Area. A(2) = sin(0) π 2 + sin(π/2)π 2 = π For 3 subintervals we will find

Size: px
Start display at page:

Download "Area. A(2) = sin(0) π 2 + sin(π/2)π 2 = π For 3 subintervals we will find"

Transcription

1 Area In order to quantify the size of a -dimensional object, we use area. Since we measure area in square units, we can think of the area of an object as the number of such squares it fills up. Using this idea we can derive formulas for the area of a square, rectangle, triangle, etc. With a little bit of ingenuity we can also figure out the area of a circle. What about more complicated shapes, such as the area between a sine wave and the x-axis? In order to answer this question, we will need to use the power of calculus. A general technique for finding the area of a complicated shape is to break it up into smaller pieces which have known areas. Unfortunately, it is not possible to do this for most - dimensional objects, such as the sine wave in question. Instead, we can think about approximating the complicated shape with shapes that we can find the area of. The simplest and most practical -dimensional figure to use here is a rectangle, because it is much more flexible than using a square, but it is still very easy to calculate its area. If we only use a few rectangles, they will overlap our function of interest in many places, so it will be a rather crude approximation. However, if we use more rectangles, which are more refined, then we can get a better approximation. Just like with Euler s method, we can think of taking a limit as the width of these rectangles approaches 0, in order to find the exact area of the function or object of interest. The only real limitation we need to be concerned about is being able to compute the area of these rectangles. If we have billions of rectangles, then clearly we will need to use a computer to do the work, but still, computers have their own limitations. Let s begin with a simple illustration. Let s try and approximate the area between a sine wave and the x-axis, over the interval [0, π] (so we don t need to worry about what happens when we cross the x-axis). For simplicity (and scalability), let s divide the interval into equal subintervals, of length x. For convenience, we will use the value of the function at the left endpoint for the height of each rectangle. Finally, we must decide how many subintervals we want. We ll begin with just two, in order to illustrate the process. If we denote the approximated area function as A(n), where n is the number of subintervals, we will find For 3 subintervals we will find A() = sin(0) π + sin(π/)π = π 1.57 A(3) = sin(0) π 3 + sin(π/3)π 3 + sin(π/3)π π(sin(π/3) + sin(π/3)) = = π We could continue this way to find more accurate approximations, but more interesting than the specific case is a slightly more general problem. Let s think about finding the area underneath an arbitrary function f(x) over the interval [a, b]. If we want n subintervals, then each will be of length x = b a n and the approximated area underneath the curve will be A(n) = f(a) x + f(a + x) x f(a + (n 1) x) x + f(a + n x) x

2 This is a very interesting result. When written in this way, the problem of approximating the area underneath a curve looks very familiar to something we ve already done - approximating the solution to a differential equation. If we consider the differential equation df dx = f(x) where the value of F (a) is known, we find that F (b) = F (a) + f(a) (x) + f(a + x) x f(a + (n 1) x) x + f(a + n x) x and rearranging the terms we have the result F (b) F (a) = f(a) (x) + f(a + x) x f(a + (n 1) x) x + f(a + n x) x Above is only an approximation to F (b), but we can it as accurate as we like, simply by using small enough intervals. Rather than focusing on semantics, let us shift our attention to this extremely amazing, yet surprising result: the process of approximating a solution to a differential equation is the same as approximating the area underneath a curve. Since we can make this approximation as accurate as we like, this means that the process of solving a differential equation is the same as finding the area underneath a curve. Because we can solve differential equations through integration, this means that the process of integration is the same as finding the area underneath a curve. In order to integrate (or antidifferentiate) a function, we simply need to find the area beneath the curve. In order to find the area beneath a curve, we simply need to antidifferentiate it. These two seemingly unrelated ideas are actually one in the same! In order to find the area underneath a function over an interval, we simply evaluate the antiderivative of the function at the endpoints and subtract the difference. Noting that sin(x)dx = cos(x) + c we find that the area underneath the sine curve from [0, π] is cos(π) ( cos(0)) = = which was the value we began to approximate with rectangles. We should note that when we find the area undearneath a curve in this way, we are really finding a signed area. In places where the function is above the x-axis we have positive area, and in places where the function is below the x-axis, we have negative area. Using this reasoning, if we calculate the area under a sine wave over [0, π], we get 0, because on [0, π] the sine function is positive, and on [π, π] the sine function is negative, and the negative portion is the mirror image of the positive portion of the function. It follows that the integral is 0 because there is exactly as much positive and negative area. To find the conventional area between a curve and the x-axis, we need to look at the integral of the magnitude of a function, so we don t have anymore negative area. Not only can we use integration to find the area underneath curves, but if we can become more proficient at finding the area underneath curves, we can think of numerically finding

