Integration. 2. The Area Problem

Size: px
Start display at page:

Download "Integration. 2. The Area Problem"

Transcription

1 Integration Professor Richard Blecksmith Dept. of Mathematical Sciences Northern Illinois University richard/math2. Two Fundamental Problems of Calculus First Problem: Study how one variable changes with respect to another How does area change with respect to radius How does temperature change with respect to altitude How does y change with respect to x Second Problem: Find the area under a curve We use derivatives to solve Problem We use integrals to solve Problem 2 Given a curve y = f(x) 2. The Area Problem For now we will assume that f(x) is 0 How do we find the area under the curve and above the x-axis, between two vertical sides x = a and x = b? y = f(x) x = a Area x = b

2 2 3. A case we can do If the curve is linear, then we can use the formula for the area of a triangle A = 2 base height Example. y = f(x) = 2x between a = 0 and b = 5 base = 5 height = 0 A = = Graph of y = 2x (5, 0) y = 2x Area = 25 height=0 base = 5

3 3 5. A case we can t do (3, 9) (2, 4) y = f(x) = x 2 Area (, ) a = 0 b = 3 6. Rectangular Approximation y = x 2 3 rectangles

4 4 7. Rectangular Approximation y = x 2 6 rectangles 8. Rectangular Approximation y = x 2 2 rectangles 9. Sub-dividing [a, b] Set-up: divide the interval [a, b] into n equally spaced segments, whose division points are x 0, x,..., x n.

5 5 h a=x 0 x x 2 x 3 x 4 x n x n =b The width of each segment is h = b a n The division points x k are x 0 = a, x = a + h, x 2 = a + 2h, x 3 = a + 3h and, in general, x k = a + kh When a = 0, h 0. Special case: a = 0 0=x 0 x x 2 x 3 x 4 x n x n =b these forumlas become h = b n and x k = kh Note that x n = nh = n b n = b, as it should.. Riemann Method In the Riemann method, we use n rectangles to approximate the area under the curve y = f(x) Each rectangle has as its base the subinterval [x k, x k ] of width h The height of each rectangle is f(x k ) Since the area of a rectangle is base height, the k-th rectangle has area

6 6 h f(x k ) Our approximation, called a Riemann Sum is the sum of the areas of these n rectangles 2. Riemann Method Picture h 0=x 0 x x 2 x 3 x n x n=b 3. Using 3 subdivisions For the function f(x) = x 2, and interval [a, b] = [0, 3] suppose we use n = 3 rectangles We divide [0, 3] into 3 equally spaced subintervals, each of width h = 3/3 = with division points x k = kh = k 0=x 0 x = x 2 =2 x 3 = 3 Notice that the height of the kth rectangle with base [x k, x k ] is f(x k ) = x 2 k

7 7 k 2 3 x k 2 3 f(x k ) Rectangles Each rectangle has width h = and height f(x k ) = x 2 k The area of the 3 red rectangles is A(3) = h f(x ) + h f(x 2 ) + h f(x 3 ) = h x 2 + h x2 2 + h x2 3 = = = 4 5. Rectangular Approximation 9 y = x rectangles

8 Rectangles Each rectangle has width h =, subdivision point x 2 k = kh = k, and height 2 f(x k ) = x 2 k The area of the 6 bluish green rectangles is A(6) = h f(x ) + h f(x 2 ) + h f(x 3 ) + h f(x 4 ) + h f(x 5 ) + h f(x 6 ) = h x 2 + h x2 2 + h x2 3 + h x2 4 + h x2 5 + h x2 6 ( ) 2 ( 3 ) 2 ( 5 ) 2 = h + h () 2 + h + h (2) 2 + h + h (3) = = = = Using 6 Rectangles y = x 2 6 rectangles 8. Notation Time Out It is getting very tedious writing these sums

9 9 The sum with 2 rectangles will be even worse! To ease the writing, mathematicians invented the summation symbol It works like this: underneath we write the starting index above we write the ending index to the right of we write the form of the things we are adding 3 a k is the sum a + a 2 + a 3 k= 9. So What? It doesn t seem so bad to write these out! 50 a k is the sum k= a + a 2 + a 3 + a 4 + a 5 + a 6 + a 7 + a 8 + a 9 + a 0 +a + a 2 + a 3 + a 4 + a 5 + a 6 +a 7 +a 8 +a 9 +a 20 +a 2 +a 22 +a 23 +a 24 +a 25 +a 26 +a 27 +a 28 +a 29 +a 30 +a 3 + a 32 + a 33 + a 34 + a 35 + a 36 + a 37 + a 38 + a 39 + a 40 +a 4 + a 42 + a 43 + a 44 + a 45 + a 46 + a 47 + a 48 + a 49 + a 50 Nobody wants to write all 50 terms. Though, in fairness we could have written this last sum as a + a 2 + a a 49 + a Summation Examples The sum of the first 0 integers can be written S = 0 k Evaluate this sum

10 0 S = 0 k = = Summation Examples What is S = 0 2k This is the sum of the first 0 even integers: S = = 0 55? Can you think of an easier way, using our previous calculation S = 0 k = Factor out the 2 from each term S = 0 2k = 2 0 k = 2 55 = Rectangular Approx of Area Using summation notation, we can write the sum of the areas of the 6 retangles used to approximate the area under the curve A(6) = h f(x ) + h f(x 2 ) + h f(x 3 ) + h f(x 4 ) + h f(x 5 ) + h f(x 6 ) as A(6) = 6 h f(x k ) To go from 6 to 2 rectangles is easy: A(2) = 2 h f(x k ) = h 2 f(x k ) by factoring out h.

