Learning. All rights reserved. 1.2 Exponents and Radicals Copyright Cengage Learning. All rights reserved. Objectives Integer Exponents Rules for Working with Exponents Scientific

More information

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015

Midterm 1 Review. Written by Victoria Kala SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Midterm 1 Review Written by Victoria Kala vtkala@math.ucsb.edu SH 6432u Office Hours: R 12:30 1:30 pm Last updated 10/10/2015 Summary This Midterm Review contains notes on sections 1.1 1.5 and 1.7 in your

More information

MAC1105-College Algebra. Chapter 5-Systems of Equations & Matrices

MAC1105-College Algebra. Chapter 5-Systems of Equations & Matrices MAC05-College Algebra Chapter 5-Systems of Equations & Matrices 5. Systems of Equations in Two Variables Solving Systems of Two Linear Equations/ Two-Variable Linear Equations A system of equations is

More information

System of Linear Equation: with more than Two Equations and more than Two Unknowns

System of Linear Equation: with more than Two Equations and more than Two Unknowns System of Linear Equation: with more than Two Equations and more than Two Unknowns Michigan Department of Education Standards for High School: Standard 1: Solve linear equations and inequalities including

More information

MADISON ACADEMY ALGEBRA WITH FINANCE PACING GUIDE

MADISON ACADEMY ALGEBRA WITH FINANCE PACING GUIDE (ACT included) [N-RN] Extend the properties of exponents to rational exponents.. 1st 9 Weeks Brooks/Cole Cengage Learning Chapter 1 all sections, Operations with Integers, Operations with Rational Numbers,

More information

1 - Systems of Linear Equations

1 - Systems of Linear Equations 1 - Systems of Linear Equations 1.1 Introduction to Systems of Linear Equations Almost every problem in linear algebra will involve solving a system of equations. ü LINEAR EQUATIONS IN n VARIABLES We are

More information

6.5 Systems of Inequalities

6.5 Systems of Inequalities 6.5 Systems of Inequalities Linear Inequalities in Two Variables: A linear inequality in two variables is an inequality that can be written in the general form Ax + By < C, where A, B, and C are real numbers

More information

Complex Numbers. Copyright Cengage Learning. All rights reserved.

Complex Numbers. Copyright Cengage Learning. All rights reserved. 4 Complex Numbers Copyright Cengage Learning. All rights reserved. 4.1 Complex Numbers Copyright Cengage Learning. All rights reserved. Objectives Use the imaginary unit i to write complex numbers. Add,

More information

7.3. Multivariable Linear Systems. Row-Echelon Form and Back-Substitution. What you should learn. Why you should learn it

7.3. Multivariable Linear Systems. Row-Echelon Form and Back-Substitution. What you should learn. Why you should learn it 333202_0703.qxd 12/5/05 9:42 AM Page 519 Section 7.3 Multivariable Linear Systems 519 7.3 Multivariable Linear Systems What you should learn Use back-substitution to solve linear systems in row-echelon

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.4 Basic Trigonometric Equations Copyright Cengage Learning. All rights reserved. Objectives Basic Trigonometric Equations Solving

More information

4 Integration. Copyright Cengage Learning. All rights reserved.

4 Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 4.1 Antiderivatives and Indefinite Integration Copyright Cengage Learning. All rights reserved. Objectives! Write the general solution of

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Copyright Cengage Learning. All rights reserved. SECTION 5.4 Strong Mathematical Induction and the Well-Ordering Principle for the Integers Copyright

More information

6.2. TWO-VARIABLE LINEAR SYSTEMS

6.2. TWO-VARIABLE LINEAR SYSTEMS 6.2. TWO-VARIABLE LINEAR SYSTEMS What You Should Learn Use the method of elimination to solve systems of linear equations in two variables. Interpret graphically the numbers of solutions of systems of

More information

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved.

Analytic Trigonometry. Copyright Cengage Learning. All rights reserved. Analytic Trigonometry Copyright Cengage Learning. All rights reserved. 7.1 Trigonometric Identities Copyright Cengage Learning. All rights reserved. Objectives Simplifying Trigonometric Expressions Proving

More information

Integration. Antiderivatives and Indefinite Integration 3/9/2015. Copyright Cengage Learning. All rights reserved.

