Introduction to the Standard Model

Size: px
Start display at page:

Download "Introduction to the Standard Model"

Transcription

1 Introduction to the Standard Model IMPRS Elementary Particle Physics MPP, January 16-19, 2018 W. HOLLIK MAX-PLANCK-INSTITUT ÜR PHYSIK, MÜNCHEN

2 Outline 1. Elements of Quantum ield Theory 2. Gauge Theories 3. QCD 4. Higgs mechanism 5. Electroweak interaction and Standard Model 6. Phenomenology of W and Z bosons, precision tests 7. Higgs bosons

3 Notations and Conventions µ,ν,.. = 0,1,2,3; k,l,.. = 1,2,3 x = (x µ ) = (x 0, x), x 0 = t ( h = c = 1) p = (p µ ) = (p 0, p), p 0 = E = p 2 +m a µ = g µν a ν , (g µν ) = a 2 = a µ a µ, a b = a µ b µ = a 0 b 0 a b µ = x µ = g µν ν, ν = x ν [ 0 = 0, k = k ] = µ µ = 2 t 2

4 1. Elements of Quantum ield Theory

5 ields in the Standard Model spin 0 particles: scalar fields φ(x) spin 1 particles: vector fields A µ (x), µ = 0,...3 spin 1/2 fermions: spinor fields ψ(x) = Lagrangian: L(φ, µ φ) Lorentz invariant Action: S = d 4 xl(φ(x), ) Lorentz invariant Hamilton s principle: δ S = 0 e.o.m. Lorentz covariant free fields: L is quadratic in the fields e.o.m. are linear diff. eqs. ψ 1 ψ 2 ψ 3 ψ 4

6 equations of motions from δs = S[φ+δφ] S[φ] = 0 Euler-Lagrange equations mechanics of particles: L(q 1,...q n, q 1,... q n ) e.o.m. field theory: e.o.m. d dt L qi L q i = 0 q i φ(x), q i µ φ(x) L µ ( µ φ) L φ = 0 field eq. example: scalar field φ(x), L = 1 2 ( µφ) 2 m2 2 φ2 field equation φ+m 2 φ = 0 solution φ(x) = 1 (2π) 3/2 d 3 k 2k 0 [a(k)e ikx + a(k) e ikx ]

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 2. Gauge theories

24 Constructing QED main steps start with L 0 = ψ(iγ µ µ m)ψ for free fermion field ψ symmetric under global gauge transformations ψ = e iα ψ, α real perform minimal substitution µ D µ = µ iea µ invariance under local gauge transformations ψ = e iα(x) ψ, A µ = A µ + 1 e µα(x) involves additional vector field A µ induces interaction between A µ and ψ e (ψγ µ ψ) A µ e j µ A µ make A µ a dynamical field by adding L A = 1 4 µν µν, µν = µ A ν ν A µ

25 Non-Abelian gauge theories Generalization: phase transformations that do not commute ψ ψ = Uψ with U 1 U 2 U 2 U 1 requires matrices, i.e. ψ is a multiplet ψ = ψ 1 ψ 2 : ψ n, each ψ k = ψ k (x) is a Dirac spinor U = n n -matrix

26 (i) global symmetry starting point: L 0 = ψ(iγ µ µ m)ψ where ψ = (ψ 1,,ψ n ) consider unitary matrices: U = U 1 ψ = Uψ ψ = ψu = ψu 1 ψ ψ = ψψ, ψ γ µ µ ψ = ψγ µ µ ψ ifu does not depend onx L 0 is invariant under ψ Uψ U: global gauge transformation

27 similar for scalar fields: φ φ = Uφ, φ = φ 1 φ 2 : φ n each ψ k = φ k (x) is a scalar field, φ = (φ 1,,φ n) terms φ φ, ( µ φ) ( µ φ) are invariant L 0 = ( µ φ) ( µ φ) m 2 φ φ is invariant

28 relevant in physics: the special unitary n n-matrices with det=1 group SU(n) examples: ( ) ( ) SU(2) : ψ = ψ 1 ψ 2 e.g. ψ = ψ ν ψ e isospin SU(3) : ψ = ψ 1 ψ 2 e.g. ψ = ψ r ψ g colour ψ 3 ψ b

29 SU(n) matrices U can be written as exponentials U(θ 1,,θ N ) = e iθ at a sum overa = 1, N θ 1, θ N : real parameters T 1, T N : n n-matrices, generators, T a = T a infinitesimal θ : U = 1+iθ a T a (+O(θ 2 )) N-dimensional Lie Group det=1 and unitarity N = n 2 1 n = 2 : N = 3, n = 3 : N = 8

30 commutators [T a,t b ] 0 non-abelian [T a,t b ] = if abc T c Lie Algebra f abc : real numbers, structure constants f abc = f bac = antisymmetric

31 commutators [T a,t b ] 0 non-abelian [T a,t b ] = if abc T c Lie Algebra f abc : real numbers, structure constants f abc = f bac = antisymmetric SU(2) f abc = ǫ abc (like angular momentum) T a = 1 2 σ a, σ a : Pauli matrices (a=1,2,3)

32 commutators [T a,t b ] 0 non-abelian [T a,t b ] = f abc T c Lie Algebra f abc : real numbers, structure constants f abc = f bac = antisymmetric SU(2) f abc = ǫ abc (like angular momentum) T a = 1 2 σ a, σ a : Pauli matrices (a=1,2,3) SU(3) T a = 1 2 λ a, λ a : Gell-Mann matrices (a=1,...8) λ 1 = 1 0 0,

33 λ 1 = , λ 2 = 0 i 0 i , λ 3 = , λ 4 = , λ 5 = 0 0 i i 0 0, λ 6 = , λ 7 = i 0 i 0, λ 8 =

34 (ii) local symmetry now: θ a = θ a (x) for a = 1,...N covariant derivative µ D µ = µ igw µ vector field W µ is n n matrix: W µ (x) = T a W a µ(x) induces interaction term L 0 L 0 +L int with L int = gψγ µ W µ Ψ = g(ψγ µ T a Ψ) W a µ j µ a W a µ or a multiplet of scalar fields Φ: L 0 = ( µ Φ) ( µ Φ) L = (D µ Φ) (D µ Φ)

35 L is invariant under local gauge transformations Ψ Ψ = U Ψ, W µ W µ = U W µ U 1 i g ( µu)u 1 for infinitesimal transformations: W a µ W a µ = W a µ + 1 g µθ a +f abc W b µθ c crucial property of covariant derivative D µu = U D µ

36 (iii) dynamics of W a µ fields need: additional term L W e.o.m., propagators naive: a ( µwν a ν Wµ) a 2 not gauge invariant instead: µν = D µ W ν D ν W µ a µν T a = µ W ν ν W µ ig[w µ,w ν ] = i g [D µ,d ν ] gauge transformation: W µ W µ, D µ D µ µν µν = U µν U 1 Tr( µν µν ) = Tr(U µν U 1 U µν U 1 ) = Tr( µν µν ) gauge invariant

37 Lagrangian: L W = 1 2 Tr( µν µν ) = 1 4 a a µν a,µν components of µν [using normalization Tr(T a T b ) = 1 2 δ ab ] a µν = µ W a ν ν W a µ + gf abc W b µw c ν a µν = Abelian + non-abelian L W = quadratic }{{} free part + cubic + quartic }{{} tri- and quadri-linear interactions

38 L W = 1 4 ( µw a ν ν W a µ) 2 propagator = 1 2 gf abc( µ W a ν ν W a µ)w b,µ W c,ν = 1 4 g2 f abc f ade W b µw c ν W d,µ W e,ν new type of couplings: self-couplings of vector fields (gauge couplings) universal coupling constant g for fermions and vector fields

39 3. Quantum Chromodynamics (QCD) each quark field q = u,d,... appears in 3 colours q ψ = q, ψ = (q,q,q) q T a = 1 2 λ a (a = 1,...8) generators, group SU(3) W a µ G a µ 8 gluon fields G a µν = µ G a ν ν G a µ +g s f abc G b µg c ν field strength D µ = µ ig s T a G a µ covariant derivative g s coupling constant of strong interaction, α s = g2 s 4π

40 QCD Lagrangian (for one flavor of quarks) L QCD = L + L G, L = ψ(iγ µ D µ m)ψ, L QCD = ψ(iγ µ µ m)ψ + g s ψγ µλ a 2 ψ Ga µ 1 4 Ga µνg a,µν 1 2ξ ( µg a,µ ) 2

41 QCD Lagrangian (for one flavor of quarks) L QCD = L + L G = ψ(iγ µ µ m)ψ + g s ψγ µλ a 2 ψ Ga µ 1 4 Ga µνg a,µν 1 2ξ ( µg a,µ ) 2 reality: sum over quark flavors f, with ψ ψ f, m m f

42 k Quark-Gluon-ertex: a ig S (T a ) kl γ µ Quark-Propagator: i q+m q 2 m 2 +iǫ Gluon-Propagator: l ig µν q 2 +iǫ c i q m+iǫ Triple-Gluon-ertex: a a b d Quartic-Gluon-ertex: b c

43 4. Higgs mechanism

44 problem: weak interaction, gauge bosons are massive mass terms M 2 W a µw a,µ spoil local gauge invariance bad high energy behaviour of amplitudes and cross sections, conflict with unitarity reason: longitudinal polarization ǫ µ kµ M kµ bad divergence of higher orders with loop diagrams reason: propagators contain g µν + k µk ν M 2 additional powers of momenta in loop integration spoil renormalizability renormalizable theories: divergences can be removed by a finite number of counter terms gauge invariant theories: counter terms for parameters (and fields)