3 antiderivatives by finding the area underneath a curve. In order to become more proficient, we will need to become familiar with summation. First, we note that the reason for the notation of the indefinite integral should now be clear - in the process of integration, we want to sum up rectangles to approximate the area underneath a function, and look in the limit as the length of each rectangle approaches 0, so that they in a sense become infintessimal in length. We use the Greek letter Σ to represent summation in a succinct form. We can write a sample sum in the form We call i the index of the this sum, and each x i is a single term in the sum. There is nothing unique about the choice of i, and in general we can use whatever variable we like for the index of the sum. For every different value of the index, we have a corresponding term. We evaluate this sum by adding each of the terms together. Thus, this sum would be evaluated x i x i = x 0 + x 1 + x + x 3 Where each x i is some value. If we let x 0 = 1, x 1 = 4, x = 3, and x 3 = 3 then we would find x i = x 0 + x 1 + x + x 3 = = 11 It is noteworthy that for sums with a finite number of terms, it does not matter in which order the terms are added. If one is considering infinite sums however, the order does matter. It is also possible for the index to appear in the term of a sum as follows 1 + i = (1 + 0) + (1 + 1) + (1 + 4) = 8 In general we can have some arbitrary mix of both the index and other factors in each term. Finally, if we have a constant factor in every term of a sum, we can factor the constant from the sum, evaluate the sum, and multiply the result by that factor in the end. Thus + i = (1 + i ) = 1 + i = 8 = 16 Using this notation we can better define the problem of finding the area underneath a curve. To find the area beneath a general function f over an interval [a, b], using n subintervals, we have I l = f(x i ) x

4 and I r = n f(x i ) x i=1 where x = b a n and the x i are the endpoints of our subintervals. Looking at the way x is defined, we see that as the number of intervals n increases, the width of the intervals x correspondingly decreases. We call I l the left-hand sum, and I r the right-hand sum, which are both special cases of Riemann sums, which we will discuss in more detail soon. As we increase n, both the right-hand and left-hand sums become closer to the area underneath the curve of interest, and if we look in the limit that n, it turns out the sums take on the same value, which is exactly the area underneath the curve. Let s try and apply this machinery to finding the area underneath the curve f(x) = x, over [0, b]. We know that it should be b because the resulting figure is simply a triangle. We also know because the antiderivative of x is x /, and evaluating the antiderivative at the endpoints of the interval and subtracting yields b / 0 = b /. We should also be able to find the same result by approximating the area using rectangles, and looking in the limit as the length of the rectangles approaches 0. For n subintervals we find x = b/n, and the area is I l = f(0 + i x) x = ib n b n 1 n = ib n = b n i = b n(n 1) n = b (1 1 n ) where we use the fact that for the sum of the first n integers, n i = n(n + 1) In order to find the exact area underneath the curve, we look in the limit as n of the left-hand sum. Doing so lim I b l = lim n n (1 1 n ) = b which is the familiar result. Using right-hand sums we would find the exact same thing. We stated above that I l and I r are special cases of Riemann sums. This leads us to the question of what a general Riemann sum is. For a general Riemann sum the length of the subintervals need not all be the same length. Rather than considering the limit as n, we look in the limit as the widths of the subintervals approach 0. Also, we look at both upper and lower sums, where the upper sums overestimate the area with each rectangle, and the lower sums underestimate the area of with each rectangle. Finally, we impose the

5 condition that the upper sums and lower sums both converge to the same limit. When this condition is met, we say a function is Riemann integrable, and define the definite integral as the limit of Riemann sums. The definite integral of a function is written b a f(x)dx and the definite integral represents the area underneath the function f on the interval [a, b]. We call a the lower limit of integration, and b the upper limit of integration. If the upper and lower Riemann sums don t converge, then we say a function is not Riemann integrable, and in a sense we cannot define the area underneath the curve in this way. In truth, one must continue far into the study of mathematics and science to begin to see the shortcomings of the Riemann integral. For now we must suffice ourselves with the fact that all bounded functions with finitely many discontinuities are Riemann integrable (in fact, even more functions that this are Riemann integrable). If so many functions are Riemann integrable, one might ask the question what is not Riemann integrable? One of the most simple examples is given as follows. Imagine a function that is 0 for rational numbers, and 1 for irrational numbers. Let us integrate over the interval [0, 1]. Since between every two rational numbers is an irrational, and between every two irrationals a rational, over every single interval we will an upper sum of 1, and a lower sum of 0, so the Riemann integral will not exist. In truth though, there are many many more irrationals than rationals in this interval, so we would except (using intuition from higher-level mathematics) that the integral should be 1. In order to understand these issues better, one must focus on studying analysis, and eventually measure theory, in which a more powerful version of the integral can be constructed (the Lebesgue integral).

1 5 π 2. 5 π 3. 5 π π x. 5 π 4. Figure 1: We need calculus to find the area of the shaded region.

