PAPER 305 THE STANDARD MODEL

Size: px
Start display at page:

Download "PAPER 305 THE STANDARD MODEL"

Transcription

1 MATHEMATICAL TRIPOS Part III Tuesday, 6 June, 017 9:00 am to 1:00 pm PAPER 305 THE STANDARD MODEL Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY REQUIREMENTS Cover sheet Treasury Tag Script paper SPECIAL REQUIREMENTS None You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

2 1 (a) The matrix B is defined so that { B 1 γ µ γ µ µ = 0 B = γ µ µ = 1,,3. Show that B 1 γ 5 B = γ 5 where γ 5 = iγ 0 γ 1 γ γ 3. (b) Thetime-reversal operator ˆT is anti-linear, ˆT ( α φ +β ψ ) = α ˆT φ +β ˆT ψ. By making an appropriate assumption (which you should state) about how momentum eigenstates transform under ˆT and expanding in terms of such eigenstates, show that ˆTφ ˆTψ = φ ψ for arbitrary scalar states φ and ψ, i.e. ˆT is an anti-unitary operator. (c) Recall the expansion for a Dirac field ψ(x), ψ(x) = [ b s (p)u s (p)e ip x +d s (p)v s (p)e ip x]. p,s Show that under time reversal, ˆTψ(x)ˆT 1 = Bψ(x T ), where x µ T = ( x0, x). [The intrinsic phase η T = 1 in this question and you may assume that ˆTb s (p)ˆt 1 = ( 1) 1 s b s (p T ), ˆTd s (p)ˆt 1 = ( 1) 1 s d s (p T ), ( 1) 1 s u s (p T ) = γ 5 Cu s (p), ( 1) 1 s v s (p T ) = γ 5 Cv s (p), where p µ T = (p0, p) and as part of your derivation you should find a relation between B and C.] (d)for theremainderofthisquestionyou mayassumethat ˆT ψ(x)ˆt 1 = ψ(x T )B 1. Consider a U(1) gauge theory with gauge field A µ (x). Given that the term in the Lagrangian, ga µ ψγ µ ψ, where g is a real constant, leads to an interaction which is time-reversal invariant, determine how A µ (x) transforms under ˆT. How does ia ψσ µν γ 5 ψf µν transform under ˆT, where a is a real constant, σ µν = i [γµ,γ ν ] and F µν = µ A ν ν A µ? Could such an interaction arise in the Standard Model? (e) Explain briefly why C violation and CP violation are required for baryogenesis. What are the other two conditions required?

3 3 (a) Considertheelectroweak partofthestandardmodelwithgaugegroupsu() L U(1) Y. The covariant derivative acting on the complex scalar doublet φ is D µ φ = ( µ +igw a µτ a + i g B µ ) φ, where W a µ are the three SU() L gauge bosons and B µ is the U(1) Y gauge boson. Write down the part of the electroweak Lagrangian involving only gauge and scalar fields. Describe how the gauge symmetry is spontaneously broken to U(1) EM via the Higgs mechanism. In particular, you should relate the gauge fields after symmetry breaking (W µ ±, Z µ, A µ ) to the original gauge fields, define the Weinberg angle θ W, show that one gauge boson remains massless and find tree-level expressions for the masses of the other three gauge bosons and the Higgs boson. [Hint: After giving a brief justification you may consider the expansion φ(x) = 1 ( 0 v +H(x) where v is a real constant and H(x) is a real scalar field.] Draw Feynman diagrams for all the tree-level interactions involving both Z and H fields. (b) The interaction term in the Lagrangian which governs the decay of the Higgs boson,h,totwoz bosonsisl HZZ = m Z v Z µ Z µ H,wherev isthehiggsvacuumexpectation value. Without neglecting any masses, derive an expression for the decay rate Γ(H ZZ) supposing that m H > m Z. [Hint: The following expressions may be used without proof: 0 Z µ Z(k,s) = ǫ µ (k,s), Z spins s ), ǫ µ (k,s)ǫ ν (k,s) = g µν + k µk ν M Z, and the decay rate for A(p) B(k 1 )+C(k ) is, Γ(A BC) = 1 m A d 3 k 1 (π) 3 k 0 1 d 3 k (π) 3 k 0 (π) δ () (p k 1 k ) spins M, where m A is the mass of particle A.] [TURN OVER