Integration. Antiderivatives and Indefinite Integration 3/9/2015. Copyright Cengage Learning. All rights reserved. Integration Copyright Cengage Learning. All rights reserved. Antiderivatives and Indefinite Integration Copyright Cengage Learning. All rights reserved. 1 Objectives Write the general solution of a differential

More information

Algebra 2 - Midterm Exam Review

Algebra 2 - Midterm Exam Review Class: Date: Algebra 2 - Midterm Exam Review The Algebra 2 Midterm Exam must be taken by ALL Algebra 2 students. An exemption pass may be used to exempt the score for the Algebra 2 Midterm Exam. It should

More information

9.1 - Systems of Linear Equations: Two Variables

9.1 - Systems of Linear Equations: Two Variables 9.1 - Systems of Linear Equations: Two Variables Recall that a system of equations consists of two or more equations each with two or more variables. A solution to a system in two variables is an ordered

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.4 Complex Numbers Copyright Cengage Learning. All rights reserved. What You Should Learn Use the imaginary unit i

More information

Now, add the (modified) first equation and the second equation: -7x + 35y = x - 35y = = 0

Now, add the (modified) first equation and the second equation: -7x + 35y = x - 35y = = 0 1. Solve the system of equations. I m going to use elimination, by multiplying the first equation by 7: 7(-x + 5y = 2) -7x + 35y = 14 D Now, add the (modified) first equation and the second equation: -7x

More information

3.2 Equations that Reduce to Linear Form. Copyright Cengage Learning. All rights reserved.

3.2 Equations that Reduce to Linear Form. Copyright Cengage Learning. All rights reserved. 3.2 Equations that Reduce to Linear Form Copyright Cengage Learning. All rights reserved. 1 What You Will Learn Solve linear equations containing symbols of grouping Solve linear equations involving fractions

More information

Why? 2.2. What Do You Already Know? 2.2. Goals 2.2. Building Mathematical Language 2.2. Key Concepts 2.2

Why? 2.2. What Do You Already Know? 2.2. Goals 2.2. Building Mathematical Language 2.2. Key Concepts 2.2 Section. Solving Basic Equations Why. You can solve some equations that arise in the real world by isolating a variable. You can use this method to solve the equation 1 400 + 1 (10) x = 460 to determine

More information

This is Solving Linear Systems, chapter 3 from the book Advanced Algebra (index.html) (v. 1.0).

This is Solving Linear Systems, chapter 3 from the book Advanced Algebra (index.html) (v. 1.0). This is Solving Linear Systems, chapter 3 from the book Advanced Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

More information

LINEAR PROGRAMMING: A GEOMETRIC APPROACH. Copyright Cengage Learning. All rights reserved.

LINEAR PROGRAMMING: A GEOMETRIC APPROACH. Copyright Cengage Learning. All rights reserved. 3 LINEAR PROGRAMMING: A GEOMETRIC APPROACH Copyright Cengage Learning. All rights reserved. 3.4 Sensitivity Analysis Copyright Cengage Learning. All rights reserved. Sensitivity Analysis In this section,

More information

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination

Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Lecture 12: Solving Systems of Linear Equations by Gaussian Elimination Winfried Just, Ohio University September 22, 2017 Review: The coefficient matrix Consider a system of m linear equations in n variables.

More information

CHAPTER 9: Systems of Equations and Matrices

CHAPTER 9: Systems of Equations and Matrices MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations in Three Variables

More information

2.3 Differentiation Formulas. Copyright Cengage Learning. All rights reserved.

2.3 Differentiation Formulas. Copyright Cengage Learning. All rights reserved. 2.3 Differentiation Formulas Copyright Cengage Learning. All rights reserved. Differentiation Formulas Let s start with the simplest of all functions, the constant function f (x) = c. The graph of this

More information

Simultaneous Linear Equations

Simultaneous Linear Equations Simultaneous Linear Equations PHYSICAL PROBLEMS Truss Problem Pressure vessel problem a a b c b Polynomial Regression We are to fit the data to the polynomial regression model Simultaneous Linear Equations