1 5 π 2. 5 π 3. 5 π π x. 5 π 4. Figure 1: We need calculus to find the area of the shaded region. . Area In order to quantify the size of a 2-dimensional object, we use area. Since we measure area in square units, we can think of the area of an object as the number of such squares it fills up. Using

More information

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph.

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area under a Graph OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area Under a Graph Riemann Sums (continued): In the following

More information

Distance and Velocity

Distance and Velocity Distance and Velocity - Unit #8 : Goals: The Integral Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite integral and

More information

AP Calculus AB Integration

AP Calculus AB Integration Slide 1 / 175 Slide 2 / 175 AP Calculus AB Integration 2015-11-24 www.njctl.org Slide 3 / 175 Table of Contents click on the topic to go to that section Riemann Sums Trapezoid Approximation Area Under

More information

AP Calculus AB. Integration. Table of Contents

AP Calculus AB. Integration.  Table of Contents AP Calculus AB Integration 2015 11 24 www.njctl.org Table of Contents click on the topic to go to that section Riemann Sums Trapezoid Approximation Area Under a Curve (The Definite Integral) Antiderivatives

More information

The Integral of a Function. The Indefinite Integral

The Integral of a Function. The Indefinite Integral The Integral of a Function. The Indefinite Integral Undoing a derivative: Antiderivative=Indefinite Integral Definition: A function is called an antiderivative of a function on same interval,, if differentiation

More information

We saw in Section 5.1 that a limit of the form. arises when we compute an area.

We saw in Section 5.1 that a limit of the form. arises when we compute an area. INTEGRALS 5 INTEGRALS Equation 1 We saw in Section 5.1 that a limit of the form n lim f ( x *) x n i 1 i lim[ f ( x *) x f ( x *) x... f ( x *) x] n 1 2 arises when we compute an area. n We also saw that

More information

MAT137 - Term 2, Week 2

MAT137 - Term 2, Week 2 MAT137 - Term 2, Week 2 This lecture will assume you have watched all of the videos on the definition of the integral (but will remind you about some things). Today we re talking about: More on the definition

More information

4. Theory of the Integral

4. Theory of the Integral 4. Theory of the Integral 4.1 Antidifferentiation 4.2 The Definite Integral 4.3 Riemann Sums 4.4 The Fundamental Theorem of Calculus 4.5 Fundamental Integration Rules 4.6 U-Substitutions 4.1 Antidifferentiation

More information

The total differential

The total differential The total differential The total differential of the function of two variables The total differential gives the full information about rates of change of the function in the -direction and in the -direction.

More information

() Chapter 8 November 9, / 1

() Chapter 8 November 9, / 1 Example 1: An easy area problem Find the area of the region in the xy-plane bounded above by the graph of f(x) = 2, below by the x-axis, on the left by the line x = 1 and on the right by the line x = 5.

More information

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives 4.3 Riemann Sums and Definite Integrals Objectives Understand the definition of a Riemann sum. Evaluate a definite integral using limits & Riemann Sums. Evaluate a definite integral using geometric formulas

More information

AP Calculus AB. Slide 1 / 175. Slide 2 / 175. Slide 3 / 175. Integration. Table of Contents

AP Calculus AB. Slide 1 / 175. Slide 2 / 175. Slide 3 / 175. Integration. Table of Contents Slide 1 / 175 Slide 2 / 175 AP Calculus AB Integration 2015-11-24 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 175 Riemann Sums Trapezoid Approximation Area Under

More information

Calculus: What is a Limit? (understanding epislon-delta proofs)

Calculus: What is a Limit? (understanding epislon-delta proofs) Calculus: What is a Limit? (understanding epislon-delta proofs) Here is the definition of a limit: Suppose f is a function. We say that Lim aa ff() = LL if for every εε > 0 there is a δδ > 0 so that if

More information

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules Math 5 Integration Topic 3 Page MATH 5 TOPIC 3 INTEGRATION 3A. Integration of Common Functions Practice Problems 3B. Constant, Sum, and Difference Rules Practice Problems 3C. Substitution Practice Problems

More information

MAT137 - Term 2, Week 4

MAT137 - Term 2, Week 4 MAT137 - Term 2, Week 4 Reminders: Your Problem Set 6 is due tomorrow at 3pm. Test 3 is next Friday, February 3, at 4pm. See the course website for details. Today we will: Talk more about substitution.

