New Physics Scales to be Lepton Colliders (CEPC)

Size: px
Start display at page:

Download "New Physics Scales to be Lepton Colliders (CEPC)"

Transcription

1 New Physics Scales to be Lepton Colliders (CEPC) Shao-Feng Ge (gesf02@gmail.com) Max-Planck-Institut für Kernphysik, Heidelberg, Germany Contribution to CEPC precdr & CDR Collaboration with Hong-Jian He & Rui-Qing Xiao arxiv:

2

3 Higgs discovery is not just about H particle Force Mediators Gauge Forces Spin-1 Gauge Bosons Gravity Spin-2 Graviton (?) New Force Spin-0 Higgs Boson Deep understanding of Mass Generation Yukawa Forces Hierarchy & Mixing (Flavor Symmetries?) Discrete v.s. Continuous Full v.s. Residual [ , , ] Higgs Self-Interaction Forces h 3 & h 4 (concerns spontaneous EWSB and providing masses to all particles). True Self-Interactions Exactly the Same Quantum # Spin Charge Both Yukawa & Self-Interaction forces associated with spin-0 Higgs were Never Seen Before. Needs to be directly tested.

4 Current Status LEP/Tevatron/LHC have good tests only on gauge forces. Higgs Yukawa Force is Flavor-Dependent + Huge Hierarchy. LHC has limited sensitivity to Yukawa couplings of htt, hbb, hτ the order of 15% 30%. LHC cannot probe other Yukawa Couplings! Higgs Self-Interaction is also LHC Run-I κ W = κ Z = κ t = κ b = κ τ = < 1.87 κ µ CMS fb (8 TeV) fb (7 TeV) 68% CL 95% CL Parameter value 1/2 /2v) or (g λ f V CMS µ 68% CL 95% CL fb (8 TeV) fb (7 TeV) SM Higgs b τ (M, ε) fit W Z t 68% CL 95% CL Particle mass (GeV)

5 Standard Model is Incomplete! Mass Generation Yukawa force is Flavor-Dependent & Hierarchically Unnatural Higgs mass itself is Radiatively Unnatural Vacuum Stability Neutrino Oscillation Dark Matter Matter-Antimatter Asymmetry Vacuum Energy & Inflation Pole top mass Mt in GeV Instability ,2,3 Σ h Meta stability Stability

6 Beyond SM? NO particle beyond SM LHC yet! 1.9TeV di-boson? 750GeV di-photon? Full/Precise Picture of New Higher Energy? Even within SM, we are strongly motivated to quantitatively test Yukawa and Higgs Self-Interaction Forces! Precision Measurement + Discovery Machine: SLAC? + Sp ps [W/Z Masses] LEP + (Tevatron [t] + LHC [h]) Go beyond! CEPC (e + e, 250 GeV) SppC (pp, TeV)

7 Higgs 250 GeV LHC tells us: h(125) is SM-like Dream Case for Experiments! CEPC produces h(125) via e + e Zh, ν νh, e + e h Indirect Probe to New Physics. 5/ab with 2 detectors in 10y 10 6 Higgs Relative Error e + Z H e Z e + e W W - ν H ν e + e Z Z e + H e

8 Production & Background Processes Large Statistics 10 6 Higgs Relative Error Clean Background Easy for Simulation [Loop Calculation] Polarization

9 Mo, Li, Ruan & Lou, Chin.Phys.C 2015

10 e + e Zh Recoil Mass Distribution: m 2 rec ( s E ff ) 2 p 2 ff Cross Section: σ(zh) Γ(h ZZ) Higgs Mass: m h Higgs Width: Γ h Branching Ratios: Model-Independent Invisible Decay

11 Combination of Various Channels σ(zh) [0.51%] h bb [0.28%], cc [2.2%], gg [1.6%]

12 Combination of Various Channels h ZZ [4.3%] h WW [1.5%] h τ τ [1.2%] h γγ [9.0%] h µµ [17%] h invisible [0.14%] CEPC:

13 Extracting the Physics Potential Coupling: Cross Section: δσ(zh) g hii g sm hii σ(zh) 2δκ Z, Decay Width: Γ hii Γ sm hii Branching Ratio: Γ i = κ 2 i, κ i 1 + δκ i. Γ inv Γ sm tot Br i Br sm i 1 + Γ tot j with coefficients, δσ(ν νh) σ(ν νh) 2δκ W. = Br(inv) δκ inv. A ij δκ j, Br inv δκ inv. A ij = 2(δ ij Br sm j ), A i,inv = 1, A inv,i = 0, A inv,inv = 1.