4 3 (a) State whether or not each of the following processes is allowed at tree level in the Standard Model: (i) u d c s (ii) u c d s (iii) b ue + ν e (iv) c dµ + ν µ. For those which are allowed draw all possible tree-level Feynman diagrams. (b) Suppose that the chiral structure of the weak charged-current interaction has not been determined and so the part of the effective Lagrangian relevant for u d c s is L eff = G F [ dγ α (P +Qγ 5 )u ][ cγ α (P +Qγ 5 )s ], where P and Q are real constants and G F = g. Neglecting quark masses, CKM matrix 8MW factors and the effects of the strong interaction (e.g. hadronization), show that ( u(p1 ) d(p ) c(k 1 ) s(k ) ) = F(s) [ H 1 (1+cos θ)+h cosθ ], where θ is the angle between p 1 and k 1, F(s) is some function of s = (p 1 + p ) which you should find, and the constants H 1 and H should be expressed in terms of P and Q. [Hints: Work in the centre of momentum frame. The following expressions may be used without proof: Tr(γ µ 1...γ µn ) = 0 for n odd, Tr(γ µ γ ν γ ρ γ σ ) = (g µν g ρσ g µρ g νσ +g µσ g νρ ), Tr(γ 5 γ µ γ ν γ ρ γ σ ) = iǫ µνρσ, ǫ αβσρ ǫ αβλτ = (δ σ λ δρ τ δσ τ δρ λ ), and the differential cross section for A(p A )+B(p B ) C(p C )+D(p D ) is, ( 1 1 d 3 )( p C d 3 ) p D = v A v B p 0 A p0 B (π) 3 p 0 C (π) 3 p 0 (π) δ () (p A +p B p C p D ) 1 M, D where A, B, C and D are spin-1/ fermions.] (c) What happens to your expression at high energy (large s)? Comment on this. (d) Find an expression for the asymmetry A(θ) = (θ) (θ +π). (θ +π) (θ)+ Why might the experimental measurement of this asymmetry be a useful way to constrain the chiral structure of the weak charged-current interaction? spins

5 5 To leading order, the scale dependence of a renormalized coupling g(µ) is given by µ dg dµ = β 0 16π g3, where µ is the renormalization scale and β 0 is a real constant. (a) Briefly explain the consequences of β 0 being positive (as in QCD) or negative. (b) For α s = g /π and assuming that β 0 > 0, derive a expression for α s (µ) in terms of an energy scale Λ where α s diverges. (c) In QCD, suppose that Λ = Λ for µ < m b (where n f = ) and Λ = Λ 5 for m b < µ < m t (where n f = 5). Here m b and m t are respectively the bottom and top quark masses. By requiring that α s (µ) is continuous at µ = m b, show that, ( ) p/r mb Λ 5 = Λ, Λ where p and r are positive integers which you should find. [You may assume that β 0 = 11 3 N 3 n f in an SU(N) gauge theory with n f flavours of quarks.] (d) The cross section for e + (p 1 )e (p ) hadrons beyond leading order may be written as σ = πα 3q 3 Q f K( α s (µ ),q /µ ), f where Q f is the charge of quark flavour f, q = p 1 +p and at O(α s) K ( α s (µ ),q /µ ) = 1+ α s(µ ) π + α s(µ ) π One way to choose the arbitrary scale µ is to require that dk dlnµ = 0. [ n f β ] 0 ln( q /µ ). By using this prescription with the leading order scale dependence of α s (µ), find an expression for µ in terms of n f and q. END OF PAPER

PAPER 45 THE STANDARD MODEL

PAPER 45 THE STANDARD MODEL MATHEMATICAL TRIPOS Part III Friday, 6 June, 014 1:0 pm to 4:0 pm PAPER 45 THE STANDARD MODEL Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Monday 7 June, 004 1.30 to 4.30 PAPER 48 THE STANDARD MODEL Attempt THREE questions. There are four questions in total. The questions carry equal weight. You may not start

More information

Particle Physics I Lecture Exam Question Sheet

Particle Physics I Lecture Exam Question Sheet Particle Physics I Lecture Exam Question Sheet Five out of these 16 questions will be given to you at the beginning of the exam. (1) (a) Which are the different fundamental interactions that exist in Nature?

More information

PAPER 51 ADVANCED QUANTUM FIELD THEORY

PAPER 51 ADVANCED QUANTUM FIELD THEORY MATHEMATICAL TRIPOS Part III Tuesday 5 June 2007 9.00 to 2.00 PAPER 5 ADVANCED QUANTUM FIELD THEORY Attempt THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

SISSA entrance examination (2007)

SISSA entrance examination (2007) SISSA Entrance Examination Theory of Elementary Particles Trieste, 18 July 2007 Four problems are given. You are expected to solve completely two of them. Please, do not try to solve more than two problems;

More information

Part III The Standard Model

Part III The Standard Model Part III The Standard Model Theorems Based on lectures by C. E. Thomas Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Tuesday 5 June 21 1.3 to 4.3 PAPER 63 THE STANDARD MODEL Attempt THREE questions. The questions are of equal weight. You may not start to read the questions printed on the

More information

July 2, SISSA Entrance Examination. PhD in Theoretical Particle Physics Academic Year 2018/2019. olve two among the three problems presented.