More information

Chapter 6. Techniques of Integration. 6.1 Differential notation

Chapter 6. Techniques of Integration. 6.1 Differential notation Chapter 6 Techniques of Integration In this chapter, we expand our repertoire for antiderivatives beyond the elementary functions discussed so far. A review of the table of elementary antiderivatives (found

More information

Integration and antiderivatives

Integration and antiderivatives Integration and antiderivatives 1. Evaluate the following:. True or false: d dx lim x / x et dt x cos( 1 4 t ) dt sin x dx = sin(π/) 3. True or false: the following function F (x) is an antiderivative

More information

FIRST YEAR CALCULUS W W L CHEN

FIRST YEAR CALCULUS W W L CHEN FIRST YER CLCULUS W W L CHEN c W W L Chen, 994, 28. This chapter is available free to all individuals, on the understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

Chapter 6. Techniques of Integration. 6.1 Differential notation

Chapter 6. Techniques of Integration. 6.1 Differential notation Chapter 6 Techniques of Integration In this chapter, we expand our repertoire for antiderivatives beyond the elementary functions discussed so far. A review of the table of elementary antiderivatives (found

More information

Integration. 2. The Area Problem

Integration. 2. The Area Problem Integration Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math2. Two Fundamental Problems of Calculus First

More information

MTH101 Calculus And Analytical Geometry Lecture Wise Questions and Answers For Final Term Exam Preparation

MTH101 Calculus And Analytical Geometry Lecture Wise Questions and Answers For Final Term Exam Preparation MTH101 Calculus And Analytical Geometry Lecture Wise Questions and Answers For Final Term Exam Preparation Lecture No 23 to 45 Complete and Important Question and answer 1. What is the difference between

More information

Chapter 6 Section Antiderivatives and Indefinite Integrals

Chapter 6 Section Antiderivatives and Indefinite Integrals Chapter 6 Section 6.1 - Antiderivatives and Indefinite Integrals Objectives: The student will be able to formulate problems involving antiderivatives. The student will be able to use the formulas and properties

More information

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts

Substitutions and by Parts, Area Between Curves. Goals: The Method of Substitution Areas Integration by Parts Week #7: Substitutions and by Parts, Area Between Curves Goals: The Method of Substitution Areas Integration by Parts 1 Week 7 The Indefinite Integral The Fundamental Theorem of Calculus, b a f(x) dx =

More information

5.3 Definite Integrals and Antiderivatives

5.3 Definite Integrals and Antiderivatives 5.3 Definite Integrals and Antiderivatives Objective SWBAT use properties of definite integrals, average value of a function, mean value theorem for definite integrals, and connect differential and integral

More information

Integration. Antiderivatives and Indefinite Integration 3/9/2015. Copyright Cengage Learning. All rights reserved.

Integration. Antiderivatives and Indefinite Integration 3/9/2015. Copyright Cengage Learning. All rights reserved. Integration Copyright Cengage Learning. All rights reserved. Antiderivatives and Indefinite Integration Copyright Cengage Learning. All rights reserved. 1 Objectives Write the general solution of a differential

More information

18A.1: #2,4,5 (Area under curve) 18A.2: #1 3 (Definite integral)

18A.1: #2,4,5 (Area under curve) 18A.2: #1 3 (Definite integral) 18A.1: #2,4,5 (Area under curve) 18A.2: #1 3 (Definite integral) 1. Understand integration as the area under a curve. QB #36,44d 2. Understand and calculate left and right Riemann sums 3. Determine upper

More information

(Riemann) Integration Sucks!!!

(Riemann) Integration Sucks!!! (Riemann) Integration Sucks!!! Peyam Ryan Tabrizian Friday, November 8th, 2 Are all functions integrable? Unfortunately not! Look at the handout Solutions to 5.2.67, 5.2.68, we get two examples of functions

More information

Math Calculus I

Math Calculus I Math 165 - Calculus I Christian Roettger 382 Carver Hall Mathematics Department Iowa State University www.iastate.edu/~roettger November 13, 2011 4.1 Introduction to Area Sigma Notation 4.2 The Definite

More information

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx Antiderivatives and The Integral Antiderivatives Objective: Use indefinite integral notation for antiderivatives. Use basic integration rules to find antiderivatives. Another important question in calculus

More information

5.4 Continuity: Preliminary Notions

5.4 Continuity: Preliminary Notions 5.4. CONTINUITY: PRELIMINARY NOTIONS 181 5.4 Continuity: Preliminary Notions 5.4.1 Definitions The American Heritage Dictionary of the English Language defines continuity as an uninterrupted succession,

More information

1.10 Continuity Brian E. Veitch

1.10 Continuity Brian E. Veitch 1.10 Continuity Definition 1.5. A function is continuous at x = a if 1. f(a) exists 2. lim x a f(x) exists 3. lim x a f(x) = f(a) If any of these conditions fail, f is discontinuous. Note: From algebra

More information

Numerical Integration

Numerical Integration Chapter 1 Numerical Integration In this chapter we examine a few basic numerical techniques to approximate a definite integral. You may recall some of this from Calculus I where we discussed the left,

More information

MA 137 Calculus 1 with Life Science Applications. (Section 6.1)

MA 137 Calculus 1 with Life Science Applications. (Section 6.1) MA 137 Calculus 1 with Life Science Applications (Section 6.1) Alberto Corso alberto.corso@uky.edu Department of Mathematics University of Kentucky December 2, 2015 1/17 Sigma (Σ) Notation In approximating

More information

Let s Get Series(ous)

Let s Get Series(ous) Department of Mathematics, Computer Science, and Statistics Bloomsburg University Bloomsburg, Pennsylvania 785 Let s Get Series(ous) Summary Presenting infinite series can be (used to be) a tedious and

More information

Integration. Copyright Cengage Learning. All rights reserved.

Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 1 4.3 Riemann Sums and Definite Integrals Copyright Cengage Learning. All rights reserved. 2 Objectives Understand the definition of a Riemann

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Functions

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Functions ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 2017/2018 DR. ANTHONY BROWN 4. Functions 4.1. What is a Function: Domain, Codomain and Rule. In the course so far, we

More information

Sequences and Series

Sequences and Series Sequences and Series What do you think of when you read the title of our next unit? In case your answers are leading us off track, let's review the following IB problems. 1 November 2013 HL 2 3 November

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 2/03/20 Bormashenko MATH 408N PRACTICE FINAL Show your work for all the problems. Good luck! () Let f(x) = ex e x. (a) [5 pts] State the domain and range of f(x). Name: TA session: Since e x is defined

More information

18A.1: #2,4,5 (Area under curve) 18A.2: #1 3 (Definite integral)

18A.1: #2,4,5 (Area under curve) 18A.2: #1 3 (Definite integral) 18A.1: #2,4,5 (Area under curve) 18A.2: #1 3 (Definite integral) 1. Understand integration as the area under a curve. QB #36,44d 2. Understand and calculate left and right Riemann sums 3. Determine upper

More information

Chapter 6: The Definite Integral

Chapter 6: The Definite Integral Name: Date: Period: AP Calc AB Mr. Mellina Chapter 6: The Definite Integral v v Sections: v 6.1 Estimating with Finite Sums v 6.5 Trapezoidal Rule v 6.2 Definite Integrals 6.3 Definite Integrals and Antiderivatives

More information

Math 231E, Lecture 13. Area & Riemann Sums

Math 231E, Lecture 13. Area & Riemann Sums Math 23E, Lecture 3. Area & Riemann Sums Motivation for Integrals Question. What is an integral, and why do we care? Answer. A tool to compute a complicated expression made up of smaller pieces. Example.

More information

More on infinite series Antiderivatives and area

More on infinite series Antiderivatives and area More on infinite series Antiderivatives and area September 28, 2017 The eighth breakfast was on Monday: There are still slots available for the October 4 breakfast (Wednesday, 8AM), and there s a pop-in

More information

Infinite series, improper integrals, and Taylor series

Infinite series, improper integrals, and Taylor series Chapter 2 Infinite series, improper integrals, and Taylor series 2. Introduction to series In studying calculus, we have explored a variety of functions. Among the most basic are polynomials, i.e. functions

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

Advanced Calculus Questions

Advanced Calculus Questions Advanced Calculus Questions What is here? This is a(n evolving) collection of challenging calculus problems. Be warned - some of these questions will go beyond the scope of this course. Particularly difficult

More information

CS1800: Sequences & Sums. Professor Kevin Gold

CS1800: Sequences & Sums. Professor Kevin Gold CS1800: Sequences & Sums Professor Kevin Gold Moving Toward Analysis of Algorithms Today s tools help in the analysis of algorithms. We ll cover tools for deciding what equation best fits a sequence of

More information

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph

CHAPTER 6 VECTOR CALCULUS. We ve spent a lot of time so far just looking at all the different ways you can graph CHAPTER 6 VECTOR CALCULUS We ve spent a lot of time so far just looking at all the different ways you can graph things and describe things in three dimensions, and it certainly seems like there is a lot

More information

Chapter 5 Integrals. 5.1 Areas and Distances

Chapter 5 Integrals. 5.1 Areas and Distances Chapter 5 Integrals 5.1 Areas and Distances We start with a problem how can we calculate the area under a given function ie, the area between the function and the x-axis? If the curve happens to be something

More information

MATH 116, LECTURE 13, 14 & 15: Derivatives

MATH 116, LECTURE 13, 14 & 15: Derivatives MATH 116, LECTURE 13, 14 & 15: Derivatives 1 Formal Definition of the Derivative We have seen plenty of limits so far, but very few applications. In particular, we have seen very few functions for which

More information

MATH 230 CALCULUS II OVERVIEW

MATH 230 CALCULUS II OVERVIEW MATH 230 CALCULUS II OVERVIEW This overview is designed to give you a brief look into some of the major topics covered in Calculus II. This short introduction is just a glimpse, and by no means the whole