45 W and Z are massive W, Z have longitudinal polarization states polarization vectors of W (Z) for large momentum k ǫ L k/m W WL WL WL WL bad high energy behaviour of WW scattering WL WL bad divergence of loop integrals way out: new scalar with appropriate couplings to W,Z

46 restoration of unitarity WL WL WL + H WL WL WL WL WL restoration U finiteness renormalizability H consistent way: Higgs mechanism = scalar with gauge invariant interactions and non-invariant ground state

47 Spontaneous symmetry breaking (SSB) physical system: ground state: has a symmetry not symmetric [A. Pich]

48 example: complex scalar field φ φ Lagrangian with interaction (potential), minimum at φ 0 = v L = µ φ 2 (φ) = ( φ ) : L symmetric under φ e iα φ, U(1) v 0 : φ 0 = eiα v φ 0 not symmetric = ( φ 0 ) = ( φ 0 ) : vacuum is degenerate

49 write φ(x) = η(x)e iθ(x), η and θ real ( φ ) = (η), minimum at η = v : (v) = 0, (v) > 0 expand around minimum: η(x) = v H(x) (η) = (v) (v) 1 2 H2 + L = 1 2 µh (v) 1 2 H2 + v 2 µ θ 2 + }{{} > 0 mass of H H field is massive m 2 H θ field is massless, no θ 2 term: Goldstone field special case of Goldstone theorem: for each broken generator T a with T a φ 0 0 there is a massless Goldstone field θ(x)

50 SSB in gauge theories L = ( D µ φ ) +( D µ φ ) ( φ ) 1 4 µν µν, D µ = µ iea µ invariant under local U(1) transformations: φ (x) = e iα(x) φ(x) = e iα(x) e iθ(x) η(x) A µ(x) = A µ (x)+ 1 e µα(x) choose α(x) = θ(x): φ (x) = η(x) L = ( µ iea µ)η 2 (η) 1 4 µν µν massless θ field removed (unphysical)

51 L = ( µ iea µ)(v H) µν µν = 1 4 µν µν +v 2 e 2 A µa µ + 1 }{{} 2 [( µh) 2 m 2 HH 2 ] + }{{} massive A-field,m A ev neutral scalar,m H 0 in this special gauge: no Goldstone field unitary gauge A µ -field propagator: ( i k 2 m 2 A +iε g µν + k ) µk ν m 2 A }{{} polarization sum of 3 pol. states massive vector field without spoiling gauge symmetry of L

52 two different gauges properties φ field A µ field symmetry manifest H, θ 2 polarizations (transverse) physics manifest H 3 polarizations (2 transverse + 1 longitudinal) θ longitudinal polarization of A µ

53 5. Electroweak Standard Model

54 preliminaries Dirac matrices: γ µ (µ = 0,1,2,3), γ µ γ ν +γ ν γ µ = 2g µν Γ = γ 0 (Γ) γ 0, Γ any Dirac matrix oder product of matrices ( ) further Dirac matrix: γ 5 = iγ 0 γ 1 γ 2 γ = 1 0 γ 5 γ µ +γ µ γ 5 = 0, γ 5 = γ 5, γ 2 5 = 1 chiral fermions: ψ L = 1 γ 5 2 ψ left-handed spinor, L-chiral spinor ψ R = 1+γ 5 2 ψ right-handed spinor, R-chiral spinor projectors on right/left chirality: ω ± = 1±γ 5 2, (ω ± ) 2 = ω ±

55 chiral currents: ψ L γ µ ψ L = ψγ µ 1 γ 5 2 ψ J µ L left-handed current ψ R γ µ ψ R = ψγ µ 1+γ 5 2 ψ J µ R right-handed current J µ = ψγµ ψ = J µ L +Jµ R J µ A = ψγµ γ 5 ψ = J µ L +Jµ R vector current axialvector current mass term: mψψ = m(ψ L ψ R + ψ R ψ L ) connects L and R!

56 symmetry group: SU(2) I U(1) Y SU(2) I : weak isospin, generators T a I = 1 2 σ a for L, = 0 for R U(1) Y : weak hypercharge, generator Y T 3 I +Y/2 = Q fermion content (ignoring possibe right-handed neutrinos) leptons: Ψ L L = quarks: Ψ L Q = νl e e L νl µ µ L νl τ τ L T 3 I Y 1 1 ψ R l = e R µ R τ R 0 2 ul d L cl s L tl b L ψ R u = u R c R t R ψ R d = dr s R b R 0 2 3

57 gauge boson content SU(2) I : generators T 1 I, T2 I, T3 I gauge fields W 1 µ, W 2 µ, W 3 µ also: W ± µ = 1 2 ( W 1 µ iw 2 µ), W 3 µ U(1) Y : generator Y gauge field B µ [T a I, Tb I ] = iǫ abct c I, [Ta I,Y] = 0

58 gauge boson content SU(2) I : generators T 1 I, T2 I, T3 I gauge fields W 1 µ, W 2 µ, W 3 µ also: W ± µ = 1 2 ( W 1 µ iw 2 µ), W 3 µ U(1) Y : generator Y gauge field B µ notation: = γ µ µ, a = γ µ a µ

59 ree Lagrangian of (still massless) fermions: L 0,ferm = iψ f / ψ f = iψ L L / ΨL L + iψ L Q / ΨL Q + iψ R l / ψr l + iψ R u / ψ R u + iψ R d / ψr d Minimal substitution: µ D µ = µ ig 2 TI a Wµ a 1 + ig 1 Y B 2 µ = Dµω L + Dµ R ω +, Dµ L = µ ig 2 0 W + «µ 2 Wµ i g2 Wµ 3 g 1 Y L B µ g 2 Wµ 3 g 1 Y L B µ D R µ = µ + ig Y R B µ «, Photon identification: ««Zµ cw s W W 3 «µ c W = cosθ W, s W =sin θ W, rotation : =, A µ s W c W B µ θ W = mixing angle Dµ L = i Aµ 2 A g2 s W g 1 c W Y L ««0! Q1 0 µ 0 g 2 s W g 1 c W Y L = iea µ 0 Q 2 charged difference in doublet Q 1 Q 2 = 1 g 2 = e normalize Y L/R such that g 1 = e c W Y fixed by Gell-Mann Nishijima relation : Q = T 3 I + Y 2 s W

60 ermion gauge-boson interaction: L ferm,ym = e 0 /W + Ψ L 2sW /W 0 «Ψ L + e 2c W s W Ψ L σ3 /ZΨ L e s W c W Q f ψ f /Zψ f eq f ψ f /Aψ f (f=all fermions, = all doublets) eynman rules: f f W µ ie 2sW γ µ ω f f A µ iq f eγ µ f f Z µ ieγ µ (g + f ω + + g f ω ) = ieγ µ (v f a f γ 5 ) with g + f = s W c W Q f, g f = s W c W Q f + T 3 I,f c W s W, v f = s W c W Q f + T 3 I,f 2c W s W, a f = T 3 I,f 2c W s W

61 gauge field Lagrangian (Yang-Mills Lagrangian) ield-strength tensors: L YM = 1 4 W a µνw a,µν 1 4 B µνb µν W a µν = µ W a ν ν W a µ + g 2 ǫ abc W b µw c ν, B µν = µ B ν ν B µ Lagrangian in terms of physical fields: L YM = 1 2 ( µw + ν ν W + µ )( µ W,ν ν W,µ ) 1 4 ( µz ν ν Z µ )( µ Z ν ν Z µ ) 1 4 ( µa ν ν A µ )( µ A ν ν A µ ) + (trilinear interaction terms involving AW + W, ZW + W ) + (quadrilinear interaction terms involving AAW + W, AZW + W, ZZW + W, W + W W + W )

62 eynman rules for gauge-boson self-interactions: (fields and momenta incoming) W + µ W ν ρ iec WW h g µν (k + k ) ρ + g νρ (k k ) µ + g ρµ (k k + ) ν i with C WWγ = 1, C WWZ = c W s W W + µ W ν ρ σ ie 2 C WW h2g µν g ρσ g µρ g σν g µσ g νρ i with C WWγγ = 1, C WWγZ = c W s W, C WWZZ = c2 W, C s 2 WWWW = 1 W s 2 W

63 Higgs mechanism masses of W and Z bosons spontaneous breaking SU(2) I U(1) Y U(1) Q unbroken em. gauge symmetry, massless photon GSW model: Minimal scalar sector with complex scalar doublet Φ = Scalar self-interaction via Higgs potential: (Φ) = µ 2 Φ Φ + λ 4 (Φ Φ) 2, µ 2, λ > 0, φ + φ 0 «, Y Φ = 1 = SU(2) I U(1) Y symmetric r 2µ 2 Re(φ 0 ) (Φ) = minimal for Φ = λ v > 0 2 Im(φ 0 ) ground state Φ 0 (=vacuum «expectation value of Φ) not unique 0 specific choice Φ 0 = v not gauge invariant spontaneous symmetry breaking 2 «1 0 elmg. gauge invariance unbroken, since QΦ 0 = Φ 0 = 0 0 0

64 ield excitations in Φ: Φ(x) = φ + (x) 1 2 v + H(x) + iχ(x)! Gauge-invariant Lagrangian of Higgs sector: (φ = (φ + ) ) L H = (D µ Φ) (D µ Φ) (Φ) with D µ = µ ig 2 σ a 2 W a µ + i g 1 2 B µ = ( µ φ + )( µ φ ) iev (W µ + µ φ Wµ µ φ + )+ e2 v 2 W 2s W 4s 2 µ + W,µ W ( χ)2 + ev Z µ µ χ+ e2 v 2 Z c W s W 4c 2 Ws 2 W 2 ( H)2 µ 2 H 2 + (trilinear SSS, SS, S interactions) + (quadrilinear SSSS, SS interactions) Implications: gauge-boson masses: M W = ev, M Z = ev = M W, M γ = 0 2s W 2c W s W c W physical Higgs boson H: M H = p 2µ 2 = free parameter would-be Goldstone bosons φ ±, χ: unphysical degrees of freedom