14 Inputs: Event Rate Cross Section & BR SM Predictions: M h Γ h σ(zh) σ(ν νh) Br(h bb) 5.9 MeV 2.8% 0.51% 2.8% Decay Mode σ(zh) Br Br h bb 0.28% 0.57% h cc 2.2% 2.3% h gg 1.6% 1.7% h ττ 1.2% 1.3% h WW 1.5% 1.6% h ZZ 4.3% 4.3% h γγ 9.0% 9.0% h µµ 17% 17% h invisible 0.14% Br(b b) Br(c c) Br(gg) Br(τ τ) Br(WW ) Br(ZZ) Br(γγ) Br(µ µ) Br(inv) 58.1% 2.10% 7.40% 6.64% 22.5% 2.77% 0.243% 0.023% 0

15 Precision on Higgs Couplings CEPC precdr Table: Precisions on measuring Higgs couplings at CEPC (250GeV, 5ab 1 ), in comparison with LHC (14TeV, 300fb 1 ), HL-LHC (14TeV, 3ab 1 ) and ILC (250GeV, 250fb 1 )+(500GeV, 500fb 1 ). Precision (%) CEPC LHC HL-LHC ILC κ Z κ W κ γ κ g κ b κ c κ τ κ µ 8.59 Br inv Γ h LHC & ILC from

16 Precision on Higgs Couplings CEPC precdr

17 Precision on Higgs Couplings 1/2 /2v) or (g λ f V CMS µ 68% CL 95% CL fb (8 TeV) fb (7 TeV) SM Higgs b τ (M, ε) fit W Z t 68% CL 95% CL Particle mass (GeV) Particle Mass / VEV [246 GeV] CEPC c τ µ 95% CL b Particle Mass [GeV] 68% CL SM Higgs Z W

18 Precision on Higgs Couplings CEPC precdr

19 Higgs Self-Coupling Rescaling of the trilinear term h 3 L = 1 3! δκ h3λ sm hhh h3. Affect σ(zh) via Loop Correction Constrained by σ(zh) meansurement δσ(zh) σ(zh) 2 δκ Z δκ h

20 Higgs Self-Coupling Precision (%) HL-LHC (3ab -1 ) CEPC1 (1ab -1 ) CEPC3 (3ab -1 ) CEPC5 (5ab -1 ) CEPC10 (10ab -1 ) SPPC3 (3ab -1 ) SPPC30 (30ab -1 ) CEPC precdr HL-LHC CEPC1 CEPC3 CEPC5 CEPC10 SPPC3 SPPC30

21 CEPC Test of Higgs CP Violation LHC: h ZZ, τ τ CEPC: h τ τ L hττ y τ 2 h τ(cos + iγ 5 sin )τ. Complex enough to retain info about the τ spin. h τ + + τ ρ + ν τ + ρ ν τ π + π 0 ν τ + π π 0 ν τ. CP-even part (cos ) in p-wave & CP-odd (sin ) in s-wave. Precision CEPC Higgs Report

22 Effective Field Approach Unitarity see also New physics high energy scale & can only be probed Indirectly L = L SM + y ij Λ GeV (L i H)( H L j ) + c i Λ 2 O i. ij i SM Gauge Invariance is respected O H 1 2 ( µ H 2 ) 2, O T 1 2 (H Dµ H) 2, O WW g 2 H 2 W a µνw a,µν, O BB g 2 H 2 B µν B µν, O WB gg H σ a HW a µνb µν, O HB ig (D µ H) (D ν H)B µν, O HW ig(d µ H) σ a (D ν H)W a µν, O (3) L (ih σ a Dµ H)(Ψ L γ µ σ a Ψ L ), O (3) LL (Ψ Lγ µ σ a Ψ L )(Ψ L γ µ σ a Ψ L ), O L (ih Dµ H)(Ψ L γ µ Ψ L ), O g g 2 s H 2 G a µνg aµν, O R (ih Dµ H)(ψ R γ µ ψ R ).

23 Scheme-Independent Analysis EW Parameters: M (SM) Z = M (r) Z ( 1 + δm Z M Z which can be denoted as Observables: ) (, G (SM) F = G (r) F 1 + δg ) ( F, α (SM) = α (r) 1 + δα ). G F α f (SM) f (r) + δf f (r) ( 1 + δf f X X(f (SM) ) + δx = X(f (r) ) + X (f )δf + δx ) Analytical Fit: χ 2 ( δm Z, δg F, δα, c i Λ 2 ) = j [ ( O th j δmz, δg F, δα, c ) ] i Λ O exp 2 2 j, O j

24 Scheme-Independent Analysis Observables: EWPO + HO Observables Central Value Relative Error SM Prediction M Z GeV M W GeV G F GeV α σ[zh] 0.51% σ[ν νh] 2.86% σ[ν νh] 350GeV 0.75% Br[WW ] 1.6% 22.5% Br[ZZ] 4.3% 2.77% Br[bb] 0.57% 58.1% Br[cc] 2.3% 2.10% Br[gg] 1.7% 7.40% Br[ττ] 1.3% 6.64% Br[γγ] 9.0% 0.243% Br[µµ] 17% 0.023% Fitting Parameters: EW: M (SM) Z = M (r) Z ( ) 1 + δm Z M, G (SM) Z F dim-6 Higgs Operators: c i ( ) = G (r) F 1 + δg F G, α (SM) = α (r) ( 1 + δα ) F α.