July 2, SISSA Entrance Examination. PhD in Theoretical Particle Physics Academic Year 2018/2019. olve two among the three problems presented. July, 018 SISSA Entrance Examination PhD in Theoretical Particle Physics Academic Year 018/019 S olve two among the three problems presented. Problem I Consider a theory described by the Lagrangian density

More information

PAPER 43 SYMMETRY AND PARTICLE PHYSICS

PAPER 43 SYMMETRY AND PARTICLE PHYSICS MATHEMATICAL TRIPOS Part III Monday, 31 May, 2010 1:30 pm to 4:30 pm PAPER 43 SYMMETRY AND PARTICLE PHYSICS Attempt no more than THREE questions. There are FOUR questions in total. The questions carry

More information

PAPER 44 ADVANCED QUANTUM FIELD THEORY

PAPER 44 ADVANCED QUANTUM FIELD THEORY MATHEMATICAL TRIPOS Part III Friday, 3 May, 203 9:00 am to 2:00 pm PAPER 44 ADVANCED QUANTUM FIELD THEORY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal

More information

Standard Model & Beyond

Standard Model & Beyond XI SERC School on Experimental High-Energy Physics National Institute of Science Education and Research 13 th November 2017 Standard Model & Beyond Lecture III Sreerup Raychaudhuri TIFR, Mumbai 2 Fermions

More information

Theory of CP Violation

Theory of CP Violation Theory of CP Violation IPPP, Durham CP as Natural Symmetry of Gauge Theories P and C alone are not natural symmetries: consider chiral gauge theory: L = 1 4 F µνf µν + ψ L i σdψ L (+ψ R iσ ψ R) p.1 CP

More information

TPP entrance examination (2012)

TPP entrance examination (2012) Entrance Examination Theoretical Particle Physics Trieste, 18 July 2012 Ì hree problems and a set of questions are given. You are required to solve either two problems or one problem and the set of questions.

More information

1. a) What does one mean by running of the strong coupling, and by asymptotic freedom of QCD? (1p)

1. a) What does one mean by running of the strong coupling, and by asymptotic freedom of QCD? (1p) FYSH300 Particle physics 2. half-course exam (2. välikoe) 19.12.2012: 4 problems, 4 hours. Return the the question sheet and particle tables together with your answer sheets remember to write down your

More information

Introduction to the SM (5)

Introduction to the SM (5) Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 1 Introduction to the SM (5) Yuval Grossman Cornell Y. Grossman The SM (5) TES-HEP, July 12, 2015 p. 2 Yesterday... Yesterday: Symmetries Today SSB the

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS 754 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 04 Thursday, 9 June,.30 pm 5.45 pm 5 minutes

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information

FYSH300 Particle physics 2. half-course exam (2. välikoe) : 4 problems, 4 hours.

FYSH300 Particle physics 2. half-course exam (2. välikoe) : 4 problems, 4 hours. ics Letters B 716 (2012) 30 61 FYSH300 Particle physics 2. half-course exam (2. välikoe) 13.12.2013: 4 problems, 4 hours. 1. a) What is meant by deep inelastic electron-proton scattering, and what is the

More information

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab Lecture I: Incarnations of Symmetry Noether s Theorem is as important to us now as the Pythagorean Theorem

More information

PARTICLE PHYSICS Major Option

PARTICLE PHYSICS Major Option PATICE PHYSICS Major Option Michaelmas Term 00 ichard Batley Handout No 8 QED Maxwell s equations are invariant under the gauge transformation A A A χ where A ( φ, A) and χ χ ( t, x) is the 4-vector potential

More information

Flavour Physics Lecture 1

Flavour Physics Lecture 1 Flavour Physics Lecture 1 Chris Sachrajda School of Physics and Astronomy University of Southampton Southampton SO17 1BJ UK New Horizons in Lattice Field Theory, Natal, Rio Grande do Norte, Brazil March

More information

Quantum Electrodynamics Test

Quantum Electrodynamics Test MSc in Quantum Fields and Fundamental Forces Quantum Electrodynamics Test Monday, 11th January 2010 Please answer all three questions. All questions are worth 20 marks. Use a separate booklet for each

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS A047W SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 05 Thursday, 8 June,.30 pm 5.45 pm 5 minutes