65 general gauge: Goldstone fields φ ±, χ are present required: gauge fixing term L fix R ξ gauge: L fix = 1 2ξ γ ( γ ) 2 1 2ξ Z ( Z ) 2 1 2ξ W ( ± ) 2 with the gauge-fixing functionals a : (ξ = arbitrary gauge-fixing parameters) ± = W ± iξ W M W φ ±, Z = Z ξ Z M Z χ, γ = A (notation: A = µ A µ, )

66 elimination of mixing terms (W ± µ µ φ ), (Z µ µ χ) in Lagrangian decoupling of gauge and would-be Goldstone fields (no mix propagators) boson propagators: k D µν (k) = i " gµν k µk ν k 2 k 2 M 2 + k µk ν k 2 ξ k 2 ξ M 2 #, = W, Z, γ S D SS (k) = k important special cases: i k 2 ξ M 2, S = φ, χ ξ = 1: ξ W, ξ Z : t Hooft eynman gauge ig µν convenient gauge-boson propagators k 2 M 2 unitary gauge elimination of would-be Goldstone bosons

67 ermion masses fermions in chiral representations of gauge symmetry ) ( νe e L, e R mass term m e (e L e R +e R e L ) = m e ee not gauge invariant solution of the SM: introduce Yukawa interaction = new interaction of fermions with the Higgs field gauge invariant interaction, g e = Yukawa coupling constant L Yuk = g e [ψ L Φe R + e R Φ ψ L ]

68 most transparent in unitary gauge ( ) ( φ + Φ = 1 2 φ 0 0 v +H apply to the first lepton generation ψ L = g e 2 [(ν L,e L ) ( 0 v +H ) e R + e R (0,v +H) ( ) ( ν L e L ν L e L ) )], e R : = g e 2 v }{{} [e L e R +e R e L ] + g e 2 }{{} m e m e /v = m e ee + m e v Hee H[e L e R +e R e L ]

69 3 generations of leptons and quarks for massless neutrinos: no generation mixing for leptons repeat construction for µ and τ with g µ and g τ m µ, m τ quark sector: generation mixing Yukawa couplings not generation-diagonal

70 U = u c t, D = d s b, U = (u, c, t), D = (d, s, b) unitary gauge: Φ = v +H(x), Φ = 1 2 v H(x) 0, L Y = ( ) U L,D L Gd ΦD R + ( ) U L,D L Gu ΦUR + h.c. mass term for H(x) = 0 : v v D L G d 2 D R U L G u 2 U R +h.c. }{{}}{{} M d M u mass matrices, non-diagonal

71 diagonalization by unitary matrices L,R u, L,R d : U L,R = L,RÛL,R, u U L,R = ÛL,R(L,R u ) D L,R = L,R d ˆD L,R, D L,R = ˆD L,R (L,R d ) mass eigenstates Û, ˆD D L M d D R +U L M u U R = ˆD L ( d L) M d d R }{{} ˆD R + ÛL ( u L) M u u R }{{} ÛR M diag d M diag u

72 diagonalization by unitary matrices L,R u, L,R d : U L,R = L,RÛL,R u U L,R = ÛL,R(L,R u ) D L,R = L,R d ˆD L,R D L,R = ˆD L,R (L,R d ) mass eigenstates Û, ˆD D L M d D R +U L M u U R = ˆD L ( d L) M d d R }{{} ˆD R + ÛL ( u L) M u u R }{{} ÛR M diag d m d m s m b M diag u m u m c m t

73 Yukawa interactions in terms of mass eigenstates: L Y = ( ) U L,D L Gd ΦD R + ( ) U L,D L Gu ΦUR +h.c. ( = ˆD L M diag d ˆD R 1+ H ) ( diag ÛLMu Û R 1+ H ) v v +h.c. flavor-diagonal interactions with H field neutral weak and electromagnetic currents: U L(R) γ µ U L(R) = ÛL(R)γ µ Û L(R), D L(R) γ µ D L(R) = ˆD L(R) γ µ ˆDL(R) flavor-diagonal because u,d L,R are unitary matrices charged current: U L γ µ D L + D L γ µ U L = ÛLγ µ ˆDL + ˆD L γ µ Û L remnant: CKM = ( u L ) d L

74 eatures of the CKM mixing: = 3-dim. generalization of Cabibbo matrix U C is parametrized by 4 free parameters: 3 real angles, 1 complex phase complex phase is the only source of CP violation in SM counting: #real d.o.f. in «#unitarity relations ««#phase diffs. of u-type quarks = = 4 no flavour-changing neutral currents in lowest order, «#phase diffs. of d-type quarks «#phase diff. between u- and d-type quarks flavour-changing suppressed by factors G µ (m 2 q 1 m 2 q 2 ) in higher orders ( Glashow Iliopoulos Maiani mechanism )

75 The Standard Model Lagrangian renormalizable precision calculations quantum effects in precision observables detectable involve Higgs mass dependence

76 6. Phenomenology of W and Z bosons and precision tests

77 Cross sections and decay widths scattering process: a+b b 1 +b 2 + +b n a(p a ),b(p b )>= i>, b 1 (p 1 ), b n (p n )>= f> matrix element = probability amplitude for i f: S fi =< f S i > for i f: S fi = (2π) 4 δ 4 (P i P f ) M fi [ ] 1 n+2 (2π) 3/2 P i = p a +p b = P f = p 1 + +p n momentum conservation factors (2π) 3/2 from wave function normalization (plane waves) M fi from eynman graphs and rules

78 probability for scattering into phase space element dφ: dw fi = S fi 2 dφ, dφ = d3 p 1 2p 0 1 d3 p n 2p 0 n d 3 p i 2p 0 i = d 4 p i δ(p 2 i m2 i ) Lorentz invariant phase space differential cross section: dσ = (2π) 4 4 (p a p b ) 2 m 2 am 2 b M fi 2 (2π) 3n δ 4 (P i P f ) d3 p 1 2p 0 1 d3 p n 2p 0 n

79 decay process: a b 1 +b 2 + +b n a(p a )>= i>, b 1 (p 1 ), b n (p n )>= f> S fi = (2π) 4 δ 4 (p a P f ) M fi [ ] 1 n+1 (2π) 3/2 decay width (differential): dγ = (2π)4 2m a M fi 2 (2π) 3n δ 4 (p a P f ) d3 p 1 2p 0 1 d3 p n 2p 0 n

80 special case: 2-particle phase space a+b b 1 +b 2, a b 1 +b 2 cross section in the CMS, p a + p b = 0 = p 1 + p 2 dσ dω = 1 64π 2 s p 1 p a M fi 2 dω = dcosθdφ, θ =<( p a, p 1 ) s = (p a +p b ) 2 = E 2 CMS decay rate for final state masses m 1 = m 2 = m dγ dω = 1 64π 2 m a 1 4m2 m 2 a M fi 2

81 features of the ew Standard Model Higgs boson probably found, all other particles confirmed consistent quantum field theory in accordance with unitarity renormalizable predictions at higher orders formal parameters: physical parameters: g 2, g 1, v, λ, g f, CKM α, M W, M Z, M H, m f, CKM

82 Basic parameters and relations ew mixing angle: s W sinθ W, c W cosθ W gauge coupling constants: vector boson masses: g 2 = e s W, g 1 = e c W M W = 1 2 g 2v = ev 2s W M Z = 2s ev W c W = M W cw s 2 W = 1 M2 W M 2 Z neutral current (NC) couplings: a f = g 2 2c W T f 3 v f = g 2 2c W (T f 3 2Q fs W )

83 Muon decay: W observables and experiments µ ν µ e ν e µ determination of the ermi constant G µ = παm 2 Z 2M 2 W (M 2 Z M2 W ) +... Z production (LEP1/SLC): e + e Z f f e + various precision measurements at the Z resonance: M Z, Γ Z, σ had, A B, A LR, etc. e γ, Z good knowledge of the Zf f sector W-pair production (LEP2/ILC): e + e WW 4f(+γ) e + e e + e ν e W γ, Z W W W measurement of M W γww/zww couplings quartic couplings: γγww, γzww

84 experiments at hadron colliders W production (Tevatron/LHC): pp, p p W lν l (+γ) p p, p W measurement of M W bounds on γww coupling top-quark production (Tevatron/LHC): p p, p t t W W b b measurement of m t pp, p p t t 6f

85 µ decay µ ν µ W e ν e ( ) M = ig2 2J 2 (µ) 2 ρ ig ρσ q 2 M 2 W J (e) σ q 2 m 2 µ M 2 W : M = g2 2 8M 2 W J (µ) ρ J ρ(e) ermi model M = G 2 J ρ (µ) J ρ(e) with point-like 4-fermion interaction: low-energy limit of SM G 2 = g2 2 8M 2 W = e 2 8s 2 W c2 W M2 Z = πα 2s 2 W c2 W M2 Z = πα 2(1 M 2 W /M2 Z )M2 W G = (6) 10 5 Ge 2

86 Z resonance cross section [nb] LEP: ALEPH DELPHI L3 OPAL data 2ν 3ν 4ν e + f 10 Z cms energy [Ge] e - f M = J (e) µ ig µν s MZ 2+iM ZΓ Z J ν (f) propagator with finite width Γ Z (unstable particle) Γ Z = f Γ(Z f f), Γ(Z f f) = M Z 12π (v2 f +a2 f )