25 Sensitivities from Existing EWPO & Future HO New Physics Scales to be Probed at CEPC via dim-6 Operators 95% EWPO+HO 5σ Λ/ c j (TeV) /4 2 0 c H c T c WW c BB c WB c HW c HB c (3) LL c (3) L c L c R c (3) Lq c Lq c Ru c Rd c g

26 Enhancement from M Z & M CEPC Observables Current Relative Error CEPC M Z M W Table: The M Z and M CEPC [Z.Liang, Z & W CEPC ]. Scheme-Independent Analysis Λ ci [TeV ] O H O T O WW O BB O WB O HW O HB O (3) LL O (3) L O L O R O (3) L,q O L,q O R,u O R,d O g HO+EWPO M Z M W M Z,W Table: Impacts of the projected M Z and M W measurements at CEPC on the reach of new physics scale Λ/ c j (in TeV) at 95% C.L. The Higgs observables (including σ(ν νh) at 350 GeV) and the existing electroweak precision observables are always included in each row. The differences among the four rows arise from whether taking into account the measurements of M Z and M W or not. The second (third) row contains the measurement of M Z (M W ) alone, while the first (last) row contains none (both) of them. We mark the entries of the most significant improvements from M Z /M W measurements in red color. SFG, Hong-Jian He, Rui-Qing Xiao,

27 Enhancement from Z-Pole CEPC N ν A FB (b) R b R µ R τ sin 2 θ w Table: The Z-pole measurements at CEPC [Z.Liang, Z & W CEPC ]. Z-Pole Observables are IMPORTANT for New Physics Scale Probe O H O T O WW O BB O WB O HW O HB O (3) LL O (3) L O L O R O (3) L,q O L,q O R,u O R,d O g Table: Impacts of the projected Z-pole measurements at the CEPC on the reach of new physics scale Λ/ c j (in TeV) at 95% C.L. For comparison, the first row of this table repeats the last row of Table??, as our starting point of this table. For the (n + 1)-th row, the first n observables are taken into account. In addition, the estimated M Z and M W measurements at the CEPC, the Higgs observables (HO), and the existing electroweak precision observables (EWPO) are always included for each row. The entries with major enhancements of the new physics scale limit are marked in red color. A factor of 2 enhancement from Z-Pole Observables

28 Sensitivity from EWPO+HO+Z-Pole New Physics Scales to be Probed at CEPC via dim-6 Operators 95% EWPO+HO+Z-Pole 5σ 30 Λ/ c j (TeV) c H c T c WW c BB c WB c HW c HB c (3) LL c (3) L c L c R c (3) Lq c Lq c Ru c Rd c g

29 Summary Higgs Discovery is not just about New Particle, but also New Force! Yukawa Force: Non-Trivial Mixing & Hierarchically Unnatural Higgs Self-Interaction Force: Radiatively Unnatural New Physics Neutrino Oscillation Dark Matter Matter-Antimatter Asymmetry Vacuum Energy & Inflation LHC Discovery Machine vs Poor sensitivity CEPC 10 6 Higgs Higgs Coupling O(1%) Level Higgs Self-Coupling 30% Precise measurement of CP 2.5 Probe new physics to 10 TeV (40 TeV for O g ) [35 Z-Pole]

30 Thank You!

Higgs Boson: from Collider Test to SUSY GUT Inflation

Higgs Boson: from Collider Test to SUSY GUT Inflation Higgs Boson: from Collider Test to SUSY GUT Inflation Hong-Jian He Tsinghua University String-2016, Tsinghua, Beijing, August 5, 2016 String Theory Supergravity,GUT Effective Theory: SM, + eff operators

More information

at the Higgs factory

at the Higgs factory eefact2018 Hong Kong, 24/09/2018 at the Higgs factory and complementarity with hadron colliders P. Giacomelli INFN Bologna Overview FCC complex and FCC-ee first stage CepC Higgs production at an e + e

More information

Precision of Higgs Couplings at CEPC

Precision of Higgs Couplings at CEPC Precision of Higgs Couplings at CEPC M. Ruan & G. Li for the CEPC Simulation Study Group CEPC-SPPC Electron-positron collision phase Higgs factory: collision at ~240-250 GeV center-of-mass energy, Instant

More information

Potential Discoveries at the Large Hadron Collider. Chris Quigg

Potential Discoveries at the Large Hadron Collider. Chris Quigg Potential Discoveries at the Large Hadron Collider Chris Quigg Fermilab quigg@fnal.gov XXIII Taiwan Spring School Tainan 31 March - 3 April 2010 Electroweak theory successes Theoretical Physics Department,

More information

Tim Barklow (SLAC) April 13, 2016 Experimental Challenges for the LHC Run II, KITP

Tim Barklow (SLAC) April 13, 2016 Experimental Challenges for the LHC Run II, KITP Tim Barklow (SLAC) April 13, 2016 Experimental Challenges for the LHC Run II, KITP Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018) Intl. collab. to study: pp-collider

More information

PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS

PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS Felix Yu Johannes Gutenberg University, Mainz U. of Massachusetts, Amherst, Amherst Center for Fundamental Interactions The CP Nature of the

More information

Phenomenology of the Higgs Triplet Model at the LHC

Phenomenology of the Higgs Triplet Model at the LHC Phenomenology of the Higgs Triplet Model at the LHC Andrew Akeroyd SHEP, University of Southampton, UK Higgs Triplet Model (HTM) and doubly charged scalars (H ±± ) The decay channel H 1 γγ and contribution

More information

CEPC NOTE CEPC-RECO April 1, Higgs Signal Reconstruction at CEPC-v4 Baseline Detector for the CEPC CDR. CEPC Simulation Group

CEPC NOTE CEPC-RECO April 1, Higgs Signal Reconstruction at CEPC-v4 Baseline Detector for the CEPC CDR. CEPC Simulation Group CEPC NOTE CEPC-RECO-218-2 April 1, 218 Higgs Signal Reconstruction at CEPC-v4 Baseline Detector for the CEPC CDR CEPC Simulation Group Abstract Using the CEPC software chain, the reconstruction performance

More information

LHC Higgs Signatures from Extended Electroweak Guage Symmetry

LHC Higgs Signatures from Extended Electroweak Guage Symmetry LHC Higgs Signatures from Extended Electroweak Guage Symmetry Tomohiro Abe Tsinghua U. based on JHEP 1301 (013) 08 In collabollations with Ning Chen, Hong-Jian He Tsinghua U. HPNP013, February 15th 1.