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006

Anomaly. Kenichi KONISHI University of Pisa. College de France, 14 February 2006 Anomaly Kenichi KONISHI University of Pisa College de France, 14 February 2006 Abstract Symmetry and quantization U A (1) anomaly and π 0 decay Origin of anomalies Chiral and nonabelian anomaly Anomally

More information

12.2 Problem Set 2 Solutions

12.2 Problem Set 2 Solutions 78 CHAPTER. PROBLEM SET SOLUTIONS. Problem Set Solutions. I will use a basis m, which ψ C = iγ ψ = Cγ ψ (.47) We can define left (light) handed Majorana fields as, so that ω = ψ L + (ψ L ) C (.48) χ =

More information

Two Fundamental Principles of Nature s Interactions

Two Fundamental Principles of Nature s Interactions Two Fundamental Principles of Nature s Interactions Tian Ma, Shouhong Wang Supported in part by NSF, ONR and Chinese NSF http://www.indiana.edu/ fluid I. Gravity and Principle of Interaction Dynamics PID)

More information

Elementary Particle Physics

Elementary Particle Physics Yorikiyo Nagashima Elementary Particle Physics Volume 2: Foundations of the Standard Model WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XI Acknowledgments XV Color Plates XVII Part One

More information

Electroweak Theory, SSB, and the Higgs: Lecture 2

Electroweak Theory, SSB, and the Higgs: Lecture 2 1 Electroweak Theory, SSB, and the iggs: Lecture Spontaneous symmetry breaking (iggs mechanism) - Gauge invariance implies massless gauge bosons and fermions - Weak interactions short ranged spontaneous

More information

Antonio Pich. IFIC, CSIC Univ. Valencia.

Antonio Pich. IFIC, CSIC Univ. Valencia. Antonio Pich IFIC, CSIC Univ. alencia Antonio.Pich@cern.ch Fermion Masses Fermion Generations Quark Mixing Lepton Mixing Standard Model Parameters CP iolation Quarks Leptons Bosons up down electron neutrino

More information

New Loop-Regularization and Intrinsic Mass Scales in QFTs

New Loop-Regularization and Intrinsic Mass Scales in QFTs New Loop-Regularization and Intrinsic Mass Scales in QFTs Yue-Liang Wu 2004. 09. 06 ITP, Beijing, CAS (CAS) References: USTC-Shanghai Workshop/ Talk by Yue-Liang Wu / October 22 2004 back to start 1 New

More information

Cornell University, Department of Physics

Cornell University, Department of Physics Cornell University, Department of Physics May 18th, 2017 PHYS 4444, Particle physics, Final exam You have two and a half hours for the exam. The questions are short and do not require long calculations.

More information

Physics 444: Quantum Field Theory 2. Homework 2.

Physics 444: Quantum Field Theory 2. Homework 2. Physics 444: Quantum Field Theory Homework. 1. Compute the differential cross section, dσ/d cos θ, for unpolarized Bhabha scattering e + e e + e. Express your results in s, t and u variables. Compute the

More information

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo Particle Physics Fall 2015 1 Course Overview Lecture 1: Introduction, Decay Rates and Cross Sections Lecture 2: The Dirac Equation and Spin

More information

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple

Symmetry Groups conservation law quantum numbers Gauge symmetries local bosons mediate the interaction Group Abelian Product of Groups simple Symmetry Groups Symmetry plays an essential role in particle theory. If a theory is invariant under transformations by a symmetry group one obtains a conservation law and quantum numbers. For example,

More information

Axions Theory SLAC Summer Institute 2007

Axions Theory SLAC Summer Institute 2007 Axions Theory p. 1/? Axions Theory SLAC Summer Institute 2007 Helen Quinn Stanford Linear Accelerator Center Axions Theory p. 2/? Lectures from an Axion Workshop Strong CP Problem and Axions Roberto Peccei

More information

Lectures on Chiral Perturbation Theory

Lectures on Chiral Perturbation Theory Lectures on Chiral Perturbation Theory I. Foundations II. Lattice Applications III. Baryons IV. Convergence Brian Tiburzi RIKEN BNL Research Center Chiral Perturbation Theory I. Foundations Low-energy

More information

Electroweak Sector of the SM

Electroweak Sector of the SM Electroweak Sector of the SM Roger Wolf 29. April 2015 INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) PHYSICS FACULTY KIT University of the State of Baden-Wuerttemberg and National Research Center of