87 differential cross section ats = M 2 Z : dσ dω (v2 e +a 2 e)(v 2 f +a2 f )(1+cos2 θ) + (2v e a e )(2v f a f ) 2cosθ forward-backward asymmetry A B = σ σ B σ +σ B = 3 4 A ea f polarized cross section fore L,R : A f = 2v fa f v 2 f +a2 f left-right asymmetry A LR = σ L σ R σ L +σ R = A e asymmetries determinesin 2 θ W

88 ¾ ¾ ¼ ¼¼¾ ¼ ¼ ± Î ¾ Ð ÔØ Ò experimental results (selection) Å Î ½ ½ ¼ ¼¼¾½ ¼ ¼¼¾± ¼ ¾ ½ ¼ ¼¼¼½ ¼ ¼ ± «Î ¼ ¼ ¼½ ¼ ¼¾± ÅÏ ÑØ Î ½ ¾ ¼ ¼ ¾± Î ¾ ½ ½ ½µ½¼ ¼ ¼¼½± loop effects are at least one order of magnitude larger than experimental uncertainties

89 precise experiments need precise calculations

90 example: 1-loop diagrams for µ decay amplitude Σ W T (s) W W W self-energy Wlν l vertex correction box diagrams W H, χ W W φ W W γ, Z W W W W W l ν l W W d u W W φ H, χ W u W W u γ, u Z u + W W u γ, u Z W W γ, Z W W γ, Z φ W W W H W H, χ W φ e e ν e W e ν e e Z ν e W φ Z e ν e ν e H W W e e ν e γ, Z W φ e e ν e γ, Z W W e e ν e W W Z e ν e ν e

91 Õ ½ Õ ½ Õ Õ Õ µ ÒØ Ö Ð Ú Ö ÓÖ Ð Ö Õ Õ ¾ Ñ ¾ ½ µ Õ Ôµ ¾ Ñ ¾ ¾ ½ Ü ÑÔÐ Ó ÐÓÓÔ ÒØ Ö Ð Õ Ô Ô ½ Õ Ô ½ Õ Õ Ø ÓÖÝ Ò Ø ÓÖÑ ÒÓØ Ô Ý ÐÐÝ Ñ Ò Ò ÙÐ needs (i) regularization µ (ii) renormalization

92 ÑÓ Ù Ø Ø ÜÔÖ ÓÒ ÓÑ Ø ÓÖÝ Ñ Ò Ò ÙÐ Ñ Ø Ñ Ø ÐÐÝ µ Ö ÙÐ ØÓÖ ÒØÖÓ Ù Ö ÑÓÚ Ø Ø Ò ÙØ¹Ó«Ò ÐÓÓÔ ÒØ Ö Ð º º ½ Õ ÑÓÖ ÓÒÚ Ò ÒØ Ñ Ò ÓÒ Ð Ø Ò ÐÐÝ Ö ÙÐ Ö Þ Ø ÓÒ Õ Õ Ø Ø Ò Ê ÙÐ Ö Þ Ø ÓÒ ¼ ¼ Õ ½ Ø Ø Ò

93 Ê ÒÓÖÑ Ð Þ Ø ÓÒ ÓÖÔØ ÓÒ Ó Ú Ö Ò Ø ÖÑ Ò Ø ÓÒ Ó Ô Ý Ð Ñ Ò Ò Ó Ô Ö Ñ Ø Ö ÓÖ Ö Ý ÓÖ Ö Ò Ô ÖØÙÖ Ø ÓÒ Ø ÓÖÝ add counterterms that absorb divergent parts parameters in L are formal, bare parameters g 0 = g +δg for a coupling, m 0 = m+δm for a mass g, m are physical, i.e. measurable

94 Ñ Ö ÒÓÖÑ Ð Þ Ø ÓÒ Ñ ¾ ¼ Ѿ ÆÑ ¾ Ô ¾ Ñ ¾ ÆÑ ¾ È Ý Ð Ñ ÔÓÐ Ó ÔÖÓÔ ØÓÖ ÒÚ Ö ÔÖÓÔ ØÓÖ ÙÔ ØÓ ½¹ÐÓÓÔ ÓÖ Ö Ü Ô ¾ µ ÓÒ¹ ÐÐ Ö ÒÓÖÑ Ð Þ Ø ÓÒ ÆÑ ¾ Ê Ñ ¾ µ

95 charge renormalization: e 0 = e+δe δe cancels loop contributions to eeγ vertex in the Thomson limit e e k A µ k 0 ieγ µ for on-shell electrons e = elementary charge of classical electrodynamics fine-structure constant α(0) = e2 4π = 1/ δe contains photon vacuum polarization Π γ (k 2 = 0) : Π γ (0) = Π γ (0) Π γ (MZ) 2 }{{} + Πγ (MZ) 2 }{{} non-perturbative perturbative

96 Ú ÙÙÑ ÔÓÐ Ö Þ Ø ÓÒ Ô ÓØÓÒ γ γ Π γ ferm (M2 Z) Π γ ferm (0) α α(m Z) = α 1 α α = α lept + α had, α lept = (4 loop) Steinhauser1998; Sturm2013 α had = ± Davieretal.2010 = ± Hagiwara et al = ± Jegerlehner 2015 significant parametric uncertainty

97 α had = α 3π M2 Z Re 4m 2 π ds R had (s ) s (s M 2 Z iǫ) R had = σ(e + e γ hadrons) σ(e + e γ µ + µ ) Jegerlehner 2015

98 M W M Z correlation µ W ν µ e ν e G 2 = 2M 2 W πα ( 1 M 2 W /MZ) 2

99 M W M Z correlation µ W ν µ e ν e G 2 = 2M 2 W πα ( 1 M 2 W /MZ) 2 M W = ±0.002Ge from G, α, M Z M W = ±0.005Ge with α α(m Z ) M W = ±0.015Ge exp. 37σ/28σ

100 with loop contributions G 2 = 2M 2 W (1+ r) πα ( 1 M 2 W /MZ) 2 1-loop examples ØÓÔ ÕÙ Ö r : quantum correction r = r(m t,m H ) Ï Ø Ï À Ó ÓÒ r = α c2 W s 2 W ρ+ Ï Ï À ρ m2 t M 2 W Ï Ù ¹ Ó ÓÒ Ð ¹ÓÙÔÐ Ò Ï determines W mass Ï Ï M W = M W (α,g,m Z,m t,m H ) complete at 2-loop order full structure of SM

101 S S S S S S S S S S S S S S S S S S S S S S S S 2-loop examples

102 Ö Ö «µ Ö «µ Ö «µ É Ö «µ Ö «¾ µ Ö «µ «É Ö «µ Ö «µ Ö «¾ µ É effects of higher-order terms on r ÅÀ Î variation of r by loop ( ρ) present exp. error: δm W = 18Me δm W = 12Me M W = 15Me / theo: 4Me

103 M W = ± Ge M W (Ge) M t =173.2 ± 0.9 Ge M H (Ge) variation of r by present exp. error: δ ( α ) = 10 4 : δm W = 18Me M W = 15Me M W = 1.8Me

104 Z resonance cross section [nb] LEP: ALEPH DELPHI L3 OPAL data 2ν 3ν 4ν e + f 10 Z cms energy [Ge] e - f effective Z boson couplings with higher-order g,a v f g f = v f + g f, a f g f A = a f + g f A effective ew mixing angle (for f = e): sin 2 θ eff = 1 ( ) 1 Re ge = κ 4 ga e ( 1 M2 W M 2 Z )

105 Ï Ï Ï Ï À Ï À µ Ï µ Ï Ï Ï Ï µ µ À À Ï 2-loop examples for Z couplings complete 2-loop calculation available for sin 2 θ eff

106 importance of two-loop calculations sin 2 Θeff loop QCD lead.3loop 2loop exp M H Ge lowest order: sin 2 θ W = 1 M2 W = ± MZ 2 exp. value: sin 2 θ eff = ±

107 Global analysis within the SM 200 March 2012 High Q 2 except m t 68% CL m t [Ge] 180 m t (Tevatron) 160 Excluded M H [Ge]

108 before the top quark was discovered (< 1995): indirect mass determination m t = 178± Ge 40 LEP + SLD + Colliders + νn Data χ m H = 1 Te m H = 300 Ge Preliminary m H = 60 Ge m t [Ge]

109 before the top quark was discovered (< 1995): indirect mass determination m t = 178± Ge 40 LEP + SLD + Colliders + νn Data χ m H = 1 Te m H = 300 Ge Preliminary top discovery: Tevatron 1995 m H = 60 Ge m t [Ge] m t = 180±12Ge

110 before the top quark was discovered (< 1995): indirect mass determination m t = 178± Ge 40 LEP + SLD + Colliders + νn Data χ m H = 1 Te m H = 300 Ge Preliminary top discovery: Tevatron 1995 today: m H = 60 Ge m t [Ge] m t = 180±12Ge m t = 173.2±0.9Ge

111 The way to the Higgs boson development of bounds from direct and indirect searches Higgs mass [Ge] year

112 Global fit to the Higgs boson mass July 2011 Theory uncertainty α had = α (5) ± ± incl. low Q 2 data m Limit = 161 Ge blueband: Theory uncertainty χ Excluded M H [Ge] Precision Calculations at the Z Resonance CERN [Bardin, WH, Passarino (eds.)] M H < 161 Ge (at 95% C.L.)