11 23. Example y = x 2 Revisited y = f(x) = x 2 [a, b] = [0, 3] h = 3 n x k = hk A(n) = h n f(x k ) 24. Computing the exact area The following table gives the values of A(n) for various values of n: n A(n) It looks like the exact area under the curve y = x 2 between 0 and 3 is Calculating Areas The exact area A under the curve y = f(x) from a to b is defined to be the limit of the Riemann Sums A(n) as the number of rectangles n goes to infinity. That is, A = lim n A(n) = lim n h n f(x k ) k=

12 2 For many simple functions, such as f(x) = x n the limit that gives the area under the curve has been worked out. 26. Illuminating Example For example, suppose f(x) = x 2 and we wish to compute the area from a = 0 to b = x. It can be shown that ( A(n) = x3 + ) ( 2 + ) 6 n n so that x 3 ( A = lim A(n) = lim + ) ( 2 + ) = x3 x3 ( + 0) (2 + 0) = n n 6 n n 6 3 When x = 3, A = 33 3 = 9, a fact that we laboriously worked out earlier. 27. Area under y = x n Suppose f(x) = x n for any non-negative integer. We want to find the area A under the curve from a = 0 to b = x. Case: n = 0 Our function is just y = x 0 =. The region is one long rectangle, whose dimensions are x by. The area of this rectangle is A = x. Case: n = Our function is just y = x = x. 28. Area under y = x

13 (5, 0) 3 The region is an isosceles triangle whose dimensions are x by x. The area of this rectangle is A = 2 x2. y = x A = 2 x2 base = x height = x 29. Area under y = x 2 Case: n = 2 Our function is just y = x 2. We have already worked this out. The area of this region is A = 3 x3. a = 0 A = 3 x3 y = f(x) = x 2 b = x 30. Area under y = x n, n = 0,..., 6 For every possible value of the n, the area under the curve y = f(x) = x n from 0 to x has been calculated. These areas are given in the following chart:

14 4 f(x) x 0 = x x 2 x 3 x 4 x 5 x 6 A x 2 x2 3 x3 4 x4 5 x5 6 x6 7 x7 Differentiate the second column and compare with the first column. It looks like 3. Big Surprise! the derivative of the area is just the function f(x) That is, if A(x) = the area under the curve y = f(x) from a to x, then A (x) = f(x) So in order to solve the area problem, we must find a function whose derivative is f(x) Such functions are called anti-derivatives 32. Anti-derivatives We say that F (x) is an anti-derivative of f(x) if F (x) = f(x). Notice that the letters are case-sensitive. Essentially, you worked out the derivative of a function F (x), got the answer f(x). Can you figure out what was the original function just from knowing its derivative? The answer is sometimes Suppose you know

15 5 F (x) = 3x 2 4x + What s F (x)? F (x) = x 3 7x 2 + x works But so does F (x) = x 3 7x 2 + x The trouble with constants Since the derivative of any constant is zero, you cannot know the value of that constant just from the derivative. The following fact shows that, except for an undetermined constant, antiderivatives are essentially unique: If two functions f(x) and g(x) have the same derivative, then f(x) = g(x)+ C, for some constant C. When asked to find the antiderivative of F (x) = 3x 2 4x + the most general answer is to write F (x) = x 3 7x 2 + x + C where C is a constant. Mathematicians write the symbol 34. Integral Notation f(x) dx to mean the anti-derivative of f(x) The symbol is called the integral sign and the anti-derivative of f(x) is also called the integral of f(x). Thus,

16 6 3x 2 4x + dx = x 3 7x 2 + x + C For any value of n except, 35. The Power Rule x n dx = n + xn+ + C You can easily check this formula by differentiation: d dx n + xn+ + C = (n + )x(n+) n + = x n More good news: this formula works for rational numbers, negative numbers, and real numbers, as well as integers. x 0 dx = x + C x dx = 3 x dx = 36. Examples x 3 dx = 2 x 2 + C = 2 x 2 + C x /2 dx = 3/2 x3/2 + C = 2 3 x3/2 + C 37. Two Rules We can integrate sums such as x 3 + x by integrating each term separately: x 3 + x dx = x 3 dx + x dx = 4 x4 + 2 x2 + C

17 7 Why don t we write C + C? The rule that justifies this is f(x) + g(x) dx = f(x) dx + g(x) dx There is also a rule for pulling out constants : a f(x) dx = a f(x) dx where a is a constant 38. More Practice 5x dx = 5 3 x3 + 2x + C 6 4 x dx = 6 4x 2 dx = 6x 4 2 x + C = 6x + 4 x + C 6 3 x dx = 6x /3 dx = 6 4/3 x4/3 + C = 9 2 x4/3 + C 0x + 2 x + dx = = 5x 2 + 4x /2 + x + C 0x + 2x /2 + dx = 0 2 x2 + 2 /2 x/2 + x + C x 2 x Integrate dx x We first simply the the fraction x 2 x x(x ) dx = dx = x x 39. A quotient x dx = 2 x2 x + C Question: Could we have integrated this quotient by some kind of quotient rule for integrals?