More information

Basics of Higgs Physics

Basics of Higgs Physics Basics of iggs Physics Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. The iggs Boson in the SM 2. The iggs Boson in the MSSM Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007

More information

Higgs Coupling Measurements!

Higgs Coupling Measurements! Status, prospects, and interplay with searches for physics BSM Seminar University of California - Irvine April 23rd, 2014 Introduction Fantastic progress since discovery July 2012 Observation in three

More information

CEPC Simulation: next step & Wish list to the MC Tool

CEPC Simulation: next step & Wish list to the MC Tool CEPC Simulation: next step & Wish list to the MC Tool Gang & Manqi 06/05/2014 MC4CEPC@IHEP 1 Objective: Demonstration of Physics Potential, Optimization of Detector Geometry; 06/05/2014 MC4CEPC@IHEP 2

More information

Higgs physics at the ILC

Higgs physics at the ILC Higgs physics at the ILC Klaus Desch University of Bonn Second Linear Collider Physics School Ambleside,UK, 15/09/06 Disclaimers + Announcements Focus will be on experimental possibilities + studies with

More information

KITP, Dec. 17, Tao Han

KITP, Dec. 17, Tao Han Higgs Couplings & new Physics KITP, Dec. 17, 2012 Tao Han 1 HEPAP Question: What couplings should be measured and to what precision? To uncover new physics 2 1. How badly (likely) we need BSM new physics?

More information

Wei-Ming Yao(LBNL) For CEPC Physics and Simulation Group

Wei-Ming Yao(LBNL) For CEPC Physics and Simulation Group Search for Exotic and Rare Higgs Decays at CEPC Wei-Ming Yao(LBNL) For CEPC Physics and Simulation Group Outline Introduction Motivation Higgs Exotic Decays H Invisible H bb χ0χ0 H bbbb H μτ, eτ Higgs

More information

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014 Outline I. Higgs physics afer discovery Ø What is the current data telling us?

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

The search for the (SM) Higgs Boson

The search for the (SM) Higgs Boson Tevatron and LHC WS16/17 TUM S.Bethke, F. Simon V9: Search for the Higgs Boson (1) 1 Lecture 9: The search for the (SM) Higgs Boson theoretical basics Higgs production and decay Higgs search in e + e annihilation

More information

Searching exotic decay channels of the SM Higgs boson at CEPC

Searching exotic decay channels of the SM Higgs boson at CEPC Searching exotic decay channels of the SM Higgs boson at CEPC Hao Zhang Theoretical physics division, Institute of High Energy Physics, Chinese Academy of Sciences For International Workshop on High Energy

More information

CEPC Theory Discussion

CEPC Theory Discussion CEPC Theory Discussion S. Su Shufang Su U. of Arizona CEPC Workshop April 9, IHEP Outline - Organization Physics - What has been done at precdr? - What s next? S. Su 2 - Organization S. Su 3 Funded Proposals

More information

The Higgs boson. Marina Cobal University of Udine

The Higgs boson. Marina Cobal University of Udine The Higgs boson Marina Cobal University of Udine Suggested books F.Halzen, A.D.Martin, Quarks & Leptons: An Introductory Course in Modern Particle Physics, Wiley 1984 Cap.14,15 W.E.Burcham,M.Jobes, Nuclear

More information

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Higgs Searches and Properties Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University LHEP, Hainan, China, January 11-14, 2013 Outline Introduction of SM Higgs Searches

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

The HL-LHC physics program

The HL-LHC physics program 2013/12/16 Workshop on Future High Energy Circular Collider 1 The HL-LHC physics program Takanori Kono (KEK/Ochanomizu University) for the ATLAS & CMS Collaborations Workshop on Future High Energy Circular

More information

Detector Requirements for Precision Higgs Boson Physics

Detector Requirements for Precision Higgs Boson Physics Detector Requirements for Precision Higgs Boson Physics Status of Higgs property measurements Difference and complementary of pp and ee collisions Physics drivers of detector performances Jianming Qian

More information

Higgs Searches and Properties Measurement with ATLAS 杨海军 ( 上海交通大学 )

Higgs Searches and Properties Measurement with ATLAS 杨海军 ( 上海交通大学 ) Higgs Searches and Properties Measurement with ATLAS 杨海军 ( 上海交通大学 ) 中国科学院大学 June 17, 2013 Outline Introduction of SM Higgs Searches at Tevatron, LEP and EW measurements ATLAS Experiment at LHC Higgs Production

More information

Prospects and challenges for future ee and ep colliders

Prospects and challenges for future ee and ep colliders Prospects and challenges for future ee and ep colliders Marcin Chrzaszcz mchrzasz@cern.ch Physik-Insitut, University of Zurich Instiute of Nuclear Physics, Polish Academy of Sciences Neutrinos at the High