113 χ March 2012 LEP excluded Theory uncertainty α had = α (5) ± ± incl. low Q 2 data M H [Ge] m Limit = 152 Ge LHC excluded after the 2011 results from the LHC on the Higgs boson mass M H < 152 Ge (95%C.L.) M H = Ge

114 7. Higgs bosons

115 Higgs potential: = µ 2 ( Φ Φ ) 2 + λ 4 ( Φ Φ ) 4 ( Higgs field in unitary gauge: Φ(x) = v +H(x) ) H(x) : real scalar field, describes neutral spin-0 bosons minimum of : v = 2µ λ, M H = µ 2 λ = 4µ2 v = 2M2 2 H v 2 = M2 H 2 H 2 + M2 H 2v H 3 + M2 H 8v 2 H 4 M H is the only free parameter

116 Higgs potential: = µ 2 ( Φ Φ ) 2 + λ 4 ( Φ Φ ) 4 ( Higgs field in unitary gauge: Φ(x) = v +H(x) ) H(x) : real scalar field, describes neutral spin-0 bosons minimum of : v = 2µ λ, M H = µ 2 λ = 4µ2 v = 2M2 2 H v 2 = M2 H 2 H 2 + M2 H 2v H 3 + M2 H 8v 2 H 4 general gauge: Φ(x) = ( M H is the only free parameter φ + (x) 1 2 [v +H(x)+iχ(x)] )

117 gauge invariant Lagrangian of the Higgs sector L H = (D µ Φ) (D µ Φ) (Φ) with D µ = µ ig 2 σ a 2 W a µ + i g 1 2 B µ = ( µ φ + )( µ φ ) iev (W µ + µ φ Wµ µ φ + )+ e2 v 2 W 2s W 4s 2 µ + W,µ W ( χ)2 + ev Z µ µ χ+ e2 v 2 Z c W s W 4c 2 Ws 2 W 2 ( H)2 µ 2 H 2 + (trilinear SSS, SS, S interactions) + (quadrilinear SSSS, SS interactions) H-- gauge interactions, =W and Z

118 gauge invariant Lagrangian of the Higgs sector L H = (D µ Φ) (D µ Φ) (Φ) with D µ = µ ig 2 σ a 2 W a µ + i g 1 2 B µ = ( µ φ + )( µ φ ) iev (W µ + µ φ Wµ µ φ + )+ e2 v 2 W 2s W 4s 2 µ + W,µ W ( χ)2 + ev Z µ µ χ+ e2 v 2 Z c W s W 4c 2 Ws 2 W 2 ( H)2 µ 2 H 2 + (trilinear SSS, SS, S interactions) + (quadrilinear SSSS, SS interactions) H-- gauge interactions, =W and Z L Yuk = f H-f-f Yukawa interactions ( mf + m f v H) ψ f ψ f + (ff χ,φ ± )

119 W +, Z f H d W, Z f g 2 M W, g 2 M Z c W m f v = g 2m f 2M W Γ(H f f) = N c G M H 4π 2 m2 f, N C = 3(1) for quarks(leptons) Γ(H ) = G M 3 H 8π 2 (r) ( ) 1 2 Z, r = M M H

120 Higgs boson decay channels branching ratios BR(H X) = Γ(H X) Γ(H all) Branching Ratio bb WW gg ττ cc ZZ LHC HIGGS XS WG 2016 γγ Zγ -4 µµ M H [Ge] γ(z) γ(z) H W + H γ γ loop-induced (rare) decays

121 Å À Å À Higgs decays into 4 fermions also below threshold with one or two off-shell a) H b) H f f c) H f 1 f 2 f 3 f 4 ½ Ê À Ï Ï µ Ê À µ ¼º½ ¼º½ ß Ó Ý ß Ó Ý ¾ß Ó Ý ¼º¼½ ß Ó Ý ß Ó Ý ¼º¼½ ¾ß Ó Ý ¼º¼¼½ ¼º¼¼½ ½ ¼ ½ ¼ ½ ¼ ½ ¼ ½¾¼ ½ ¼ ½¼¼ ½¾¼ ½¼¼ ¾¼¼ ½ ¼ [Djouadi] Î Î

122 The direct search for the Higgs boson

123 The direct search for the Higgs boson Higgs production at LEP: À excluded M H < 114Ge Higgs production at the Tevatron: t t t H W,Z H W,Z

124 Higgs production at the LHC gg B B H tth tth H Handbook of Higgs Cross sections, ol. 1, 2, 3, 4 arxiv: , arxiv: , arxiv: , arxiv:

125 Higgs production at the LHC σ(pp H+X) [pb] LHC HIGGS XS WG s= 13 Te pp H (N3LO QCD + NLO EW) pp qqh (NNLO QCD + NLO EW) pp WH (NNLO QCD + NLO EW) pp ZH (NNLO QCD + NLO EW) pp tth (NLO QCD + NLO EW) 1 pp bbh (NNLO QCD in 5S, NLO QCD in 4S) pp th (NLO QCD) [Ge] M H

126 H γγ Events / 2 Ge Events - itted bkg s = 7 Te, Ldt = 4.8 fb -1 s = 8 Te, Ldt = 20.7 fb Selected diphoton sample Data Sig+Bkg it (m =126.8 Ge) H Bkg (4th order polynomial) ATLAS H γγ Preliminary m γγ [Ge] S/(S+B) Weighted Events / 1.5 Ge 5000 CMS Preliminary Data s = 7 Te, L = 5.1 fb (MA) -1 s = 8 Te, L = 19.6 fb (MA) S+B it Bkg it Component ±1 σ ±2 σ (Ge) m γγ

127 H ZZ l + l l + l Events/5 Ge Data (*) Background ZZ Background Z+jets, tt Signal (m =125 Ge) H Syst.Unc. -1 s = 7 Te: Ldt = 4.8 fb -1 s = 8 Te: Ldt = 5.8 fb ATLAS (*) H ZZ 4l Events / 3 Ge CMS Preliminary -1 s = 7 Te, L = 5.1 fb ; -1 s = 8 Te, L = 19.6 fb Data Z+X * Zγ,ZZ m H =126 Ge [Ge] m 4l [Ge] m 4l signal + background

128 the Higgs or not the Higgs? CERN, July 2012

129 Oviedo, October 2013

130 combined ATLAS/CMS Higgs-boson mass determination ATLAS and CMS Run 1 Total Stat. Syst. LHC Total Stat. Syst. ATLAS H γ γ ± 0.51 ( ± 0.43 ± 0.27) Ge CMS H γ γ ± 0.34 ( ± 0.31 ± 0.15) Ge ATLAS H ZZ 4l ± 0.52 ( ± 0.52 ± 0.04) Ge CMS H ZZ 4l ± 0.45 ( ± 0.42 ± 0.17) Ge ATLAS +CMS γ γ ± 0.29 ( ± 0.25 ± 0.14) Ge ATLAS +CMS 4l ± 0.40 ( ± 0.37 ± 0.15) Ge ATLAS +CMS γ γ +4l ± 0.24 ( ± 0.21 ± 0.11) Ge m H [Ge] arxiv:

131 A Standard Model Higgs boson at the LHC? production signal strength μ=σ/σsm decay ATLAS+CMS JHEP 08 (2016) 045

132 CMS HIG ATLAS-CON bkg: ~80% irreducible ɣɣ ~2k events µ = = (stat) (exp) (theo) EPS 2017

133 CMS arxiv: Submitted to JHEP ATLAS-CON Z 4l H 4l ~70 events ZZ* 4l μ=σ/σsm µ = (stat) (syst) µ = (stat) (exp) (theo) EPS 2017

134 Theoretical bounds on Higgs boson mass unitarity upper bound Landau pole upper bound vacuum stability lower bound

135 ØØ Ö Ò Ó ÐÓÒ ØÙ Ò ÐÐÝ ÔÓÐ Ö Þ Ï Å Î Ï Ä Ï Ä Ï Ä Ï Ä unitarity Ó ÓÒ Ï Ï Ï Ï ÓÖ ½ ¾ ¾ ž Ç ½µ Ï

136 ¾ Ï Ï À Ï Å Å Å Î Å Ë À µ Ø ÖÑ Û Ø ¹ Ò Ö Ý Ú ÓÖ Ò Ð ÓÖ Ï Ï À ÅÏ ÜØÖ ÓÒØÖ ÙØ ÓÒ ÖÓÑ Ð Ö Ô ÖØ Ð Ï Ï Å Ë À Ï Ï ¾ Ç ½µ ÓÖ ½ for s >> M 2 W, with t = s 2 (1 cosθ), M M2 H v 2 ( 2+ M2 H s M 2 H + M2 H t M 2 H )

137 partial wave expansion: M(s,t) = 8π (2l+1)P l (cosθ)a l l=0 unitarity condition: a l < 1 project on l = 0 partial wave: a 0 = 1 16π = M2 H 8πv dcosθ M(s,t) [ 2+ M2 H s M 2 H ( M2 H s log 1+ s MH 2 )] M2 H 4πv 2 for s >> M 2 H a 0 < 1 M H < 872Ge

138 Landau pole Higgs self coupling is scale dependent, λ(q) À À À À variation with scale Q described by RGE solution: Q 2 dλ dq 2 = β(λ) = 3 4π 2 λ2 λ(q) = λ(v) 1 3 λ(v)log Q2 4π 2 v 2 with λ(v) = M2 H 2v 2 diverges at scale Q = Λ C (Landau pole) ( 4π 2 v 2 ) Λ C = v exp 3M 2 H

139 self-coupling diverges at Λ C = v exp ( 4π 2 v 2 ) 3M 2 H maximum Higgs mass by condition Λ C > M H M H < 800Ge

140 vacuum stability top-quark Yukawa coupling g t m t contributes to the running Higgs self coupling λ(q) through top loop g 4 t À À À À variation with scale Q described by RGE approximate solution: Q 2 dλ dq 2 = 3 4π 2 ( λ 2 m4 t v 4 ) λ(q) = λ(v) 3m4 t 2π 2 v 4 log Q v λ(q) < 0 for Q > Λ C vacuum not stable high value of Λ C needs M H large enough

141 combined effects: dλ dt = 1 16π 2 ( 12λ 2 3g 4 t +6λg 2 t + )

142 Σbandin M t 173.1±0.7Ge Α s M Z ± Σbandsin Α s M Z ± Instability scale in Ge Instability scale in Ge Mh 124Ge Mh 126Ge HiggsmassM h inge TopmassM t inge [Degrassi et al. 2012]

143 The success of the Standard Model impressive confirmation by a huge data sample from low to high energies, no significant deviations quantum effects have been established at manyσ perfect indirect and direct determination of the top quark now being repeated for the Higgs boson new particle at 125 Ge strong candidate for the Higgs boson if confirmed: Standard Model closed Happy End of a successful story?