More information

Electroweak physics and the LHC an introduction to the Standard Model

Electroweak physics and the LHC an introduction to the Standard Model Electroweak physics and the LHC an introduction to the Standard Model Paolo Gambino INFN Torino LHC School Martignano 12-18 June 2006 Outline Prologue on weak interactions Express review of gauge theories

More information

Models of Neutrino Masses

Models of Neutrino Masses Models of Neutrino Masses Fernando Romero López 13.05.2016 1 Introduction and Motivation 3 2 Dirac and Majorana Spinors 4 3 SU(2) L U(1) Y Extensions 11 4 Neutrino masses in R-Parity Violating Supersymmetry

More information

Field Theory and Standard Model

Field Theory and Standard Model Field Theory and Standard Model W. HOLLIK CERN SCHOOL OF PHYSICS BAUTZEN, 15 26 JUNE 2009 p.1 Why Quantum Field Theory? (i) Fields: space time aspects field = quantity φ( x, t), defined for all points

More information

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten

The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local Gauge Transformations Dynamics of Field Ten Lecture 4 QCD as a Gauge Theory Adnan Bashir, IFM, UMSNH, Mexico August 2013 Hermosillo Sonora The Gauge Principle Contents Quantum Electrodynamics SU(N) Gauge Theory Global Gauge Transformations Local

More information

3.3 Lagrangian and symmetries for a spin- 1 2 field

3.3 Lagrangian and symmetries for a spin- 1 2 field 3.3 Lagrangian and symmetries for a spin- 1 2 field The Lagrangian for the free spin- 1 2 field is The corresponding Hamiltonian density is L = ψ(i/ µ m)ψ. (3.31) H = ψ( γ p + m)ψ. (3.32) The Lagrangian

More information

Electroweak Theory: 2

Electroweak Theory: 2 Electroweak Theory: 2 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS (January, 2011) Paul Langacker (IAS) 31 References

More information

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM

Lecture 03. The Standard Model of Particle Physics. Part II The Higgs Boson Properties of the SM Lecture 03 The Standard Model of Particle Physics Part II The Higgs Boson Properties of the SM The Standard Model So far we talked about all the particles except the Higgs If we know what the particles

More information

Charm CP Violation and the electric dipole moment of the neutron

Charm CP Violation and the electric dipole moment of the neutron and the electric dipole moment of the neutron Thomas Mannel (with N. Uraltsev, arxiv:1202.6270 and arxiv:1205.0233) Theoretische Physik I Universität Siegen Seminar at TUM, 14.1.2013 Contents Introduction

More information

12 Best Reasons to Like CP Violation

12 Best Reasons to Like CP Violation 12 Best Reasons to Like CP Violation SSI 2012 The Electroweak Scale: Unraveling the Mysteries at the LHC SLAC, California 27 July 2012 Yossi Nir (Weizmann Institute of Science) SSI40 1/35 CP Violation

More information

Chiral Anomaly. Kathryn Polejaeva. Seminar on Theoretical Particle Physics. Springterm 2006 Bonn University

Chiral Anomaly. Kathryn Polejaeva. Seminar on Theoretical Particle Physics. Springterm 2006 Bonn University Chiral Anomaly Kathryn Polejaeva Seminar on Theoretical Particle Physics Springterm 2006 Bonn University Outline of the Talk Introduction: What do they mean by anomaly? Main Part: QM formulation of current

More information

The Higgs Mechanism and the Higgs Particle

The Higgs Mechanism and the Higgs Particle The Higgs Mechanism and the Higgs Particle Heavy-Ion Seminar... or the Anderson-Higgs-Brout-Englert-Guralnik-Hagen-Kibble Mechanism Philip W. Anderson Peter W. Higgs Tom W. B. Gerald Carl R. François Robert

More information

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books

Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Week 3: Renormalizable lagrangians and the Standard model lagrangian 1 Reading material from the books Burgess-Moore, Chapter Weiberg, Chapter 5 Donoghue, Golowich, Holstein Chapter 1, 1 Free field Lagrangians

More information

An Introduction to the Standard Model of Particle Physics

An Introduction to the Standard Model of Particle Physics An Introduction to the Standard Model of Particle Physics W. N. COTTINGHAM and D. A. GREENWOOD Ж CAMBRIDGE UNIVERSITY PRESS Contents Preface. page xiii Notation xv 1 The particle physicist's view of Nature

More information

Discrete Transformations: Parity

Discrete Transformations: Parity Phy489 Lecture 8 0 Discrete Transformations: Parity Parity operation inverts the sign of all spatial coordinates: Position vector (x, y, z) goes to (-x, -y, -z) (eg P(r) = -r ) Clearly P 2 = I (so eigenvalues

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 99890701 Allowed tools: mathematical tables Some formulas can be found on p.2. 1. Concepts.