More information

4.3 Row operations. As we have seen in Section 4.1 we can simplify a system of equations by either:

4.3 Row operations. As we have seen in Section 4.1 we can simplify a system of equations by either: 4.3 Row operations As we have seen in Section 4.1 we can simplify a system of equations by either: 1. Swapping the order of the equations around. For example: can become 3x 1 + 7x 2 = 9 x 1 2x 1 = 2 x

More information

Matrices and Systems of Equations

Matrices and Systems of Equations M CHAPTER 3 3 4 3 F 2 2 4 C 4 4 Matrices and Systems of Equations Probably the most important problem in mathematics is that of solving a system of linear equations. Well over 75 percent of all mathematical

More information

8.4. Systems of Equations in Three Variables. Identifying Solutions 2/20/2018. Example. Identifying Solutions. Solving Systems in Three Variables

8.4. Systems of Equations in Three Variables. Identifying Solutions 2/20/2018. Example. Identifying Solutions. Solving Systems in Three Variables 8.4 Systems of Equations in Three Variables Copyright 2010 Pearson Education, Inc. Publishing as Pearson Addison- Wesley Identifying Solutions Solving Systems in Three Variables Dependency, Inconsistency,

More information

Solving a linear system of two variables can be accomplished in four ways: Linear Systems of Two Variables

Solving a linear system of two variables can be accomplished in four ways: Linear Systems of Two Variables Hartfield College Algebra (Version 2018 - Thomas Hartfield) Unit SIX Page - 1 - of 13 Topic 45: Definition: Linear Systems of Two Variables A system of equations is a set of equations involving the same

More information

Linear Algebra Math 221

Linear Algebra Math 221 Linear Algebra Math Open Book Exam Open Notes 8 Oct, 004 Calculators Permitted Show all work (except #4). (0 pts) Let A = 3 a) (0 pts) Compute det(a) by Gaussian Elimination. 3 3 swap(i)&(ii) (iii) (iii)+(

More information

Chapter 4. Solving Systems of Equations. Chapter 4

Chapter 4. Solving Systems of Equations. Chapter 4 Solving Systems of Equations 3 Scenarios for Solutions There are three general situations we may find ourselves in when attempting to solve systems of equations: 1 The system could have one unique solution.

More information

Chapter 2 Linear Equations and Inequalities in One Variable

Chapter 2 Linear Equations and Inequalities in One Variable Chapter 2 Linear Equations and Inequalities in One Variable Section 2.1: Linear Equations in One Variable Section 2.3: Solving Formulas Section 2.5: Linear Inequalities in One Variable Section 2.6: Compound

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.6 Rational Functions and Asymptotes Copyright Cengage Learning. All rights reserved. What You Should Learn Find the

More information

CHAPTER 6. Copyright Cengage Learning. All rights reserved.

CHAPTER 6. Copyright Cengage Learning. All rights reserved. CHAPTER 6 SET THEORY Copyright Cengage Learning. All rights reserved. SECTION 6.4 Boolean Algebras, Russell s Paradox, and the Halting Problem Copyright Cengage Learning. All rights reserved. Boolean Algebras,

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. To repeat the recipe: These matrices are constructed by performing the given row

More information

4 Elementary matrices, continued

4 Elementary matrices, continued 4 Elementary matrices, continued We have identified 3 types of row operations and their corresponding elementary matrices. If you check the previous examples, you ll find that these matrices are constructed

More information

2x + 5 = x = x = 4

2x + 5 = x = x = 4 98 CHAPTER 3 Algebra Textbook Reference Section 5.1 3.3 LINEAR EQUATIONS AND INEQUALITIES Student CD Section.5 CLAST OBJECTIVES Solve linear equations and inequalities Solve a system of two linear equations

More information

MAC Module 1 Systems of Linear Equations and Matrices I

MAC Module 1 Systems of Linear Equations and Matrices I MAC 2103 Module 1 Systems of Linear Equations and Matrices I 1 Learning Objectives Upon completing this module, you should be able to: 1. Represent a system of linear equations as an augmented matrix.

More information

The Addition Property of Equality states that You can add the same number to both sides of an equation and still have an equivalent equation.