144 Shortcomings of SM no mass terms for neutrinos [introduce ν R... ] hierarchy problem v M Pl, M H M Pl large number of free parameters g 1, g 2, v, m f, CKM no further unification of forces missing link to gravity nature of dark matter? baryon asymmetry of the universe?

145 next steps with LHC and upgrades confirm the Higgs boson properties check versus electroweak precision measurements or find deviations, new structures: more Higgs bosons (doublets, singlet,.. ) supersymmetry (minimal or non-minimal) new strong sector, substructure

146

Field Theory and Standard Model

Field Theory and Standard Model Field Theory and Standard Model W. HOLLIK CERN SCHOOL OF PHYSICS BAUTZEN, 15 26 JUNE 2009 p.1 Why Quantum Field Theory? (i) Fields: space time aspects field = quantity φ( x, t), defined for all points

More information

Standard Model. Ansgar Denner, Würzburg. 44. Herbstschule für Hochenergiephysik, Maria Laach September 2012

Standard Model. Ansgar Denner, Würzburg. 44. Herbstschule für Hochenergiephysik, Maria Laach September 2012 Standard Model Ansgar Denner, Würzburg 44. Herbstschule für Hochenergiephysik, Maria Laach 04. - 14. September 01 Lecture 1: Formulation of the Standard Model Lecture : Precision tests of the Standard

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

Particle Physics: Introduction to the Standard Model

Particle Physics: Introduction to the Standard Model Particle Physics: Introduction to the Standard Model Electroweak measurements and the Higgs boson Frédéric Machefert frederic@cern.ch Laboratoire de l accélérateur linéaire (CNRS) Cours de l École Normale

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

Basics of Higgs Physics

Basics of Higgs Physics Basics of iggs Physics Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. The iggs Boson in the SM 2. The iggs Boson in the MSSM Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007

More information

Hunting New Physics in the Higgs Sector

Hunting New Physics in the Higgs Sector HS Hunting New Physics in the Higgs Sector SM Higgs Sector - Test of the Higgs Mechanism Oleg Kaikov KIT, Seminar WS 2015/16 Prof. Dr. M. Margarete Mühlleitner, Dr. Roger Wolf, Dr. Hendrik Mantler Advisor:

More information

Electroweak physics and the LHC an introduction to the Standard Model

Electroweak physics and the LHC an introduction to the Standard Model Electroweak physics and the LHC an introduction to the Standard Model Paolo Gambino INFN Torino LHC School Martignano 12-18 June 2006 Outline Prologue on weak interactions Express review of gauge theories

More information

Gauge Symmetry in QED

Gauge Symmetry in QED Gauge Symmetry in QED The Lagrangian density for the free e.m. field is L em = 1 4 F µνf µν where F µν is the field strength tensor F µν = µ A ν ν A µ = Thus L em = 1 (E B ) 0 E x E y E z E x 0 B z B y

More information

QED and the Standard Model Autumn 2014

QED and the Standard Model Autumn 2014 QED and the Standard Model Autumn 2014 Joel Goldstein University of Bristol Joel.Goldstein@bristol.ac.uk These lectures are designed to give an introduction to the gauge theories of the standard model

More information

Triple Gauge Couplings and Quartic Gauge Couplings

Triple Gauge Couplings and Quartic Gauge Couplings Triple Gauge Couplings and Quartic Gauge Couplings Particle Physics at the LHC Gernot Knippen Faculty of Mathematics and Physics University of Freiburg June 17, 2014 Gernot Knippen TGC and QGC June 17,

More information

IX. Electroweak unification

IX. Electroweak unification IX. Electroweak unification The problem of divergence A theory of weak interactions only by means of W ± bosons leads to infinities e + e - γ W - W + e + W + ν e ν µ e - W - µ + µ Divergent integrals Figure

More information

Aula/Lecture 18 Non-Abelian Gauge theories The Higgs Mechanism The Standard Model: Part I

Aula/Lecture 18 Non-Abelian Gauge theories The Higgs Mechanism The Standard Model: Part I Física de Partículas Aula/Lecture 18 Non-Abelian Gauge theories The The : Part I Jorge C. Romão Instituto Superior Técnico, Departamento de Física & CFTP A. Rovisco Pais 1, 1049-001 Lisboa, Portugal 2016

More information

The Role and Discovery of the Higgs

The Role and Discovery of the Higgs The Role and Discovery of the Higgs David Clarke Abstract This paper summarizes the importance of the Higgs boson in QFT and outlines experiments leading up to the discovery of the Higgs boson. First we

More information

Tutorial 8: Discovery of the Higgs boson

Tutorial 8: Discovery of the Higgs boson Tutorial 8: Discovery of the Higgs boson Dr. M Flowerdew May 6, 2014 1 Introduction From its inception in the 1960 s, the Standard Model was quickly established, but it took about 50 years for all of the

More information

Electroweak unification

Electroweak unification Electroweak unification Electroweak unification τ Experimental facts τ SU(2) L U(1) Y gauge theory τ Charged current interaction τ Neutral current interaction τ Gauge self-interactions III/1 Experimental

More information

The Higgs boson. Marina Cobal University of Udine

The Higgs boson. Marina Cobal University of Udine The Higgs boson Marina Cobal University of Udine Suggested books F.Halzen, A.D.Martin, Quarks & Leptons: An Introductory Course in Modern Particle Physics, Wiley 1984 Cap.14,15 W.E.Burcham,M.Jobes, Nuclear

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006 Anomaly Kenichi KONISHI University of Pisa College de France, 14 February 2006 Abstract Symmetry and quantization U A (1) anomaly and π 0 decay Origin of anomalies Chiral and nonabelian anomaly Anomally

More information

Electroweak Theory, SSB, and the Higgs: Lecture 2

Electroweak Theory, SSB, and the Higgs: Lecture 2 1 Electroweak Theory, SSB, and the iggs: Lecture Spontaneous symmetry breaking (iggs mechanism) - Gauge invariance implies massless gauge bosons and fermions - Weak interactions short ranged spontaneous

More information

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Burgess-Moore, Chapter Weiberg, Chapter 5 Donoghue, Golowich, Holstein Chapter 1, 1 Free field Lagrangians

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico& IGGS&AT&LC Electroweak&symmetry&breaking&and&iggs& Lecture&9& Shahram&Rahatlou Fisica&delle&Par,celle&Elementari,&Anno&Accademico&2014815 htt://www.roma1.infn.it/eole/rahatlou/articelle/ WO&NEEDS&IGGS?

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Leptons and SU(2) U(1)

Leptons and SU(2) U(1) Leptons and SU() U(1) Contents I. Defining the Leptonic Standard Model 1 II. L kin and the gauge symmetry 3 III. L mψ = 0 4 IV. L φ and spontaneous symmetry breaking 4 V. Back to L kin (φ): The vector

More information

Potential Discoveries at the Large Hadron Collider. Chris Quigg

Potential Discoveries at the Large Hadron Collider. Chris Quigg Potential Discoveries at the Large Hadron Collider Chris Quigg Fermilab quigg@fnal.gov XXIII Taiwan Spring School Tainan 31 March - 3 April 2010 Electroweak theory successes Theoretical Physics Department,

More information

Supersymmetry, Dark Matter, and Neutrinos

Supersymmetry, Dark Matter, and Neutrinos Supersymmetry, Dark Matter, and Neutrinos The Standard Model and Supersymmetry Dark Matter Neutrino Physics and Astrophysics The Physics of Supersymmetry Gauge Theories Gauge symmetry requires existence

More information

Abdelhak DJOUADI ( LPT Orsay)

Abdelhak DJOUADI ( LPT Orsay) Physics at the LHC bdelhak DJOUDI ( LPT Orsay) Standard Physics at the LHC 1 The Standard Model QCD at the LHC 3 Tests of the SM at the LHC The SM Higgs at the LHC SUSY and SUSY Higgs at the LHC Physics

More information

The Standard Model Part. II

The Standard Model Part. II Our Story Thus Far The Standard Model Part. II!!We started with QED (and!)!!we extended this to the Fermi theory of weak interactions! Adding G F!!Today we will extended this to Glashow-Weinberg-Salam

More information

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013 Rogerio Rosenfeld IFT-UNESP Lecture 1: Motivation/QFT/Gauge Symmetries/QED/QCD Lecture 2: QCD tests/electroweak

More information

Lecture III: Higgs Mechanism

Lecture III: Higgs Mechanism ecture III: Higgs Mechanism Spontaneous Symmetry Breaking The Higgs Mechanism Mass Generation for eptons Quark Masses & Mixing III.1 Symmetry Breaking One example is the infinite ferromagnet the nearest

More information

Elementary Particles II

Elementary Particles II Elementary Particles II S Higgs: A Very Short Introduction Higgs Field, Higgs Boson, Production, Decays First Observation 1 Reminder - I Extend Abelian Higgs model to non-abelian gauge symmetry: ( x) +

More information

Introduction to the SM (5)

Introduction to the SM (5) Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 1 Introduction to the SM (5) Yuval Grossman Cornell Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 2 Yesterday... Yesterday: Symmetries Today SSB the