More information

arxiv: v2 [nucl-th] 22 Jul 2013

arxiv: v2 [nucl-th] 22 Jul 2013 Broken Chiral Symmetry on a Null Plane arxiv:1302.1600v2 [nucl-th] 22 Jul 2013 Silas R. Beane 1 Helmholtz-Institut für Strahlen- und Kernphysik (Theorie), Universität Bonn, D-53115 Bonn, Germany beane@hiskp.uni-bonn.de

More information

Supercurrents. Nathan Seiberg IAS

Supercurrents. Nathan Seiberg IAS Supercurrents Nathan Seiberg IAS 2011 Zohar Komargodski and NS arxiv:0904.1159, arxiv:1002.2228 Tom Banks and NS arxiv:1011.5120 Thomas T. Dumitrescu and NS arxiv:1106.0031 Summary The supersymmetry algebra

More information

THE STANDARD MODEL. Thomas Teubner. Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, U.K.

THE STANDARD MODEL. Thomas Teubner. Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, U.K. THE STANDARD MODEL Thomas Teubner Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, U.K. Lectures presented at the School for Young High Energy Physicists, Somerville College,

More information

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31

Axions. Kerstin Helfrich. Seminar on Theoretical Particle Physics, / 31 1 / 31 Axions Kerstin Helfrich Seminar on Theoretical Particle Physics, 06.07.06 2 / 31 Structure 1 Introduction 2 Repetition: Instantons Formulae The θ-vacuum 3 The U(1) and the strong CP problem The

More information

6.1 Quadratic Casimir Invariants

6.1 Quadratic Casimir Invariants 7 Version of May 6, 5 CHAPTER 6. QUANTUM CHROMODYNAMICS Mesons, then are described by a wavefunction and baryons by Φ = q a q a, (6.3) Ψ = ǫ abc q a q b q c. (6.4) This resolves the old paradox that ground

More information

Introduction to chiral perturbation theory II Higher orders, loops, applications

Introduction to chiral perturbation theory II Higher orders, loops, applications Introduction to chiral perturbation theory II Higher orders, loops, applications Gilberto Colangelo Zuoz 18. July 06 Outline Introduction Why loops? Loops and unitarity Renormalization of loops Applications

More information

Elementary Particles II

Elementary Particles II Elementary Particles II S Higgs: A Very Short Introduction Higgs Field, Higgs Boson, Production, Decays First Observation 1 Reminder - I Extend Abelian Higgs model to non-abelian gauge symmetry: ( x) +

More information

Intercollegiate post-graduate course in High Energy Physics. Paper 1: The Standard Model

Intercollegiate post-graduate course in High Energy Physics. Paper 1: The Standard Model Brunel University Queen Mary, University of London Royal Holloway, University of London University College London Intercollegiate post-graduate course in High Energy Physics Paper 1: The Standard Model

More information

PAPER 52 GENERAL RELATIVITY

PAPER 52 GENERAL RELATIVITY MATHEMATICAL TRIPOS Part III Monday, 1 June, 2015 9:00 am to 12:00 pm PAPER 52 GENERAL RELATIVITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

NEUTRINOS. Alexey Boyarsky PPEU 1

NEUTRINOS. Alexey Boyarsky PPEU 1 NEUTRINOS Alexey Boyarsky PPEU 1 Discovery of neutrino Observed 14 6 C 14 7 N + e Two body decay: the electron has the same energy (almost) not observed! Energy is not conserved? Pauli s letter, Dec. 4,

More information

Going beyond the Standard Model of Elementary Particle Physics

Going beyond the Standard Model of Elementary Particle Physics Going beyond the Standard Model of Elementary Particle Physics Saurabh D. Rindani PRL, Ahmedabad Symposium on Recent Trends in High Energy Physics November 19, 2011 77th Annual Meeting of the Indian Academy

More information

Back to Gauge Symmetry. The Standard Model of Par0cle Physics

Back to Gauge Symmetry. The Standard Model of Par0cle Physics Back to Gauge Symmetry The Standard Model of Par0cle Physics Laws of physics are phase invariant. Probability: P = ψ ( r,t) 2 = ψ * ( r,t)ψ ( r,t) Unitary scalar transformation: U( r,t) = e iaf ( r,t)

More information

Lattice Quantum Chromo Dynamics and the Art of Smearing

Lattice Quantum Chromo Dynamics and the Art of Smearing Lattice Quantum Chromo Dynamics and the Art of Georg Engel March 25, 2009 KarlFranzensUniversität Graz Advisor: Christian B. Lang Co-workers: M. Limmer and D. Mohler 1 / 29 2 / 29 Continuum Theory Regularization:

More information

Lecture 7: N = 2 supersymmetric gauge theory

Lecture 7: N = 2 supersymmetric gauge theory Lecture 7: N = 2 supersymmetric gauge theory José D. Edelstein University of Santiago de Compostela SUPERSYMMETRY Santiago de Compostela, November 22, 2012 José D. Edelstein (USC) Lecture 7: N = 2 supersymmetric

More information

Conformal Symmetry Breaking in Einstein-Cartan Gravity Coupled to the Electroweak Theory

Conformal Symmetry Breaking in Einstein-Cartan Gravity Coupled to the Electroweak Theory Conformal Symmetry Breaking in Einstein-Cartan Gravity Coupled to the Electroweak Theory J. Lee Montag, Ph.D. December 018 Abstract We develop an alternative to the Higgs mechanism for spontaneously breaking

More information

PAPER 84 QUANTUM FLUIDS

PAPER 84 QUANTUM FLUIDS MATHEMATICAL TRIPOS Part III Wednesday 6 June 2007 9.00 to 11.00 PAPER 84 QUANTUM FLUIDS Attempt TWO questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY REQUIREMENTS

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

Interactions... + similar terms for µ and τ Feynman rule: gauge-boson propagator: ig 2 2 γ λ(1 γ 5 ) = i(g µν k µ k ν /M 2 W ) k 2 M 2 W

Interactions... + similar terms for µ and τ Feynman rule: gauge-boson propagator: ig 2 2 γ λ(1 γ 5 ) = i(g µν k µ k ν /M 2 W ) k 2 M 2 W Interactions... L W-l = g [ νγµ (1 γ 5 )ew µ + +ēγ µ (1 γ 5 )νwµ ] + similar terms for µ and τ Feynman rule: e λ ig γ λ(1 γ 5 ) ν gauge-boson propagator: W = i(g µν k µ k ν /M W ) k M W. Chris Quigg Electroweak

More information

Dr Victoria Martin, Spring Semester 2013

Dr Victoria Martin, Spring Semester 2013 Particle Physics Dr Victoria Martin, Spring Semester 2013 Lecture 3: Feynman Diagrams, Decays and Scattering Feynman Diagrams continued Decays, Scattering and Fermi s Golden Rule Anti-matter? 1 Notation

More information

Theory toolbox. Chapter Chiral effective field theories

Theory toolbox. Chapter Chiral effective field theories Chapter 3 Theory toolbox 3.1 Chiral effective field theories The near chiral symmetry of the QCD Lagrangian and its spontaneous breaking can be exploited to construct low-energy effective theories of QCD

More information

Part III The Standard Model

Part III The Standard Model Part III The Standard Model Based on lectures by C. E. Thomas Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

Lecture 12 Holomorphy: Gauge Theory

Lecture 12 Holomorphy: Gauge Theory Lecture 12 Holomorphy: Gauge Theory Outline SUSY Yang-Mills theory as a chiral theory: the holomorphic coupling and the holomorphic scale. Nonrenormalization theorem for SUSY YM: the gauge coupling runs

More information

Gauge Theories of the Standard Model

Gauge Theories of the Standard Model Gauge Theories of the Standard Model Professors: Domènec Espriu (50%, coordinador) Jorge Casalderrey (25%) Federico Mescia (25%) Time Schedule: Mon, Tue, Wed: 11:50 13:10 According to our current state

More information

Lecture 4 - Dirac Spinors

Lecture 4 - Dirac Spinors Lecture 4 - Dirac Spinors Schrödinger & Klein-Gordon Equations Dirac Equation Gamma & Pauli spin matrices Solutions of Dirac Equation Fermion & Antifermion states Left and Right-handedness Non-Relativistic

More information

Adding families: GIM mechanism and CKM matrix

Adding families: GIM mechanism and CKM matrix Particules Élémentaires, Gravitation et Cosmologie Année 2007-08 08 Le Modèle Standard et ses extensions Cours VII: 29 février f 2008 Adding families: GIM mechanism and CKM matrix 29 fevrier 2008 G. Veneziano,

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz

The Dirac Field. Physics , Quantum Field Theory. October Michael Dine Department of Physics University of California, Santa Cruz Michael Dine Department of Physics University of California, Santa Cruz October 2013 Lorentz Transformation Properties of the Dirac Field First, rotations. In ordinary quantum mechanics, ψ σ i ψ (1) is