18 8 40. The Bad News about Integration There is no product rule, quotient rule, integrals. Integrate (x 3 ) 2 dx or chain rule for There is no chain rule for integrals, so we have to square out the binomial: (x 3 ) 2 dx = x 6 2x 3 + dx = 7 x7 2 4 x4 + x + C

Area and Integration

Area and Integration Area and Integration Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math229. Two Fundamental Problems of Calculus

More information

The Mean Value Theorem and its Applications

The Mean Value Theorem and its Applications The Mean Value Theorem and its Applications Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math229 1. Extreme

More information

Math RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5

Math RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5 Math 201-203-RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5 What is the Antiderivative? In a derivative problem, a function f(x) is given and you find the derivative f (x) using

More information

MA 137 Calculus 1 with Life Science Applications. (Section 6.1)

MA 137 Calculus 1 with Life Science Applications. (Section 6.1) MA 137 Calculus 1 with Life Science Applications (Section 6.1) Alberto Corso alberto.corso@uky.edu Department of Mathematics University of Kentucky December 2, 2015 1/17 Sigma (Σ) Notation In approximating

More information

Integration. Copyright Cengage Learning. All rights reserved.

Integration. Copyright Cengage Learning. All rights reserved. 4 Integration Copyright Cengage Learning. All rights reserved. 1 4.3 Riemann Sums and Definite Integrals Copyright Cengage Learning. All rights reserved. 2 Objectives Understand the definition of a Riemann

More information

The Integral of a Function. The Indefinite Integral

The Integral of a Function. The Indefinite Integral The Integral of a Function. The Indefinite Integral Undoing a derivative: Antiderivative=Indefinite Integral Definition: A function is called an antiderivative of a function on same interval,, if differentiation

More information

MATH 230 CALCULUS II OVERVIEW

MATH 230 CALCULUS II OVERVIEW MATH 230 CALCULUS II OVERVIEW This overview is designed to give you a brief look into some of the major topics covered in Calculus II. This short introduction is just a glimpse, and by no means the whole

More information

Series. richard/math230 These notes are taken from Calculus Vol I, by Tom M. Apostol,

Series.  richard/math230 These notes are taken from Calculus Vol I, by Tom M. Apostol, Series Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math230 These notes are taken from Calculus Vol I, by Tom

More information

Math 211 Lecture Notes: Chapter 2 Graphing

Math 211 Lecture Notes: Chapter 2 Graphing Math 211 Lecture Notes: Chapter 2 Graphing 1. Math 211 Business Calculus Applications of Derivatives Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University

More information

() Chapter 8 November 9, / 1

() Chapter 8 November 9, / 1 Example 1: An easy area problem Find the area of the region in the xy-plane bounded above by the graph of f(x) = 2, below by the x-axis, on the left by the line x = 1 and on the right by the line x = 5.

More information

Integration and antiderivatives

Integration and antiderivatives Integration and antiderivatives 1. Evaluate the following:. True or false: d dx lim x / x et dt x cos( 1 4 t ) dt sin x dx = sin(π/) 3. True or false: the following function F (x) is an antiderivative

More information

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives

4.3. Riemann Sums. Riemann Sums. Riemann Sums and Definite Integrals. Objectives 4.3 Riemann Sums and Definite Integrals Objectives Understand the definition of a Riemann sum. Evaluate a definite integral using limits & Riemann Sums. Evaluate a definite integral using geometric formulas

More information

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx Antiderivatives and The Integral Antiderivatives Objective: Use indefinite integral notation for antiderivatives. Use basic integration rules to find antiderivatives. Another important question in calculus

More information

We saw in Section 5.1 that a limit of the form. arises when we compute an area.

We saw in Section 5.1 that a limit of the form. arises when we compute an area. INTEGRALS 5 INTEGRALS Equation 1 We saw in Section 5.1 that a limit of the form n lim f ( x *) x n i 1 i lim[ f ( x *) x f ( x *) x... f ( x *) x] n 1 2 arises when we compute an area. n We also saw that

More information

The total differential

The total differential The total differential The total differential of the function of two variables The total differential gives the full information about rates of change of the function in the -direction and in the -direction.

More information

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions.

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions. Concepts: Horizontal Asymptotes, Vertical Asymptotes, Slant (Oblique) Asymptotes, Transforming Reciprocal Function, Sketching Rational Functions, Solving Inequalities using Sign Charts. Rational Function

More information

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)...

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle! 2. (a) (b) (c) (d) (e) (a) (b) (c) (d) (e) (a) (b) (c) (d) (e)... Math 55, Exam III November 5, The Honor Code is in effect for this examination. All work is to be your own. No calculators. The exam lasts for hour and 5 min. Be sure that your name is on every page in

More information

Chapter 6 Section Antiderivatives and Indefinite Integrals

Chapter 6 Section Antiderivatives and Indefinite Integrals Chapter 6 Section 6.1 - Antiderivatives and Indefinite Integrals Objectives: The student will be able to formulate problems involving antiderivatives. The student will be able to use the formulas and properties

More information

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph.