More information

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. Marcel Proust

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. Marcel Proust The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. Marcel Proust School of the Art Institute of Chicago Calculus Frank Timmes ftimmes@artic.edu flash.uchicago.edu/~fxt/class_pages/class_calc.shtml

More information

Science One Integral Calculus. January 9, 2019

Science One Integral Calculus. January 9, 2019 Science One Integral Calculus January 9, 2019 Recap: What have we learned so far? The definite integral is defined as a limit of Riemann sums Riemann sums can be constructed using any point in a subinterval

More information

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx Chapter 7 is concerned with all the integrals that can t be evaluated with simple antidifferentiation. Chart of Integrals on Page 463 7.1 Integration by Parts Like with the Chain Rule substitutions with

More information

David M. Bressoud Macalester College, St. Paul, Minnesota Given at Allegheny College, Oct. 23, 2003

David M. Bressoud Macalester College, St. Paul, Minnesota Given at Allegheny College, Oct. 23, 2003 David M. Bressoud Macalester College, St. Paul, Minnesota Given at Allegheny College, Oct. 23, 2003 The Fundamental Theorem of Calculus:. If F' ( x)= f ( x), then " f ( x) dx = F( b)! F( a). b a 2. d dx

More information

Sections 5.1: Areas and Distances

Sections 5.1: Areas and Distances Sections.: Areas and Distances In this section we shall consider problems closely related to the problems we considered at the beginning of the semester (the tangent and velocity problems). Specifically,

More information

INTEGRALS5 INTEGRALS

INTEGRALS5 INTEGRALS INTEGRALS5 INTEGRALS INTEGRALS 5.3 The Fundamental Theorem of Calculus In this section, we will learn about: The Fundamental Theorem of Calculus and its significance. FUNDAMENTAL THEOREM OF CALCULUS The

More information

Worksheet Week 1 Review of Chapter 5, from Definition of integral to Substitution method

Worksheet Week 1 Review of Chapter 5, from Definition of integral to Substitution method Worksheet Week Review of Chapter 5, from Definition of integral to Substitution method This worksheet is for improvement of your mathematical writing skill. Writing using correct mathematical expressions

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

Last week we looked at limits generally, and at finding limits using substitution.

Last week we looked at limits generally, and at finding limits using substitution. Math 1314 ONLINE Week 4 Notes Lesson 4 Limits (continued) Last week we looked at limits generally, and at finding limits using substitution. Indeterminate Forms What do you do when substitution gives you

More information

MATH 1A - FINAL EXAM DELUXE - SOLUTIONS. x x x x x 2. = lim = 1 =0. 2) Then ln(y) = x 2 ln(x) 3) ln(x)

MATH 1A - FINAL EXAM DELUXE - SOLUTIONS. x x x x x 2. = lim = 1 =0. 2) Then ln(y) = x 2 ln(x) 3) ln(x) MATH A - FINAL EXAM DELUXE - SOLUTIONS PEYAM RYAN TABRIZIAN. ( points, 5 points each) Find the following limits (a) lim x x2 + x ( ) x lim x2 + x x2 + x 2 + + x x x x2 + + x x 2 + x 2 x x2 + + x x x2 +

More information

School of the Art Institute of Chicago. Calculus. Frank Timmes. flash.uchicago.edu/~fxt/class_pages/class_calc.

School of the Art Institute of Chicago. Calculus. Frank Timmes. flash.uchicago.edu/~fxt/class_pages/class_calc. School of the Art Institute of Chicago Calculus Frank Timmes ftimmes@artic.edu flash.uchicago.edu/~fxt/class_pages/class_calc.shtml Syllabus 1 Aug 29 Pre-calculus 2 Sept 05 Rates and areas 3 Sept 12 Trapezoids

More information

Math Lecture 4 Limit Laws

Math Lecture 4 Limit Laws Math 1060 Lecture 4 Limit Laws Outline Summary of last lecture Limit laws Motivation Limits of constants and the identity function Limits of sums and differences Limits of products Limits of polynomials

More information

Calculus I Review Solutions

Calculus I Review Solutions Calculus I Review Solutions. Compare and contrast the three Value Theorems of the course. When you would typically use each. The three value theorems are the Intermediate, Mean and Extreme value theorems.

More information

The area under a curve. Today we (begin to) ask questions of the type: How much area sits under the graph of f(x) = x 2 over the interval [ 1, 2]?