More information

HUNTING FOR THE HIGGS

HUNTING FOR THE HIGGS Univ. of Sci. and Tech. of China Dec. 16th, 2011 HUNTING FOR THE HIGGS Tao Liu UC@ Santa Barbara Why Higgs Mechanism? Two mysteries in the Electroweak (EW) theory : The cause of the EW symmetry breaking

More information

Matter, antimatter, colour and flavour in particle physics

Matter, antimatter, colour and flavour in particle physics Matter, antimatter, colour and flavour in particle physics Sébastien Descotes-Genon Laboratoire de Physique Théorique CNRS & Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France RBI, Zagreb, 5

More information

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Radovan Dermíšek Institute for Advanced Study, Princeton R.D. and J. F. Gunion, hep-ph/0502105 R.D. and J. F. Gunion, hep-ph/0510322

More information

Day2: Physics at TESLA

Day2: Physics at TESLA Day2: Physics at TESLA Origin of Electroweak Symmetry Breaking as one great Motivation for a Linear Collider The TESLA project Higgs Precision Physics at TESLA Leaving the Standard Model Behind Precision

More information

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements 8.882 LHC Physics Experimental Methods and Measurements Higgs Physics and Other Essentials [Lecture 22, April 29, 2009] Organization Next week lectures: Monday 2pm and Tuesday 9:30am (which room?) Project

More information

Higgs Bosons Phenomenology in the Higgs Triplet Model

Higgs Bosons Phenomenology in the Higgs Triplet Model Higgs Bosons Phenomenology in the Higgs Triplet Model Andrew Akeroyd National Cheng Kung University, Tainan, Taiwan TeV scale mechanisms ( testable ) for neutrino mass generation Higgs Triplet Model Production

More information

IX. Electroweak unification

IX. Electroweak unification IX. Electroweak unification The problem of divergence A theory of weak interactions only by means of W ± bosons leads to infinities e + e - γ W - W + e + W + ν e ν µ e - W - µ + µ Divergent integrals Figure

More information

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014

Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS2014, 04/28/2014 Dmitri Sidorov Oklahoma State University On behalf of the ATLAS Collaboration DIS4, 4/8/4 Introduc)on We discovered a Standard Model (SM) like Higgs boson at mh=5 GeV. This is not the end of the story.

More information

Why a muon collider?

Why a muon collider? Why a muon collider? What will we learn? Mary Anne Cummings Northern Illinois Center for Accelerator and Detector Development Northern Illinois University 1 Why consider a Muon Collider? The current story

More information

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Decoupling and Alignment in Light of the Higgs Data Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Outline I. IntroducCon Ø Snapshot of the LHC Higgs data Ø SuggesCons

More information

ATLAS Run II Exotics Results. V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration

ATLAS Run II Exotics Results. V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration ATLAS Run II Exotics Results V.Maleev (Petersburg Nucleare Physics Institute) on behalf of ATLAS collaboration What is the dark matter? Is the Higgs boson solely responsible for electroweak symmetry breaking

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL Miami 2010 December 16, 2010 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang National Central Univ. and Academia Sinica (on leave at Univ. of Wisconsin - Madison) A. G. Akeroyd and CC: PRD 80,

More information

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University

Results from the Tevatron: Standard Model Measurements and Searches for the Higgs. Ashutosh Kotwal Duke University Results from the Tevatron: Standard Model Measurements and Searches for the Higgs Ashutosh Kotwal Duke University SLAC Summer Institute 31 July 2007 Why Build Accelerators? From Atoms to Quarks Scattering

More information

Higgs Property Measurement with ATLAS

Higgs Property Measurement with ATLAS Higgs Property Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Hadron Collider Physics Symposium HCP 2012, Kyoto University, Japan November 12-16, 2012 Observation

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Higgs quantum numbers and couplings. E. Pianori University Of Warwick On behalf of the ATLAS and CMS collaborations

Higgs quantum numbers and couplings. E. Pianori University Of Warwick On behalf of the ATLAS and CMS collaborations Higgs quantum numbers and couplings E. Pianori University Of Warwick On behalf of the ATLAS and CMS collaborations Bibliography ATLAS: CMS: https://twiki.cern.ch/twiki/bin/view/atlaspublic/higgspublicresults

More information

What the Higgs is going on? (beyond the SM)

What the Higgs is going on? (beyond the SM) What the Higgs is going on? (beyond the SM) Cédric Delaunay LAPTH Annecy-le-vieux, France enigmass@lpsc.fr November 8th 2013 ~Menu~ a SM Higgs discovery: good and bad news new physics in Higgs phenomenology

More information

Hunting for the Higgs Boson. Ulrich Heintz Brown University

Hunting for the Higgs Boson. Ulrich Heintz Brown University Hunting for the Higgs Boson Ulrich Heintz Brown University the standard model electromagnetism acts on all charged particles strong force acts on all quarks weak force acts on all particles spin ½ spin

More information

The BEH-Mechanism in the SM. m f = λ f. Coupling of Higgs boson to other particles fixed by particle mass and vev

The BEH-Mechanism in the SM. m f = λ f. Coupling of Higgs boson to other particles fixed by particle mass and vev The BEH-Mechanism in the SM Most general renormalizable gauge invariant potential: V(φ) ' µ 2 φ φ+λ(φ φ) 2 µ 2,λ > 0 Condensate v hides symmetry of underlying Langrangian M W = g 2 v m f = λ f 2 v M H