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area under a Graph OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph. 4.1 The Area Under a Graph Riemann Sums (continued): In the following

More information

Area. A(2) = sin(0) π 2 + sin(π/2)π 2 = π For 3 subintervals we will find

Area. A(2) = sin(0) π 2 + sin(π/2)π 2 = π For 3 subintervals we will find Area In order to quantify the size of a -dimensional object, we use area. Since we measure area in square units, we can think of the area of an object as the number of such squares it fills up. Using this

More information

Math 527 Lecture Notes Topics in Calculus and Analysis Northern Illinois University Spring, Prof. Richard Blecksmith

Math 527 Lecture Notes Topics in Calculus and Analysis Northern Illinois University Spring, Prof. Richard Blecksmith Math 527 Lecture Notes Topics in Calculus and Analysis Northern Illinois University Spring, 2014 Prof. Richard Blecksmith Contents Module 4. Further Applications of Derivatives 47 1. Direction of a Curve

More information

WeBWorK demonstration assignment

WeBWorK demonstration assignment WeBWorK demonstration assignment.( pt) Match the statements defined below with the letters labeling their equivalent expressions. You must get all of the answers correct to receive credit.. x is less than

More information

Integration. Tuesday, December 3, 13

Integration. Tuesday, December 3, 13 4 Integration 4.3 Riemann Sums and Definite Integrals Objectives n Understand the definition of a Riemann sum. n Evaluate a definite integral using properties of definite integrals. 3 Riemann Sums 4 Riemann

More information

RAMs.notebook December 04, 2017

RAMs.notebook December 04, 2017 RAMsnotebook December 04, 2017 Riemann Sums and Definite Integrals Estimate the shaded area Area between a curve and the x-axis How can you improve your estimate? Suppose f(x) 0 x [a, b], then the area

More information

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61

Integrals. D. DeTurck. January 1, University of Pennsylvania. D. DeTurck Math A: Integrals 1 / 61 Integrals D. DeTurck University of Pennsylvania January 1, 2018 D. DeTurck Math 104 002 2018A: Integrals 1 / 61 Integrals Start with dx this means a little bit of x or a little change in x If we add up

More information

Workbook for Calculus I

Workbook for Calculus I Workbook for Calculus I By Hüseyin Yüce New York 2007 1 Functions 1.1 Four Ways to Represent a Function 1. Find the domain and range of the function f(x) = 1 + x + 1 and sketch its graph. y 3 2 1-3 -2-1

More information

1. Math 353. Angle Sum of Triangles. 2. The Big Question. Now here comes the question that mystefied mathematicians for over two thousand years:

1. Math 353. Angle Sum of Triangles. 2. The Big Question. Now here comes the question that mystefied mathematicians for over two thousand years: 1. Math 353 Angle Sum of Triangles Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University 2. The Big Question Now here comes the question that mystefied

More information

Day 2 Notes: Riemann Sums In calculus, the result of f ( x)

Day 2 Notes: Riemann Sums In calculus, the result of f ( x) AP Calculus Unit 6 Basic Integration & Applications Day 2 Notes: Riemann Sums In calculus, the result of f ( x) dx is a function that represents the anti-derivative of the function f(x). This is also sometimes

More information

Distance and Velocity

Distance and Velocity Distance and Velocity - Unit #8 : Goals: The Integral Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite integral and

More information

Taylor Series. richard/math230 These notes are taken from Calculus Vol I, by Tom M. Apostol,

Taylor Series.  richard/math230 These notes are taken from Calculus Vol I, by Tom M. Apostol, Taylor Series Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math230 These notes are taken from Calculus Vol

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 2/03/20 Bormashenko MATH 408N PRACTICE FINAL Show your work for all the problems. Good luck! () Let f(x) = ex e x. (a) [5 pts] State the domain and range of f(x). Name: TA session: Since e x is defined

More information

Graphs of Antiderivatives, Substitution Integrals

Graphs of Antiderivatives, Substitution Integrals Unit #10 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation. The substitution

More information

Logarithms. Professor Richard Blecksmith Dept. of Mathematical Sciences Northern Illinois University

Logarithms. Professor Richard Blecksmith Dept. of Mathematical Sciences Northern Illinois University Logarithms Professor Richard Blecksmith richard@math.niu.edu Dept. of Mathematical Sciences Northern Illinois University http://math.niu.edu/ richard/math211 1. Definition of Logarithm For a > 0, a 1,

More information

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals

The Relation between the Integral and the Derivative Graphs. Unit #10 : Graphs of Antiderivatives, Substitution Integrals Graphs of Antiderivatives - Unit #0 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F (x) The guess-and-check method for anti-differentiation.