The area under a curve. Today we (begin to) ask questions of the type: How much area sits under the graph of f(x) = x 2 over the interval [ 1, 2]? The area under a curve. Today we (begin to) ask questions of the type: How much area sits under the graph of f(x) = x 2 over the interval [ 1, 2]? Before we work on How we will figure out Why velocity

More information

Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur. Lecture 1 Real Numbers

Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur. Lecture 1 Real Numbers Mathematics-I Prof. S.K. Ray Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Lecture 1 Real Numbers In these lectures, we are going to study a branch of mathematics called

More information

1 Limits and continuity

1 Limits and continuity 1 Limits and continuity Question 1. Which of the following its can be evaluated by continuity ( plugging in )? sin(x) (a) x + 1 (d) x 3 x 2 + x 6 (b) e x sin(x) (e) x 2 + x 6 (c) x 2 x 2 + x 6 (f) n (

More information

Topic 7 Notes Jeremy Orloff

Topic 7 Notes Jeremy Orloff Topic 7 Notes Jeremy Orloff 7 Taylor and Laurent series 7. Introduction We originally defined an analytic function as one where the derivative, defined as a limit of ratios, existed. We went on to prove

More information

Lab 11: Numerical Integration Techniques. Figure 1. From the Fundamental Theorem of Calculus, we know that if we want to calculate f ( x)

Lab 11: Numerical Integration Techniques. Figure 1. From the Fundamental Theorem of Calculus, we know that if we want to calculate f ( x) Lab 11: Numerical Integration Techniques Introduction The purpose of this laboratory experience is to develop fundamental methods for approximating the area under a curve for the definite integral. With

More information

TAYLOR POLYNOMIALS DARYL DEFORD

TAYLOR POLYNOMIALS DARYL DEFORD TAYLOR POLYNOMIALS DARYL DEFORD 1. Introduction We have seen in class that Taylor polynomials provide us with a valuable tool for approximating many different types of functions. However, in order to really

More information

7.1 Indefinite Integrals Calculus

7.1 Indefinite Integrals Calculus 7.1 Indefinite Integrals Calculus Learning Objectives A student will be able to: Find antiderivatives of functions. Represent antiderivatives. Interpret the constant of integration graphically. Solve differential

More information

5.5. The Substitution Rule

5.5. The Substitution Rule INTEGRALS 5 INTEGRALS 5.5 The Substitution Rule In this section, we will learn: To substitute a new variable in place of an existing expression in a function, making integration easier. INTRODUCTION Due

More information

Introducing Proof 1. hsn.uk.net. Contents

Introducing Proof 1. hsn.uk.net. Contents Contents 1 1 Introduction 1 What is proof? 1 Statements, Definitions and Euler Diagrams 1 Statements 1 Definitions Our first proof Euler diagrams 4 3 Logical Connectives 5 Negation 6 Conjunction 7 Disjunction

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

MATH 1231 MATHEMATICS 1B CALCULUS. Section 5: - Power Series and Taylor Series.

MATH 1231 MATHEMATICS 1B CALCULUS. Section 5: - Power Series and Taylor Series. MATH 1231 MATHEMATICS 1B CALCULUS. Section 5: - Power Series and Taylor Series. The objective of this section is to become familiar with the theory and application of power series and Taylor series. By

More information

CHM320: MATH REVIEW. I. Ordinary Derivative:

CHM320: MATH REVIEW. I. Ordinary Derivative: CHM30: MATH REVIEW I. Ordinary Derivative: Figure : Secant line between two points on a function Ordinary derivatives describe how functions of a single variable change in response to variation of the

More information

Integral. For example, consider the curve y = f(x) between x = 0 and x = 1, with f(x) = x. We ask:

Integral. For example, consider the curve y = f(x) between x = 0 and x = 1, with f(x) = x. We ask: Integral Integration is an important concept in mathematics, specifically in the field of calculus and, more broadly, mathematical analysis. Given a function ƒ of a real variable x and an interval [a,

More information

Slope Fields: Graphing Solutions Without the Solutions

Slope Fields: Graphing Solutions Without the Solutions 8 Slope Fields: Graphing Solutions Without the Solutions Up to now, our efforts have been directed mainly towards finding formulas or equations describing solutions to given differential equations. Then,

More information

INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS

INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS APPROXIMATING AREA For today s lesson, we will be using different approaches to the area problem. The area problem is to definite integrals

More information

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the Area and Tangent Problem Calculus is motivated by two main problems. The first is the area problem. It is a well known result that the area of a rectangle with length l and width w is given by A = wl.

More information

MATH 2300 review problems for Exam 1 ANSWERS

MATH 2300 review problems for Exam 1 ANSWERS MATH review problems for Exam ANSWERS. Evaluate the integral sin x cos x dx in each of the following ways: This one is self-explanatory; we leave it to you. (a) Integrate by parts, with u = sin x and dv

More information

Chapter 06: Analytic Trigonometry

Chapter 06: Analytic Trigonometry Chapter 06: Analytic Trigonometry 6.1: Inverse Trigonometric Functions The Problem As you recall from our earlier work, a function can only have an inverse function if it is oneto-one. Are any of our trigonometric

More information

Solutions to Math 41 Final Exam December 10, 2012

Solutions to Math 41 Final Exam December 10, 2012 Solutions to Math 4 Final Exam December,. ( points) Find each of the following limits, with justification. If there is an infinite limit, then explain whether it is or. x ln(t + ) dt (a) lim x x (5 points)