The Addition Property of Equality states that You can add the same number to both sides of an equation and still have an equivalent equation. Section 11 1C: Solving a System of Equations by Elimination The Addition Property of Equality states that You can add the same number to both sides of an equation and still have an equivalent equation.

More information

SCC Ch 3. Math 124 Intermediate Algebra: Part II Sec 3.1: Systems of Linear Equations in Two Variables

SCC Ch 3. Math 124 Intermediate Algebra: Part II Sec 3.1: Systems of Linear Equations in Two Variables Math 124 Intermediate Algebra: Part II Sec 3.1: Systems of Linear Equations in Two Variables Overview of Math 124 Chapter 3: Systems of Linear Equations and Inequalities (omit 3.4, 3.5) Chapter 7: Quadratic

More information

Lecture Notes in Mathematics. Arkansas Tech University Department of Mathematics. The Basics of Linear Algebra

Lecture Notes in Mathematics. Arkansas Tech University Department of Mathematics. The Basics of Linear Algebra Lecture Notes in Mathematics Arkansas Tech University Department of Mathematics The Basics of Linear Algebra Marcel B. Finan c All Rights Reserved Last Updated November 30, 2015 2 Preface Linear algebra

More information

This is Solving Linear Systems, chapter 4 from the book Beginning Algebra (index.html) (v. 1.0).

This is Solving Linear Systems, chapter 4 from the book Beginning Algebra (index.html) (v. 1.0). This is Solving Linear Systems, chapter 4 from the book Beginning Algebra (index.html) (v. 1.0). This book is licensed under a Creative Commons by-nc-sa 3.0 (http://creativecommons.org/licenses/by-nc-sa/

More information

Linear Algebra for Beginners Open Doors to Great Careers. Richard Han

Linear Algebra for Beginners Open Doors to Great Careers. Richard Han Linear Algebra for Beginners Open Doors to Great Careers Richard Han Copyright 2018 Richard Han All rights reserved. CONTENTS PREFACE... 7 1 - INTRODUCTION... 8 2 SOLVING SYSTEMS OF LINEAR EQUATIONS...

More information

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra Sections 5.1 5.3 A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are

More information

Consistent and Dependent

Consistent and Dependent Graphing a System of Equations System of Equations: Consists of two equations. The solution to the system is an ordered pair that satisfies both equations. There are three methods to solving a system;

More information

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1

More information

6-3 Solving Systems by Elimination

6-3 Solving Systems by Elimination Another method for solving systems of equations is elimination. Like substitution, the goal of elimination is to get one equation that has only one variable. To do this by elimination, you add the two

More information

Elementary Linear Algebra

Elementary Linear Algebra Elementary Linear Algebra Linear algebra is the study of; linear sets of equations and their transformation properties. Linear algebra allows the analysis of; rotations in space, least squares fitting,

More information

degree -6x 3 + 5x 3 Coefficients:

degree -6x 3 + 5x 3 Coefficients: Date P3 Polynomials and Factoring leading coefficient degree -6 3 + 5 3 constant term coefficients Degree: the largest sum of eponents in a term Polynomial: a n n + a n-1 n-1 + + a 1 + a 0 where a n 0

More information

Section Gauss Elimination for Systems of Linear Equations

Section Gauss Elimination for Systems of Linear Equations Section 4.3 - Gauss Elimination for Systems of Linear Equations What is a linear equation? What does it mean to solve a system of linear equations? What are the possible cases when solving a system of

More information

Week 1 Quantitative Analysis of Financial Markets Distributions A

Week 1 Quantitative Analysis of Financial Markets Distributions A Week 1 Quantitative Analysis of Financial Markets Distributions A Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036 October

More information

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017

Math 4A Notes. Written by Victoria Kala Last updated June 11, 2017 Math 4A Notes Written by Victoria Kala vtkala@math.ucsb.edu Last updated June 11, 2017 Systems of Linear Equations A linear equation is an equation that can be written in the form a 1 x 1 + a 2 x 2 +...

More information

CHAPTER 9: Systems of Equations and Matrices

CHAPTER 9: Systems of Equations and Matrices MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 9: Systems of Equations and Matrices 9.1 Systems of Equations in Two Variables 9.2 Systems of Equations in Three Variables

More information

Answers to the problems will be posted on the school website, go to Academics tab, then select Mathematics and select Summer Packets.