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

Abdelhak DJOUADI ( LPT Orsay)

Abdelhak DJOUADI ( LPT Orsay) Physics at the LHC bdelhak DJOUDI ( LPT Orsay) Standard Physics at the LHC 1 The Standard Model QCD at the LHC 3 Tests of the SM at the LHC The SM Higgs at the LHC SUSY and SUSY Higgs at the LHC Physics

More information

Channels and Challenges: Higgs Search at the LHC

Channels and Challenges: Higgs Search at the LHC Channels and Challenges: Higgs Search at the LHC Tilman Plehn CERN The Puzzle of Mass & the Higgs Boson Standard Model Higgs Boson at the LHC Supersymmetric Higgs Bosons at the LHC Elementary Particles

More information

The Higgs Mechanism and Electroweak Symmetry Breaking at e + e - Colliders

The Higgs Mechanism and Electroweak Symmetry Breaking at e + e - Colliders The Higgs Mechanism and Electroweak Symmetry Breaking at e + e - Colliders Jim Brau University of Oregon Snowmass 2001 Workshop on the Future of High Energy Physics 1 The Higgs Mechanism and Electroweak

More information

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico& IGGS&AT&LC Electroweak&symmetry&breaking&and&iggs& Lecture&9& Shahram&Rahatlou Fisica&delle&Par,celle&Elementari,&Anno&Accademico&2014815 htt://www.roma1.infn.it/eole/rahatlou/articelle/ WO&NEEDS&IGGS?

More information

Jürgen R. Reuter, DESY. BSM Physics at High-Energy ee Colliders

Jürgen R. Reuter, DESY. BSM Physics at High-Energy ee Colliders BSM Physics at + High-Energy e e Colliders Jürgen R. Reuter, DESY J.R.Reuter BSM Physics at High-Energy ee Colliders CLIC 2015, CERN, 28.1.2015 Physics at High-Energy e+ e- Colliders High-energy e+ e-

More information

Higgs Prospects for future (HL)LHC runs

Higgs Prospects for future (HL)LHC runs ATLAS & CMS Higgs Prospects for future (HL)LHC runs L 3000 fb-1 Rencontres du Vietnam 2014 O. Arnaez CERN tme 1/21 Introduction Search and discovery of the Brout-Englert-HiggsGuralnik-Hagen-Kibble boson,

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL LHC Symposium @ 2011 PSROC Annual Meeting January 26, 2011 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang ( ) National Central Univ. and Academia Sinica A. G. Akeroyd and CC: PRD 80, 113010 (2009)

More information

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet Lecture 23 November 16, 2017 Developing the SM s electroweak theory Research News: Higgs boson properties and use as a dark matter probe Fermion mass generation using a Higgs weak doublet Summary of the

More information

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor Search for Higgs Bosons at LEP Haijun Yang University of Michigan, Ann Arbor L3 On behalf of the L3 Collaboration American Physical Society Meeting(APS03), Philadelphia April 5-8, 2003 OUTLINE Introduction

More information

Physics at the LHC: from Standard Model to new discoveries

Physics at the LHC: from Standard Model to new discoveries Physics at the LHC: from Standard Model to new discoveries Kirill Melnikov University of Hawaii May 2006 Sendai, June 2006 Physics at the LHC: from Standard Model to new discoveries p. 1/22 Outline Standard

More information

Physics at Photon Colliders. Prof. Mayda M. Velasco Northwestern University

Physics at Photon Colliders. Prof. Mayda M. Velasco Northwestern University Physics at Photon Colliders Prof. Mayda M. Velasco Northwestern University Higgs Boson discovered in 2012 at the LHC using 8 TeV data and is still there at 13 TeV J @LHC the Higgs is better detected in

More information

CEPC Input to the ESPP Physics and Detector

CEPC Input to the ESPP Physics and Detector CEPC Input to the ESPP 2018 - Physics and Detector CEPC Physics-Detector Study Group Abstract The Higgs boson, discovered in 2012 by the ATLAS and CMS Collaborations at the Large Hadron Collider (LHC),

More information

Finding the Higgs boson

Finding the Higgs boson Finding the Higgs boson Sally Dawson, BN XIII Mexican School of Particles and Fields ecture 1, Oct, 008 Properties of the Higgs boson Higgs production at the Tevatron and HC Discovery vs spectroscopy Collider

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

Tevatron Physics Prospects. Paul Grannis, for the CDF and DØ collaborations ICFA Seminar, Oct

Tevatron Physics Prospects. Paul Grannis, for the CDF and DØ collaborations ICFA Seminar, Oct Tevatron Physics Prospects Paul Grannis, for the CDF and DØ collaborations ICFA Seminar, Oct. 29 2008 CDF and DØ Operations Fermilab is planning to run CDF and DØ through FY2010. The Tevatron is now delivering

More information

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN Teoria e fenomenologia dei modelli di Higgs composto Roberto Contino - CERN Part I: Quick review of the Composite Higgs Composite Higgs models [Georgi & Kaplan, `80s] EWSB sector H G G _ _ Aµ (G SM ) ψ

More information

The Higgs boson. as a window to Beyond the Standard Model Physics. Roberto Contino. Università di Roma La Sapienza