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final Exam Coverage: Sections 10.1-10.2, 10.4-10.5, 10.7, 11.2-11.4, 12.1-12.6, 13.1-13.2, 13.4-13.5, and 14.1 Sections/topics NOT on the exam: Sections 10.3 (Continuity, it definition

More information

3.5. Dividing Polynomials. LEARN ABOUT the Math. Selecting a strategy to divide a polynomial by a binomial

3.5. Dividing Polynomials. LEARN ABOUT the Math. Selecting a strategy to divide a polynomial by a binomial 3.5 Dividing Polynomials GOAL Use a variety of strategies to determine the quotient when one polynomial is divided by another polynomial. LEARN ABOU the Math Recall that long division can be used to determine

More information

Unit #10 : Graphs of Antiderivatives, Substitution Integrals

Unit #10 : Graphs of Antiderivatives, Substitution Integrals Unit #10 : Graphs of Antiderivatives, Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F(x) The guess-and-check method for anti-differentiation. The substitution

More information

Advanced Calculus Questions

Advanced Calculus Questions Advanced Calculus Questions What is here? This is a(n evolving) collection of challenging calculus problems. Be warned - some of these questions will go beyond the scope of this course. Particularly difficult

More information

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS RECALL: VERTICAL ASYMPTOTES Remember that for a rational function, vertical asymptotes occur at values of x = a which have infinite its (either positive or

More information

Chapter 4 Integration

Chapter 4 Integration Chapter 4 Integration SECTION 4.1 Antiderivatives and Indefinite Integration Calculus: Chapter 4 Section 4.1 Antiderivative A function F is an antiderivative of f on an interval I if F '( x) f ( x) for

More information

Science One Integral Calculus. January 8, 2018

Science One Integral Calculus. January 8, 2018 Science One Integral Calculus January 8, 2018 Last time a definition of area Key ideas Divide region into n vertical strips Approximate each strip by a rectangle Sum area of rectangles Take limit for n

More information

The 2004 Superbowl of High School Calculus Page 1 of W. Michael Kelley

The 2004 Superbowl of High School Calculus Page 1 of W. Michael Kelley WWW.CALCULUS-HELP.COM S 004 Superbowl of High School Calculus Final Reminders and Last Requests:. Members of the same group may work together however they wish, but separate groups may not work together..

More information

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0

c) xy 3 = cos(7x +5y), y 0 = y3 + 7 sin(7x +5y) 3xy sin(7x +5y) d) xe y = sin(xy), y 0 = ey + y cos(xy) x(e y cos(xy)) e) y = x ln(3x + 5), y 0 Some Math 35 review problems With answers 2/6/2005 The following problems are based heavily on problems written by Professor Stephen Greenfield for his Math 35 class in spring 2005. His willingness to

More information

7.1 Indefinite Integrals Calculus

7.1 Indefinite Integrals Calculus 7.1 Indefinite Integrals Calculus Learning Objectives A student will be able to: Find antiderivatives of functions. Represent antiderivatives. Interpret the constant of integration graphically. Solve differential

More information

EQ: What are limits, and how do we find them? Finite limits as x ± Horizontal Asymptote. Example Horizontal Asymptote

EQ: What are limits, and how do we find them? Finite limits as x ± Horizontal Asymptote. Example Horizontal Asymptote Finite limits as x ± The symbol for infinity ( ) does not represent a real number. We use to describe the behavior of a function when the values in its domain or range outgrow all finite bounds. For example,

More information

Math 211 Lecture Notes: Sections

Math 211 Lecture Notes: Sections Math 211 Lecture Notes: Sections 1.1-1.3 Richard Blecksmith 1. Math 211 Business Calculus Section 1 Summer, 2009 Mon, Tues, Wed, Thurs 8:00-9:15 a.m. Reavis Hall 201 Independence Day Holiday is Wednesday,

More information

Unit #10 : Graphs of Antiderivatives; Substitution Integrals

Unit #10 : Graphs of Antiderivatives; Substitution Integrals Unit #10 : Graphs of Antiderivatives; Substitution Integrals Goals: Relationship between the graph of f(x) and its anti-derivative F(x) The guess-and-check method for anti-differentiation. The substitution

More information

INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS

INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS INTEGRATION: AREAS AND RIEMANN SUMS MR. VELAZQUEZ AP CALCULUS APPROXIMATING AREA For today s lesson, we will be using different approaches to the area problem. The area problem is to definite integrals

More information

AP Calculus AB. Integration. Table of Contents

AP Calculus AB. Integration.  Table of Contents AP Calculus AB Integration 2015 11 24 www.njctl.org Table of Contents click on the topic to go to that section Riemann Sums Trapezoid Approximation Area Under a Curve (The Definite Integral) Antiderivatives

More information

MATH 1902: Mathematics for the Physical Sciences I

MATH 1902: Mathematics for the Physical Sciences I MATH 1902: Mathematics for the Physical Sciences I Dr Dana Mackey School of Mathematical Sciences Room A305 A Email: Dana.Mackey@dit.ie Dana Mackey (DIT) MATH 1902 1 / 46 Module content/assessment Functions

More information

Finding local extrema and intervals of increase/decrease

Finding local extrema and intervals of increase/decrease Finding local extrema and intervals of increase/decrease Example 1 Find the relative extrema of f(x) = increasing and decreasing. ln x x. Also, find where f(x) is STEP 1: Find the domain of the function