More information

PARTICLE PHYSICS Major Option

PARTICLE PHYSICS Major Option PATICE PHYSICS Major Option Michaelmas Term 00 ichard Batley Handout No 8 QED Maxwell s equations are invariant under the gauge transformation A A A χ where A ( φ, A) and χ χ ( t, x) is the 4-vector potential

More information

Introduction to particle physics Lecture 6

Introduction to particle physics Lecture 6 Introduction to particle physics Lecture 6 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Fermi s theory, once more 2 From effective to full theory: Weak gauge bosons 3 Massive gauge bosons:

More information

Interactions... + similar terms for µ and τ Feynman rule: gauge-boson propagator: ig 2 2 γ λ(1 γ 5 ) = i(g µν k µ k ν /M 2 W ) k 2 M 2 W

Interactions... + similar terms for µ and τ Feynman rule: gauge-boson propagator: ig 2 2 γ λ(1 γ 5 ) = i(g µν k µ k ν /M 2 W ) k 2 M 2 W Interactions... L W-l = g [ νγµ (1 γ 5 )ew µ + +ēγ µ (1 γ 5 )νwµ ] + similar terms for µ and τ Feynman rule: e λ ig γ λ(1 γ 5 ) ν gauge-boson propagator: W = i(g µν k µ k ν /M W ) k M W. Chris Quigg Electroweak

More information

at the LHC OUTLINE Vector bosons self-couplings and the symmetry breaking connection

at the LHC OUTLINE Vector bosons self-couplings and the symmetry breaking connection Trilinear and Quartic Gauge Boson Couplings at the LHC Fawzi BOUDJEMA OUTLINE LAPTH-Annecy, France Vector bosons self-couplings and the symmetry breaking connection Gauge Invariance and the Hierarchy of

More information

CHAPTER II: The QCD Lagrangian

CHAPTER II: The QCD Lagrangian CHAPTER II: The QCD Lagrangian.. Preparation: Gauge invariance for QED - 8 - Ã µ UA µ U i µ U U e U A µ i.5 e U µ U U Consider electrons represented by Dirac field ψx. Gauge transformation: Gauge field

More information

The search for the (SM) Higgs Boson

The search for the (SM) Higgs Boson Tevatron and LHC WS16/17 TUM S.Bethke, F. Simon V9: Search for the Higgs Boson (1) 1 Lecture 9: The search for the (SM) Higgs Boson theoretical basics Higgs production and decay Higgs search in e + e annihilation

More information

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple Symmetry Groups Symmetry plays an essential role in particle theory. If a theory is invariant under transformations by a symmetry group one obtains a conservation law and quantum numbers. For example,

More information

Electroweak Theory: 3

Electroweak Theory: 3 Electroweak Theory: 3 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS January, 2011 Paul Langacker IAS 55 References Slides

More information

arxiv:hep-ph/ v1 12 Jan 1999

arxiv:hep-ph/ v1 12 Jan 1999 INTRODUCTION TO ELECTROWEAK SYMMETRY BREAKING arxiv:hep-ph/990180 v1 1 Jan 1999 S. Dawson Physics Department, Brookhaven National Laboratory, Upton, NY 11973 An introduction to the physics of electroweak

More information

Chapter 2 The Higgs Boson in the Standard Model of Particle Physics

Chapter 2 The Higgs Boson in the Standard Model of Particle Physics Chapter The Higgs Boson in the Standard Model of Particle Physics.1 The Principle of Gauge Symmetries The principle of gauge symmetries can be motivated by the Lagrangian density of the free Dirac field,

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

From Friday: Neutrino Summary. Three neutrinos in the Standard Model:!e,!µ,!" Only left-handed neutrinos and right-handed antineutrinos are observed.

From Friday: Neutrino Summary. Three neutrinos in the Standard Model:!e,!µ,! Only left-handed neutrinos and right-handed antineutrinos are observed. Particle Physics Dr Victoria Martin, Spring Semester 2012 ecture 17: Electroweak Theory! Weak Isospin and Hypercharge! SU(2) and U(1) symmetries! Weak Isospin and Hypercharge currents!w and Z bosons!z

More information

Higgs Physics from the Lattice Lecture 1: Standard Model Higgs Physics

Higgs Physics from the Lattice Lecture 1: Standard Model Higgs Physics Higgs Physics from the Lattice Lecture 1: Standard Model Higgs Physics Julius Kuti University of California, San Diego INT Summer School on Lattice QCD and its applications Seattle, August 8-28, 2007 Julius

More information

The Standar Model of Particle Physics Lecture II

The Standar Model of Particle Physics Lecture II The Standar Model of Particle Physics Lecture II Radiative corrections, renormalization, and physical observables Laura Reina Maria Laach School, Bautzen, September 2011 Outline of Lectures II Radiative

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Monday 7 June, 004 1.30 to 4.30 PAPER 48 THE STANDARD MODEL Attempt THREE questions. There are four questions in total. The questions carry equal weight. You may not start

More information

Finding the Higgs boson

Finding the Higgs boson Finding the Higgs boson Sally Dawson, BN XIII Mexican School of Particles and Fields ecture 1, Oct, 008 Properties of the Higgs boson Higgs production at the Tevatron and HC Discovery vs spectroscopy Collider

More information

Theory toolbox. Chapter Chiral effective field theories

Theory toolbox. Chapter Chiral effective field theories Chapter 3 Theory toolbox 3.1 Chiral effective field theories The near chiral symmetry of the QCD Lagrangian and its spontaneous breaking can be exploited to construct low-energy effective theories of QCD

More information

PAPER 305 THE STANDARD MODEL

PAPER 305 THE STANDARD MODEL MATHEMATICAL TRIPOS Part III Tuesday, 6 June, 017 9:00 am to 1:00 pm PAPER 305 THE STANDARD MODEL Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector

May 7, Physics Beyond the Standard Model. Francesco Fucito. Introduction. Standard. Model- Boson Sector. Standard. Model- Fermion Sector - Boson - May 7, 2017 - Boson - The standard model of particle physics is the state of the art in quantum field theory All the knowledge we have developed so far in this field enters in its definition:

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables Some formulas can be found on p.2. 1. Concepts.

More information

Current knowledge tells us that matter is made of fundamental particle called fermions,

Current knowledge tells us that matter is made of fundamental particle called fermions, Chapter 1 Particle Physics 1.1 Fundamental Particles Current knowledge tells us that matter is made of fundamental particle called fermions, which are spin 1 particles. Our world is composed of two kinds

More information

HIGGS AT HADRON COLLIDER

HIGGS AT HADRON COLLIDER IGGS AT ADRON COLLIDER Electroweak symmetry breaking and iggs Lecture 8 24 October 2012 Shahram Rahatlou Fisica Nucleare e Subnucleare III, Anno Accademico 2012-2013 htt://www.roma1.infn.it/eole/rahatlou/fns3/

More information

Group Structure of Spontaneously Broken Gauge Theories

Group Structure of Spontaneously Broken Gauge Theories Group Structure of SpontaneouslyBroken Gauge Theories p. 1/25 Group Structure of Spontaneously Broken Gauge Theories Laura Daniel ldaniel@ucsc.edu Physics Department University of California, Santa Cruz

More information

New Physics Scales to be Lepton Colliders (CEPC)

New Physics Scales to be Lepton Colliders (CEPC) New Physics Scales to be Probed @ Lepton Colliders (CEPC) Shao-Feng Ge (gesf02@gmail.com) Max-Planck-Institut für Kernphysik, Heidelberg, Germany 2016-1-11 Contribution to CEPC precdr & CDR Collaboration

More information

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian

752 Final. April 16, Fadeev Popov Ghosts and Non-Abelian Gauge Fields. Tim Wendler BYU Physics and Astronomy. The standard model Lagrangian 752 Final April 16, 2010 Tim Wendler BYU Physics and Astronomy Fadeev Popov Ghosts and Non-Abelian Gauge Fields The standard model Lagrangian L SM = L Y M + L W D + L Y u + L H The rst term, the Yang Mills

More information

Problems for SM/Higgs (I)

Problems for SM/Higgs (I) Problems for SM/Higgs (I) 1 Draw all possible Feynman diagrams (at the lowest level in perturbation theory) for the processes e + e µ + µ, ν e ν e, γγ, ZZ, W + W. Likewise, draw all possible Feynman diagrams

More information

1. a) What does one mean by running of the strong coupling, and by asymptotic freedom of QCD? (1p)

1. a) What does one mean by running of the strong coupling, and by asymptotic freedom of QCD? (1p) FYSH300 Particle physics 2. half-course exam (2. välikoe) 19.12.2012: 4 problems, 4 hours. Return the the question sheet and particle tables together with your answer sheets remember to write down your

More information

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16

As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16 As usual, these notes are intended for use by class participants only, and are not for circulation. Week 8: Lectures 15, 16 Masses for Vectors: the Higgs mechanism April 6, 2012 The momentum-space propagator

More information

Flavour Physics Lecture 1

Flavour Physics Lecture 1 Flavour Physics Lecture 1 Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK New Horizons in Lattice Field Theory, Natal, Rio Grande do Norte, Brazil March

More information

LHC Higgs Signatures from Extended Electroweak Guage Symmetry

LHC Higgs Signatures from Extended Electroweak Guage Symmetry LHC Higgs Signatures from Extended Electroweak Guage Symmetry Tomohiro Abe Tsinghua U. based on JHEP 1301 (013) 08 In collabollations with Ning Chen, Hong-Jian He Tsinghua U. HPNP013, February 15th 1.