The Higgs boson. as a window to Beyond the Standard Model Physics. Roberto Contino. Università di Roma La Sapienza The Higgs boson as a window to Beyond the Standard Model Physics Roberto Contino Università di Roma La Sapienza 1. what have we discovered so far...... and why we need an EWSB sector The physics discovered

More information

Elementary Particles II

Elementary Particles II Elementary Particles II S Higgs: A Very Short Introduction Higgs Field, Higgs Boson, Production, Decays First Observation 1 Reminder - I Extend Abelian Higgs model to non-abelian gauge symmetry: ( x) +

More information

Higgs Top couplings. Zhen Liu. Based on work with Ian Low and Lian-Tao Wang, to appear

Higgs Top couplings. Zhen Liu. Based on work with Ian Low and Lian-Tao Wang, to appear Higgs Top couplings Zhen Liu Based on work with Ian Low and Lian-Tao Wang, to appear Key to many Puzzles Higgs boson discovery substantiates (more) many big questions in nature. It could well be the key

More information

Higgs and Dark Photon Searches

Higgs and Dark Photon Searches Helsinki Institute of Physics [153.5836 [hep-ph]], Sanjoy Biswas, Emidio Gabrielli, M. H., Barbara Mele LCWS15, November, 215 Contents 1 Introduction 2 e + e H γ Dark Photons Dark photons appear in several

More information

Higgs physics at the LHC

Higgs physics at the LHC Higgs physics at the LHC Kati Lassila-Perini CMS Collaboration Helsinki Institute of Physics Acknowledgements: Atlas colleagues and ATLAS Physics TDR CMS colleagues especially Sasha Nikitenko and Daniel

More information

ATLAS+CMS Higgs run 1 Combinations

ATLAS+CMS Higgs run 1 Combinations ATLAS+CMS Higgs run 1 Combinations Paolo Francavilla, on behalf of the ATLAS and CMS collaborations 7th Higgs Hunting 2016 August 31 - September 2, LPNHE Paris, France 1 Outline Higgs boson mass measurement

More information

Higgs searches in CMS

Higgs searches in CMS Higgs searches in CMS Mario Pelliccioni Istituto Nazionale di Fisica Nucleare Torino Miami 2012 17/12/12 Introduction Why do we even bother to look for the Higgs? An Higgs boson naturally emerges from

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -08/036 he Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH GENEVA 3, Switzerland 30 April 08 (v4, 08 May 08) Measurement of the

More information

Measuring the Higgs CP property at LHC and CEPC

Measuring the Higgs CP property at LHC and CEPC Measuring the Higgs CP property at LHC and CEPC Xin Chen Tsinghua University X. Chen and Y. Wu arxiv:1703.04855, arxiv:1708.02882 IAS 2018 Program on HEP Introduction Ø After the Higgs was discovered in

More information

Minimal Flavor Violating Z boson. Xing-Bo Yuan. Yonsei University

Minimal Flavor Violating Z boson. Xing-Bo Yuan. Yonsei University Minimal Flavor Violating Z boson Xing-Bo Yuan Yonsei University Yonsei University, Korea 21 Sep 2015 Outline 1. Standard Model and Beyond 2. Energy Scalar of New Physics Beyond the SM From Naturalness:

More information

Problems for SM/Higgs (I)

Problems for SM/Higgs (I) Problems for SM/Higgs (I) 1 Draw all possible Feynman diagrams (at the lowest level in perturbation theory) for the processes e + e µ + µ, ν e ν e, γγ, ZZ, W + W. Likewise, draw all possible Feynman diagrams

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

Probing the Majorana nature in radiative seesaw models at collider experiments

Probing the Majorana nature in radiative seesaw models at collider experiments Probing the Majorana nature in radiative seesaw models at collider experiments Shinya KANEMURA (U. of Toyama) M. Aoki, SK and O. Seto, PRL 102, 051805 (2009). M. Aoki, SK and O. Seto, PRD80, 033007 (2009).

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

arxiv:hep-ph/ v1 17 Apr 2000

arxiv:hep-ph/ v1 17 Apr 2000 SEARCH FOR NEW PHYSICS WITH ATLAS AT THE LHC arxiv:hep-ph/0004161v1 17 Apr 2000 V.A. MITSOU CERN, EP Division, CH-1211 Geneva 23, Switzerland and University of Athens, Physics Department, Nuclear and Particle

More information

CMS Higgs Results Adi Bornheim Caltech

CMS Higgs Results Adi Bornheim Caltech CMS Higgs Results Adi Bornheim Caltech 06.04.2014 1 A brief history of recent times W & Z Boson t-quark H Boson 1964 1974 1984 1994 2004 2014 Peter Higgs This talk : Summary of 29 CMS publications and

More information

Higgs couplings and mass measurements with ATLAS. Krisztian Peters CERN On behalf of the ATLAS Collaboration

Higgs couplings and mass measurements with ATLAS. Krisztian Peters CERN On behalf of the ATLAS Collaboration Higgs couplings and mass measurements with ATLAS CERN On behalf of the ATLAS Collaboration July observation: qualitative picture A single state observed around ~125 GeV Qualitatively all observations consistent