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES In section 11.9, we were able to find power series representations for a certain restricted class of functions. INFINITE SEQUENCES AND SERIES

More information

Quick Review Sheet for A.P. Calculus Exam

Quick Review Sheet for A.P. Calculus Exam Quick Review Sheet for A.P. Calculus Exam Name AP Calculus AB/BC Limits Date Period 1. Definition: 2. Steps in Evaluating Limits: - Substitute, Factor, and Simplify 3. Limits as x approaches infinity If

More information

Math 229 Mock Final Exam Solution

Math 229 Mock Final Exam Solution Name: Math 229 Mock Final Exam Solution Disclaimer: This mock exam is for practice purposes only. No graphing calulators TI-89 is allowed on this test. Be sure that all of your work is shown and that it

More information

Math Practice Final - solutions

Math Practice Final - solutions Math 151 - Practice Final - solutions 2 1-2 -1 0 1 2 3 Problem 1 Indicate the following from looking at the graph of f(x) above. All answers are small integers, ±, or DNE for does not exist. a) lim x 1

More information

Ma 530 Power Series II

Ma 530 Power Series II Ma 530 Power Series II Please note that there is material on power series at Visual Calculus. Some of this material was used as part of the presentation of the topics that follow. Operations on Power Series

More information

Math 180, Final Exam, Fall 2007 Problem 1 Solution

Math 180, Final Exam, Fall 2007 Problem 1 Solution Problem Solution. Differentiate with respect to x. Write your answers showing the use of the appropriate techniques. Do not simplify. (a) x 27 x 2/3 (b) (x 2 2x + 2)e x (c) ln(x 2 + 4) (a) Use the Power

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

X. Numerical Methods

X. Numerical Methods X. Numerical Methods. Taylor Approximation Suppose that f is a function defined in a neighborhood of a point c, and suppose that f has derivatives of all orders near c. In section 5 of chapter 9 we introduced

More information

Bozeman Public Schools Mathematics Curriculum Calculus

Bozeman Public Schools Mathematics Curriculum Calculus Bozeman Public Schools Mathematics Curriculum Calculus Process Standards: Throughout all content standards described below, students use appropriate technology and engage in the mathematical processes

More information

Math Refresher Course

Math Refresher Course Math Refresher Course Columbia University Department of Political Science Fall 2007 Day 2 Prepared by Jessamyn Blau 6 Calculus CONT D 6.9 Antiderivatives and Integration Integration is the reverse of differentiation.

More information

Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10).

Review all the activities leading to Midterm 3. Review all the problems in the previous online homework sets (8+9+10). MA109, Activity 34: Review (Sections 3.6+3.7+4.1+4.2+4.3) Date: Objective: Additional Assignments: To prepare for Midterm 3, make sure that you can solve the types of problems listed in Activities 33 and

More information

School of the Art Institute of Chicago. Calculus. Frank Timmes. flash.uchicago.edu/~fxt/class_pages/class_calc.

School of the Art Institute of Chicago. Calculus. Frank Timmes. flash.uchicago.edu/~fxt/class_pages/class_calc. School of the Art Institute of Chicago Calculus Frank Timmes ftimmes@artic.edu flash.uchicago.edu/~fxt/class_pages/class_calc.shtml Syllabus 1 Aug 29 Pre-calculus 2 Sept 05 Rates and areas 3 Sept 12 Trapezoids

More information

Double Integrals. P. Sam Johnson. February 4, P. Sam Johnson (NIT Karnataka) (NIT Karnataka) Double Integrals February 4, / 57

Double Integrals. P. Sam Johnson. February 4, P. Sam Johnson (NIT Karnataka) (NIT Karnataka) Double Integrals February 4, / 57 Double Integrals P. Sam Johnson February 4, 2018 P. Sam Johnson (NIT Karnataka) (NIT Karnataka) Double Integrals February 4, 2018 1 / 57 Overview We defined the definite integral of a continuous function

More information

MSM120 1M1 First year mathematics for civil engineers Revision notes 4

MSM120 1M1 First year mathematics for civil engineers Revision notes 4 MSM10 1M1 First year mathematics for civil engineers Revision notes 4 Professor Robert A. Wilson Autumn 001 Series A series is just an extended sum, where we may want to add up infinitely many numbers.

More information

AP Calculus AB. Slide 1 / 175. Slide 2 / 175. Slide 3 / 175. Integration. Table of Contents

AP Calculus AB. Slide 1 / 175. Slide 2 / 175. Slide 3 / 175. Integration. Table of Contents Slide 1 / 175 Slide 2 / 175 AP Calculus AB Integration 2015-11-24 www.njctl.org Table of Contents click on the topic to go to that section Slide 3 / 175 Riemann Sums Trapezoid Approximation Area Under

More information

Steps for finding area using Summation

Steps for finding area using Summation Steps for finding area using Summation 1) Identify a o and a 0 = starting point of the given interval [a, b] where n = # of rectangles 2) Find the c i 's Right: Left: 3) Plug each c i into given f(x) >

More information

Math Calculus I

Math Calculus I Math 165 - Calculus I Christian Roettger 382 Carver Hall Mathematics Department Iowa State University www.iastate.edu/~roettger November 13, 2011 4.1 Introduction to Area Sigma Notation 4.2 The Definite

More information

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form

e x = 1 + x + x2 2! + x3 If the function f(x) can be written as a power series on an interval I, then the power series is of the form Taylor Series Given a function f(x), we would like to be able to find a power series that represents the function. For example, in the last section we noted that we can represent e x by the power series

More information

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS

Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) RECTANGULAR APPROXIMATION METHODS AP Calculus 5. Areas and Distances Goal: Approximate the area under a curve using the Rectangular Approximation Method (RAM) Exercise : Calculate the area between the x-axis and the graph of y = 3 2x.