More information

Predicting the future with Newton s Second Law

Predicting the future with Newton s Second Law Predicting the future with Newton s Second Law To represent the motion of an object (ignoring rotations for now), we need three functions x(t), y(t), and z(t), which describe the spatial coordinates of

More information

Subsequences and Limsups. Some sequences of numbers converge to limits, and some do not. For instance,

Subsequences and Limsups. Some sequences of numbers converge to limits, and some do not. For instance, Subsequences and Limsups Some sequences of numbers converge to limits, and some do not. For instance,,, 3, 4, 5,,... converges to 0 3, 3., 3.4, 3.4, 3.45, 3.459,... converges to π, 3,, 3.,, 3.4,... does

More information

Sections 2.1, 2.2 and 2.4: Limit of a function Motivation:

Sections 2.1, 2.2 and 2.4: Limit of a function Motivation: Sections 2.1, 2.2 and 2.4: Limit of a function Motivation: There are expressions which can be computed only using Algebra, meaning only using the operations +,, and. Examples which can be computed using

More information

2 = = 0 Thus, the number which is largest in magnitude is equal to the number which is smallest in magnitude.

2 = = 0 Thus, the number which is largest in magnitude is equal to the number which is smallest in magnitude. Limits at Infinity Two additional topics of interest with its are its as x ± and its where f(x) ±. Before we can properly discuss the notion of infinite its, we will need to begin with a discussion on

More information

INTEGRALS5 INTEGRALS

INTEGRALS5 INTEGRALS INTEGRALS5 INTEGRALS INTEGRALS Equation 1 We saw in Section 5.1 that a limit of the form n $ lim(*) n!" i = 1 =#+#++# lim[(*)(*)...(*)] fxxfxxfxx n!" fxx i 12 # arises when we compute an area. n!we also

More information

Graphs of Antiderivatives, Substitution Integrals

Graphs of Antiderivatives, Substitution Integrals Unit #10 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation. The substitution

More information

Unit #10 : Graphs of Antiderivatives, Substitution Integrals

Unit #10 : Graphs of Antiderivatives, Substitution Integrals Unit #10 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F(x) The guess-and-check method for anti-differentiation. The substitution

More information

q-series Michael Gri for the partition function, he developed the basic idea of the q-exponential. From

q-series Michael Gri for the partition function, he developed the basic idea of the q-exponential. From q-series Michael Gri th History and q-integers The idea of q-series has existed since at least Euler. In constructing the generating function for the partition function, he developed the basic idea of

More information

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS.

MATH 2413 TEST ON CHAPTER 4 ANSWER ALL QUESTIONS. TIME 1.5 HRS. MATH 1 TEST ON CHAPTER ANSWER ALL QUESTIONS. TIME 1. HRS. M1c Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Use the summation formulas to rewrite the

More information

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals Graphs of Antiderivatives - Unit #0 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation.

More information

Study 4.10 #465, 471, , 487, , , 515, 517, 521, 523

Study 4.10 #465, 471, , 487, , , 515, 517, 521, 523 Goals: 1. Understand that antiderivatives are the functions from which the present derivative was found. 2. The process of finding an antiderivative or indefinite integral requires the reverse process

More information

Integrals in Electrostatic Problems

Integrals in Electrostatic Problems PHYS 119 Integrals in Electrostatic Problems Josh McKenney University of North Carolina at Chapel Hill (Dated: January 6, 2016) 1 FIG. 1. Three positive charges positioned at equal distances around an

More information

Day 2 Notes: Riemann Sums In calculus, the result of f ( x)

Day 2 Notes: Riemann Sums In calculus, the result of f ( x) AP Calculus Unit 6 Basic Integration & Applications Day 2 Notes: Riemann Sums In calculus, the result of f ( x) dx is a function that represents the anti-derivative of the function f(x). This is also sometimes

More information

5 Integrals reviewed Basic facts U-substitution... 4

5 Integrals reviewed Basic facts U-substitution... 4 Contents 5 Integrals reviewed 5. Basic facts............................... 5.5 U-substitution............................. 4 6 Integral Applications 0 6. Area between two curves.......................

More information

1 Lesson 13: Methods of Integration

1 Lesson 13: Methods of Integration Lesson 3: Methods of Integration Chapter 6 Material: pages 273-294 in the textbook: Lesson 3 reviews integration by parts and presents integration via partial fraction decomposition as the third of the

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

CALCULUS I. Review. Paul Dawkins

CALCULUS I. Review. Paul Dawkins CALCULUS I Review Paul Dawkins Table of Contents Preface... ii Review... 1 Introduction... 1 Review : Functions... Review : Inverse Functions...1 Review : Trig Functions...0 Review : Solving Trig Equations...7

More information