More information

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model Scalar from November 24, 2014 1 2 3 4 5 What is the? Gauge theory that explains strong weak, and electromagnetic forces SU(3) C SU(2) W U(1) Y Each generation (3) has 2 quark flavors (each comes in one

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca Moriond QCD La Thuile, March 14 21, 2009 Flavour physics in the LHC era An introduction Clara Matteuzzi INFN and Universita Milano-Bicocca 1 Contents 1. The flavor structure of the Standard Model 2. Tests

More information

Search for physics beyond the Standard Model at LEP 2

Search for physics beyond the Standard Model at LEP 2 Search for physics beyond the Standard Model at LEP 2 Theodora D. Papadopoulou NTU Athens DESY Seminar 28/10/03 1 Outline Introduction about LEP Alternatives to the Higgs mechanism Technicolor Contact

More information

Measurements of the Higgs Boson at the LHC and Tevatron

Measurements of the Higgs Boson at the LHC and Tevatron Measurements of the Higgs Boson at the LHC and Tevatron Somnath Choudhury (for the ATLAS, CMS, DØ and CDF collaborations) 44 th International Symposium on Multiparticle Dynamics 8 12 September 2014, Bologna

More information

Discovery of the Higgs Boson

Discovery of the Higgs Boson Discovery of the Higgs Boson Seminar: Key Experiments in Particle Physics Martin Vogrin Munich, 22. July 2016 Outline Theoretical part Experiments Results Open problems Motivation The SM is really two

More information

Light Higgs Discovery Potential with ATLAS, Measurements of Couplings and

Light Higgs Discovery Potential with ATLAS, Measurements of Couplings and Light Higgs Discovery Potential with ATLAS, Measurements of Couplings and Impact on Model Discrimination Junichi TANAKA ICEPP, Univ. of TOKYO On behalf of the ATLAS Collaboration 12th June, 2006 SUSY06@UCIrvine

More information

perturbativity Pankaj Sharma Based on : arxiv: st September, 2012 Higgs-electroweak precision, vacuum stability and perturbativity

perturbativity Pankaj Sharma Based on : arxiv: st September, 2012 Higgs-electroweak precision, vacuum stability and perturbativity 21st September, 2012 PLAN Type II Seesaw Particle Spectrum Vacuum Stabilty and. RG evolution of couplings Electroweak precision data (EWPD). enhancement. Conclusion. A 125 GeV Higgs has been discovered

More information

HIGGS AT HADRON COLLIDER

HIGGS AT HADRON COLLIDER IGGS AT ADRON COLLIDER Electroweak symmetry breaking and iggs Lecture 8 24 October 2012 Shahram Rahatlou Fisica Nucleare e Subnucleare III, Anno Accademico 2012-2013 htt://www.roma1.infn.it/eole/rahatlou/fns3/

More information

Higgs Candidate Property Measurements with the Compact Muon Solenoid. Andrew Whitbeck * for the CMS Collaboration. Johns Hopkins University

Higgs Candidate Property Measurements with the Compact Muon Solenoid. Andrew Whitbeck * for the CMS Collaboration. Johns Hopkins University Higgs Candidate Property Measurements with the Compact Muon Solenoid Andrew Whitbeck * for the CMS Collaboration * Johns Hopkins University Rencontres de Moriond QCD, La Thuile, Italy March 14, 2013 Overview

More information

Dark Matter and Gauged Baryon Number

Dark Matter and Gauged Baryon Number Dark Matter and Gauged Baryon Number Sebastian Ohmer Collaborators: Pavel Fileviez Pérez and Hiren H. Patel P. Fileviez Pérez, SO, H. H. Patel, Phys.Lett.B735(2014)[arXiv:1403.8029] P.Fileviez Pérez, SO,

More information

model-independent determination of Higgs e+e- colliders

model-independent determination of Higgs e+e- colliders model-independent determination of Higgs (self-)couplings @ e+e- colliders Junping Tian (U of Tokyo) Te 20t Regular Meeting of te New Higgs Working Group, August 18-19, 2017 @ Osaka University outline

More information

Search for Fermionic Higgs Boson Decays in pp Collisions at ATLAS and CMS

Search for Fermionic Higgs Boson Decays in pp Collisions at ATLAS and CMS Higgs boson searches in fermionic final state at LHC Search for Fermionic Higgs Boson Decays in pp Collisions at ATLAS and CMS Romain Madar on behalf of ATLAS and CMS collaboration Physikalisches Institut

More information

Top quark mass at ATLAS and CMS

Top quark mass at ATLAS and CMS Top quark mass at ATLAS and CMS (Introduction) Direct measurements Template/Ideogram based Indirect measurements Unfolded shapes/cross sections Conclusions & Outlook Andreas Jung for the ATLAS & CMS collaboration

More information

Higgs Top couplings. Zhen Liu. Based on work with Ian Low and Lian-Tao Wang, to appear

Higgs Top couplings. Zhen Liu. Based on work with Ian Low and Lian-Tao Wang, to appear Higgs Top couplings Zhen Liu Based on work with Ian Low and Lian-Tao Wang, to appear Key to many Puzzles Higgs boson discovery substantiates (more) many big questions in nature. It could well be the key

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron

Measurements of the W Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron Measurements of the Boson Mass and Trilinear Gauge Boson Couplings at the Tevatron John Ellison University of California, Riverside, USA Selection of and Z events Measurement of the mass Tests of the gauge

More information