More information

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x . Define f n, g n : [, ] R by f n (x) = Advanced Calculus Math 27B, Winter 25 Solutions: Final nx2 + n 2 x, g n(x) = n2 x 2 + n 2 x. 2 Show that the sequences (f n ), (g n ) converge pointwise on [, ],

More information

Answers. 2. List all theoretically possible rational roots of the polynomial: P(x) = 2x + 3x + 10x + 14x ) = A( x 4 + 3x 2 4)

Answers. 2. List all theoretically possible rational roots of the polynomial: P(x) = 2x + 3x + 10x + 14x ) = A( x 4 + 3x 2 4) CHAPTER 5 QUIZ Tuesday, April 1, 008 Answers 5 4 1. P(x) = x + x + 10x + 14x 5 a. The degree of polynomial P is 5 and P must have 5 zeros (roots). b. The y-intercept of the graph of P is (0, 5). The number

More information

AP Calculus AB Integration

AP Calculus AB Integration Slide 1 / 175 Slide 2 / 175 AP Calculus AB Integration 2015-11-24 www.njctl.org Slide 3 / 175 Table of Contents click on the topic to go to that section Riemann Sums Trapezoid Approximation Area Under

More information

MATH 408N PRACTICE FINAL

MATH 408N PRACTICE FINAL 05/05/2012 Bormashenko MATH 408N PRACTICE FINAL Name: TA session: Show your work for all the problems. Good luck! (1) Calculate the following limits, using whatever tools are appropriate. State which results

More information

For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a

For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a AP Physics C: Mechanics Greetings, For those of you who are taking Calculus AB concurrently with AP Physics, I have developed a brief introduction to Calculus that gives you an operational knowledge of

More information

Foundations of Calculus. November 18, 2014

Foundations of Calculus. November 18, 2014 Foundations of Calculus November 18, 2014 Contents 1 Conic Sections 3 11 A review of the coordinate system 3 12 Conic Sections 4 121 Circle 4 122 Parabola 5 123 Ellipse 5 124 Hyperbola 6 2 Review of Functions

More information

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0 8.7 Taylor s Inequality Math 00 Section 005 Calculus II Name: ANSWER KEY Taylor s Inequality: If f (n+) is continuous and f (n+) < M between the center a and some point x, then f(x) T n (x) M x a n+ (n

More information

Topic Subtopics Essential Knowledge (EK)

Topic Subtopics Essential Knowledge (EK) Unit/ Unit 1 Limits [BEAN] 1.1 Limits Graphically Define a limit (y value a function approaches) One sided limits. Easy if it s continuous. Tricky if there s a discontinuity. EK 1.1A1: Given a function,

More information

Lecture The Definite Integral (1 of 2) MTH 124

Lecture The Definite Integral (1 of 2) MTH 124 We now begin our study of the integral or anti-derivative. Up to this point we have explored how to calculate the rate of change of a quantity. We now consider a related problem. That is, given the rate

More information

y = 7x 2 + 2x 7 ( x, f (x)) y = 3x + 6 f (x) = 3( x 3) 2 dy dx = 3 dy dx =14x + 2 dy dy dx = 2x = 6x 18 dx dx = 2ax + b

y = 7x 2 + 2x 7 ( x, f (x)) y = 3x + 6 f (x) = 3( x 3) 2 dy dx = 3 dy dx =14x + 2 dy dy dx = 2x = 6x 18 dx dx = 2ax + b Rates of hange III Differentiation Workbook Limits For question, 1., draw up a artesian plane and plot your point [( x + h), f ( x + h) ] ( x, f (x)), and your point and visualise how the limit from first

More information

Section 1.x: The Variety of Asymptotic Experiences

Section 1.x: The Variety of Asymptotic Experiences calculus sin frontera Section.x: The Variety of Asymptotic Experiences We talked in class about the function y = /x when x is large. Whether you do it with a table x-value y = /x 0 0. 00.0 000.00 or with

More information

5/8/2012: Practice final C

5/8/2012: Practice final C Math A: introduction to functions and calculus Oliver Knill, Spring 202 Problem ) TF questions (20 points) No justifications are needed. 5/8/202: Practice final C ) T F d log(cos(x)) = tan(x). dx Your

More information

Volume: The Disk Method. Using the integral to find volume.