Answers to the problems will be posted on the school website, go to Academics tab, then select Mathematics and select Summer Packets. Name Geometry SUMMER PACKET This packet contains Algebra I topics that you have learned before and should be familiar with coming into Geometry. We will use these concepts on a regular basis throughout

More information

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. Sections A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra Sections 5.1 5.3 A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are

More information

3.3 Linear Equations in Standard Form

3.3 Linear Equations in Standard Form 3.3 Linear Equations in Standard Form Learning Objectives Write equivalent equations in standard form. Find the slope and y intercept from an equation in standard form. Write equations in standard form

More information

Review questions for Math 111 final. Please SHOW your WORK to receive full credit Final Test is based on 150 points

Review questions for Math 111 final. Please SHOW your WORK to receive full credit Final Test is based on 150 points Please SHOW your WORK to receive full credit Final Test is based on 150 points 1. True or False questions (17 pts) a. Common Logarithmic functions cross the y axis at (0,1) b. A square matrix has as many

More information

Lesson 2: Introduction to Variables

Lesson 2: Introduction to Variables In this lesson we begin our study of algebra by introducing the concept of a variable as an unknown or varying quantity in an algebraic expression. We then take a closer look at algebraic expressions to

More information

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved.

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved. 3 Exponential and Logarithmic Functions Copyright Cengage Learning. All rights reserved. 3.1 Exponential Functions and Their Graphs Copyright Cengage Learning. All rights reserved. What You Should Learn

More information

Slope Fields and Differential Equations. Copyright Cengage Learning. All rights reserved.

Slope Fields and Differential Equations. Copyright Cengage Learning. All rights reserved. Slope Fields and Differential Equations Copyright Cengage Learning. All rights reserved. Objectives Review verifying solutions to differential equations. Review solving differential equations. Review using

More information

Pre-Calculus I. For example, the system. x y 2 z. may be represented by the augmented matrix

Pre-Calculus I. For example, the system. x y 2 z. may be represented by the augmented matrix Pre-Calculus I 8.1 Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural

More information

UNIT 3 REASONING WITH EQUATIONS Lesson 2: Solving Systems of Equations Instruction

UNIT 3 REASONING WITH EQUATIONS Lesson 2: Solving Systems of Equations Instruction Prerequisite Skills This lesson requires the use of the following skills: graphing equations of lines using properties of equality to solve equations Introduction Two equations that are solved together

More information

Algebra 2 Honors Unit 1 Review of Algebra 1

Algebra 2 Honors Unit 1 Review of Algebra 1 Algebra Honors Unit Review of Algebra Day Combining Like Terms and Distributive Property Objectives: SWBAT evaluate and simplify expressions involving real numbers. SWBAT evaluate exponents SWBAT combine

More information

Lecture 4: Gaussian Elimination and Homogeneous Equations

Lecture 4: Gaussian Elimination and Homogeneous Equations Lecture 4: Gaussian Elimination and Homogeneous Equations Reduced Row Echelon Form An augmented matrix associated to a system of linear equations is said to be in Reduced Row Echelon Form (RREF) if the

More information

Chapter One: Introduction

Chapter One: Introduction Chapter One: Introduction Objectives 1. Understand the need for numerical methods 2. Go through the stages (mathematical modeling, solving and implementation) of solving a particular physical problem.

More information

Sequences and Series. Copyright Cengage Learning. All rights reserved.

Sequences and Series. Copyright Cengage Learning. All rights reserved. Sequences and Series Copyright Cengage Learning. All rights reserved. 12.1 Sequences and Summation Notation Copyright Cengage Learning. All rights reserved. Objectives Sequences Recursively Defined Sequences

More information

Section 1.1: Systems of Linear Equations

Section 1.1: Systems of Linear Equations Section 1.1: Systems of Linear Equations Two Linear Equations in Two Unknowns Recall that the equation of a line in 2D can be written in standard form: a 1 x 1 + a 2 x 2 = b. Definition. A 2 2 system of

More information