More information

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia http://arxiv.org/pd/0705.464 The Standard Model Antonio Pich IFIC, CSIC Univ. Valencia Gauge Invariance: QED, QCD Electroweak Uniication: Symmetry reaking: Higgs Mechanism Electroweak Phenomenology Flavour

More information

Higgs-charm Couplings

Higgs-charm Couplings Higgs-charm Couplings Wai Kin Lai TUM December 21, 2017 MLL Colloquium, TUM OUTLINE Higgs physics at the LHC OUTLINE Higgs physics at the LHC H J/ψ + γ as a key channel to measure Hc c coupling CHRISTMAS

More information

The Standar Model of Particle Physics Lecture I

The Standar Model of Particle Physics Lecture I The Standar Model of Particle Physics Lecture I Aspects and properties of the fundamental theory of particle interactions at the electroweak scale Laura Reina Maria Laach School, Bautzen, September 011

More information

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Higgs Searches and Properties Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University LHEP, Hainan, China, January 11-14, 2013 Outline Introduction of SM Higgs Searches

More information

Electroweak Theory and Higgs Mechanism

Electroweak Theory and Higgs Mechanism Electroweak Theory and Higgs Mechanism Stefano Pozzorini 016 CTEQ & MCnet School, DESY Hamburg 7 July 016 Standard Model of Particle Physics Gauge interactions (3 parameters) SU(3) SU() U(1) symmetry,

More information

Non Abelian Higgs Mechanism

Non Abelian Higgs Mechanism Non Abelian Higgs Mechanism When a local rather than global symmetry is spontaneously broken, we do not get a massless Goldstone boson. Instead, the gauge field of the broken symmetry becomes massive,

More information

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements 8.882 LHC Physics Experimental Methods and Measurements Higgs Physics and Other Essentials [Lecture 22, April 29, 2009] Organization Next week lectures: Monday 2pm and Tuesday 9:30am (which room?) Project

More information

Introduction to the Standard Model

Introduction to the Standard Model Introduction to the Standard Model Origins of the Electroweak Theory Gauge Theories The Standard Model Lagrangian Spontaneous Symmetry Breaking The Gauge Interactions Problems With the Standard Model (

More information

W + W - The Z pole. e + e hadrons SLC. Cross-section (pb) Centre-of-mass energy (GeV) P529 Spring,

W + W - The Z pole. e + e hadrons SLC. Cross-section (pb) Centre-of-mass energy (GeV) P529 Spring, The Z pole Cross-section (pb) 10 5 10 4 Z e + e hadrons 10 3 10 2 CESR DORIS PEP W + W - 10 KEKB PEP-II PETRA TRISTAN SLC LEP I LEP II 0 20 40 60 80 100 120 140 160 180 200 220 Centre-of-mass energy (GeV)

More information

Introduction and Theoretical Background

Introduction and Theoretical Background Chapter 1 Introduction and Theoretical Background The Standard Model of particle physics has been tested by many experiments and has been shown to accurately describe particle interactions at the highest

More information

The Strong Interaction and LHC phenomenology

The Strong Interaction and LHC phenomenology The Strong Interaction and LHC phenomenology Juan Rojo STFC Rutherford Fellow University of Oxford Theoretical Physics Graduate School course Lecture 2: The QCD Lagrangian, Symmetries and Feynman Rules

More information

Particle Physics WS 2012/13 ( )

Particle Physics WS 2012/13 ( ) Particle Physics WS 2012/13 (9.11.2012) Stephanie Hansmann-Menzemer Physikalisches Institut, INF 226, 3.101 QED Feyman Rules Starting from elm potential exploiting Fermi s gold rule derived QED Feyman

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

The Higgs Boson and Electroweak Symmetry Breaking

The Higgs Boson and Electroweak Symmetry Breaking The Higgs Boson and Electroweak Symmetry Breaking 1. Minimal Standard Model M. E. Peskin Chiemsee School September 2014 The Higgs boson has an odd position in the Standard Model of particle physics. On

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Fundamental Symmetries - 2

Fundamental Symmetries - 2 HUGS 2018 Jefferson Lab, Newport News, VA May 29- June 15 2018 Fundamental Symmetries - 2 Vincenzo Cirigliano Los Alamos National Laboratory Plan of the lectures Review symmetry and symmetry breaking Introduce

More information

EWSB by strongly-coupled dynamics: an EFT approach

EWSB by strongly-coupled dynamics: an EFT approach EWSB by strongly-coupled dynamics: an EFT approach EWSB by strongly-coupled dynamics: an EFT approach (page 1) Outline Motivation Linear vs non-linear realization of EWSB Organizing the expansion: Power-counting

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

Foundations of Physics III Quantum and Particle Physics Lecture 13

Foundations of Physics III Quantum and Particle Physics Lecture 13 Foundations of Physics III Quantum and Particle Physics Lecture 13 Frank Krauss February 27, 2012 1 Construction of the Standard Model 2 The Standard Model: Tests and status 3 Beyond the Standard Model?

More information

5. Higgs Searches. The Higgs-mechanism in the SM Yukava-coupling, masses of fermions Higgs Production: Higgs decay channels. Higgs search at the LHC

5. Higgs Searches. The Higgs-mechanism in the SM Yukava-coupling, masses of fermions Higgs Production: Higgs decay channels. Higgs search at the LHC 5. Higgs Searches The Higgs-mechanism in the S Yukava-coupling, masses of fermions Higgs Production: Searches at TEVATRON Higgs decay channels Coupling constants Branching ratios Higgs search at the LHC

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Patrick Kirchgaeßer 07. Januar 2016

Patrick Kirchgaeßer 07. Januar 2016 Patrick Kirchgaeßer 07. Januar 2016 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

More information

Discovery of the Higgs Boson

Discovery of the Higgs Boson Discovery of the Higgs Boson Seminar: Key Experiments in Particle Physics Martin Vogrin Munich, 22. July 2016 Outline Theoretical part Experiments Results Open problems Motivation The SM is really two

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

Discovery of the Higgs boson. and most recent measurements at the LHC

Discovery of the Higgs boson. and most recent measurements at the LHC Discovery of the Higgs boson and most recent measurements at the LHC Marcello Fanti (on behalf of the ATLAS-Mi group) University of Milano and INFN M. Fanti (Physics Dep., UniMi) title in footer / 35 July

More information

The Higgs Scalar H. V (φ) φ 2. φ 1. unitary gauge. P529 Spring,

The Higgs Scalar H. V (φ) φ 2. φ 1. unitary gauge. P529 Spring, The iggs Scalar V (φ) V (φ) φ 1 φ 2 φ 1 φ 2 φ = ( φ + φ 0 ) unitary gauge ( 1 2 0 ν + ) P529 Spring, 2013 1 Interactions of Gauge interactions: ZZ, ZZ 2, W + W, W + W 2 ϕ 1 2 ( 0 ν + ) (unitary gauge)

More information

Antonio Pich. IFIC, CSIC Univ. Valencia.

Antonio Pich. IFIC, CSIC Univ. Valencia. Antonio Pich IFIC, CSIC Univ. alencia Antonio.Pich@cern.ch Fermion Masses Fermion Generations Quark Mixing Lepton Mixing Standard Model Parameters CP iolation Quarks Leptons Bosons up down electron neutrino

More information

Lectures on Supersymmetry I

Lectures on Supersymmetry I I Carlos E.M. Wagner HEP Division, Argonne National Laboratory Enrico Fermi Institute, University of Chicago Ecole de Physique de Les Houches, France, August 5, 005. PASI 006, Puerto Vallarta, Mexico,

More information

Vector boson scattering and triboson studies at ATLAS. Junjie Zhu University of Michigan May 25, 2017

Vector boson scattering and triboson studies at ATLAS. Junjie Zhu University of Michigan May 25, 2017 Vector boson scattering and triboson studies at ATLAS Junjie Zhu University of Michigan Periodic Table of SM Particles Particle physics: study fundamental particles and their interactions Particles in

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

Introduction to Quantum Chromodynamics (QCD)

Introduction to Quantum Chromodynamics (QCD) Introduction to Quantum Chromodynamics (QCD) Jianwei Qiu Theory Center, Jefferson Lab May 29 June 15, 2018 Lecture One The plan for my four lectures q The Goal: To understand the strong interaction dynamics

More information

Precise measurements of the W mass at the Tevatron and indirect constraints on the Higgs mass. Rencontres de Moriond QCD and High Energy Interactions

Precise measurements of the W mass at the Tevatron and indirect constraints on the Higgs mass. Rencontres de Moriond QCD and High Energy Interactions Precise measurements of the W mass at the evatron and indirect constraints on the Higgs mass Rafael Lopes de Sá for the CDF and DØ Collaborations March 11, 212 Rencontres de Moriond QCD and High Energy

More information

WZ di-boson production at CMS

WZ di-boson production at CMS WZ di-boson production at CMS 1 Outline Physics motivations Existing results (Tevatron s = 1.96TeV) Existing prospects for CMS at s = 14TeV Preliminary prospects for CMS at s = 7TeV 2 WZ Physics motivation

More information

Masses and the Higgs Mechanism

Masses and the Higgs Mechanism Chapter 8 Masses and the Higgs Mechanism The Z, like the W ± must be very heavy. This much can be inferred immediately because a massless Z boson would give rise to a peculiar parity-violating long-range

More information

A Minimal Composite Goldstone Higgs model

A Minimal Composite Goldstone Higgs model A Minimal Composite Goldstone Higgs model Lattice for BSM Physics 2017, Boston University Plan of the talk Introduction to composite Goldstone Higgs models Lattice results for the SU(2) Goldstone Higgs

More information

Introduction to the Standard Model of particle physics

Introduction to the Standard Model of particle physics Introduction to the Standard Model of particle physics I. Schienbein Univ. Grenoble Alpes/LPSC Grenoble Laboratoire de Physique Subatomique et de Cosmologie Summer School in Particle and Astroparticle

More information