Volume: The Disk Method. Using the integral to find volume. Volume: The Disk Method Using the integral to find volume. If a region in a plane is revolved about a line, the resulting solid is a solid of revolution and the line is called the axis of revolution. y

More information

Algebra II: Strand 5. Power, Polynomial, and Rational Functions; Topic 3. Rational Functions; Task 5.3.1

Algebra II: Strand 5. Power, Polynomial, and Rational Functions; Topic 3. Rational Functions; Task 5.3.1 TASK 5.3.: RATIONAL FUNCTIONS AND THEIR RECIPROCALS Solutions Rational functions appear frequently in business, science, engineering, and medical applications. This activity explores some aspects of rational

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES We have: Seen how to interpret derivatives as slopes and rates of change Seen how to estimate derivatives of functions given by tables of values Learned how

More information

1 Question related to polynomials

1 Question related to polynomials 07-08 MATH00J Lecture 6: Taylor Series Charles Li Warning: Skip the material involving the estimation of error term Reference: APEX Calculus This lecture introduced Taylor Polynomial and Taylor Series

More information

Calculus I Homework: Linear Approximation and Differentials Page 1

Calculus I Homework: Linear Approximation and Differentials Page 1 Calculus I Homework: Linear Approximation and Differentials Page Example (3..8) Find the linearization L(x) of the function f(x) = (x) /3 at a = 8. The linearization is given by which approximates the

More information

The of the fraction ¾ is 3. a. numerator b. b. area c. c. addend d. d. denominator

The of the fraction ¾ is 3. a. numerator b. b. area c. c. addend d. d. denominator The of the fraction ¾ is 3. a. numerator b. b. area c. c. addend d. d. denominator To find the area of a circle you need to square the radius and multiply by. a. diameter b. pi c. radius d. circumference

More information

8.3 Partial Fraction Decomposition

8.3 Partial Fraction Decomposition 8.3 partial fraction decomposition 575 8.3 Partial Fraction Decomposition Rational functions (polynomials divided by polynomials) and their integrals play important roles in mathematics and applications,

More information

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS Math 473: Practice Problems for Test 1, Fall 011, SOLUTIONS Show your work: 1. (a) Compute the Taylor polynomials P n (x) for f(x) = sin x and x 0 = 0. Solution: Compute f(x) = sin x, f (x) = cos x, f

More information

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules Math 5 Integration Topic 3 Page MATH 5 TOPIC 3 INTEGRATION 3A. Integration of Common Functions Practice Problems 3B. Constant, Sum, and Difference Rules Practice Problems 3C. Substitution Practice Problems

More information

5.5. The Substitution Rule

5.5. The Substitution Rule INTEGRALS 5 INTEGRALS 5.5 The Substitution Rule In this section, we will learn: To substitute a new variable in place of an existing expression in a function, making integration easier. INTRODUCTION Due

More information

Chapter Five Notes N P U2C5

Chapter Five Notes N P U2C5 Chapter Five Notes N P UC5 Name Period Section 5.: Linear and Quadratic Functions with Modeling In every math class you have had since algebra you have worked with equations. Most of those equations have

More information

Topics and Concepts. 1. Limits

Topics and Concepts. 1. Limits Topics and Concepts 1. Limits (a) Evaluating its (Know: it exists if and only if the it from the left is the same as the it from the right) (b) Infinite its (give rise to vertical asymptotes) (c) Limits

More information

Caculus 221. Possible questions for Exam II. March 19, 2002

Caculus 221. Possible questions for Exam II. March 19, 2002 Caculus 221 Possible questions for Exam II March 19, 2002 These notes cover the recent material in a style more like the lecture than the book. The proofs in the book are in section 1-11. At the end there

More information

Anna D Aloise May 2, 2017 INTD 302: Final Project. Demonstrate an Understanding of the Fundamental Concepts of Calculus

Anna D Aloise May 2, 2017 INTD 302: Final Project. Demonstrate an Understanding of the Fundamental Concepts of Calculus Anna D Aloise May 2, 2017 INTD 302: Final Project Demonstrate an Understanding of the Fundamental Concepts of Calculus Analyzing the concept of limit numerically, algebraically, graphically, and in writing.

More information

More on infinite series Antiderivatives and area

More on infinite series Antiderivatives and area More on infinite series Antiderivatives and area September 28, 2017 The eighth breakfast was on Monday: There are still slots available for the October 4 breakfast (Wednesday, 8AM), and there s a pop-in

More information

5.3 Definite Integrals and Antiderivatives

5.3 Definite Integrals and Antiderivatives 5.3 Definite Integrals and Antiderivatives Objective SWBAT use properties of definite integrals, average value of a function, mean value theorem for definite integrals, and connect differential and integral

More information

n=0 ( 1)n /(n + 1) converges, but not

n=0 ( 1)n /(n + 1) converges, but not Math 07H Topics for the third exam (and beyond) (Technically, everything covered on the first two exams plus...) Absolute convergence and alternating series A series a n converges absolutely if a n converges.

More information

Section 3.1 Quadratic Functions

Section 3.1 Quadratic Functions Chapter 3 Lecture Notes Page 1 of 72 Section 3.1 Quadratic Functions Objectives: Compare two different forms of writing a quadratic function Find the equation of a quadratic function (given points) Application

More information