More information

Goldstone Bosons and Chiral Symmetry Breaking in QCD

Goldstone Bosons and Chiral Symmetry Breaking in QCD Goldstone Bosons and Chiral Symmetry Breaking in QCD Michael Dine Department of Physics University of California, Santa Cruz May 2011 Before reading this handout, carefully read Peskin and Schroeder s

More information

Non Abelian Higgs Mechanism

Non Abelian Higgs Mechanism Non Abelian Higgs Mechanism When a local rather than global symmetry is spontaneously broken, we do not get a massless Goldstone boson. Instead, the gauge field of the broken symmetry becomes massive,

More information

The Phases of QCD. Thomas Schaefer. North Carolina State University

The Phases of QCD. Thomas Schaefer. North Carolina State University The Phases of QCD Thomas Schaefer North Carolina State University 1 Motivation Different phases of QCD occur in the universe Neutron Stars, Big Bang Exploring the phase diagram is important to understanding

More information

Introduction to gauge theory

Introduction to gauge theory Introduction to gauge theory 2008 High energy lecture 1 장상현 연세대학교 September 24, 2008 장상현 ( 연세대학교 ) Introduction to gauge theory September 24, 2008 1 / 72 Table of Contents 1 Introduction 2 Dirac equation

More information

Anomalies and discrete chiral symmetries

Anomalies and discrete chiral symmetries Anomalies and discrete chiral symmetries Michael Creutz BNL & U. Mainz Three sources of chiral symmetry breaking in QCD spontaneous breaking ψψ 0 explains lightness of pions implicit breaking of U(1) by

More information

Electroweak Theory: 3

Electroweak Theory: 3 Electroweak Theory: 3 Introduction QED The Fermi theory The standard model Precision tests CP violation; K and B systems Higgs physics Prospectus STIAS January, 2011 Paul Langacker IAS 55 References Slides

More information

Introduction to particle physics Lecture 6

Introduction to particle physics Lecture 6 Introduction to particle physics Lecture 6 Frank Krauss IPPP Durham U Durham, Epiphany term 2009 Outline 1 Fermi s theory, once more 2 From effective to full theory: Weak gauge bosons 3 Massive gauge bosons:

More information

Neutrino Mass Models

Neutrino Mass Models Neutrino Mass Models S Uma Sankar Department of Physics Indian Institute of Technology Bombay Mumbai, India S. Uma Sankar (IITB) IWAAP-17, BARC (Mumbai) 01 December 2017 1 / 15 Neutrino Masses LEP experiments

More information

Finding the Higgs boson

Finding the Higgs boson Finding the Higgs boson Sally Dawson, BN XIII Mexican School of Particles and Fields ecture 1, Oct, 008 Properties of the Higgs boson Higgs production at the Tevatron and HC Discovery vs spectroscopy Collider

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures)

STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT. (Two lectures) STANDARD MODEL and BEYOND: SUCCESSES and FAILURES of QFT (Two lectures) Lecture 1: Mass scales in particle physics - naturalness in QFT Lecture 2: Renormalisable or non-renormalisable effective electroweak

More information

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00

MSci EXAMINATION. Date: XX th May, Time: 14:30-17:00 MSci EXAMINATION PHY-415 (MSci 4242 Relativistic Waves and Quantum Fields Time Allowed: 2 hours 30 minutes Date: XX th May, 2010 Time: 14:30-17:00 Instructions: Answer THREE QUESTIONS only. Each question

More information

PAPER 309 GENERAL RELATIVITY

PAPER 309 GENERAL RELATIVITY MATHEMATICAL TRIPOS Part III Monday, 30 May, 2016 9:00 am to 12:00 pm PAPER 309 GENERAL RELATIVITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

More information

7 Quantized Free Dirac Fields

7 Quantized Free Dirac Fields 7 Quantized Free Dirac Fields 7.1 The Dirac Equation and Quantum Field Theory The Dirac equation is a relativistic wave equation which describes the quantum dynamics of spinors. We will see in this section

More information

Tests at Colliders. Summer School on the SME June 17, 2018 Mike Berger. I. Top quark production and decay II. Neutral meson oscillations

Tests at Colliders. Summer School on the SME June 17, 2018 Mike Berger. I. Top quark production and decay II. Neutral meson oscillations Tests at Colliders Summer School on the SME June 17, 2018 Mike Berger I. Top quark production and decay II. Neutral meson oscillations Collider Physics 1. In principle, one has access (statistically) to

More information

Lecture 5 The Renormalization Group

Lecture 5 The Renormalization Group Lecture 5 The Renormalization Group Outline The canonical theory: SUSY QCD. Assignment of R-symmetry charges. Group theory factors: bird track diagrams. Review: the renormalization group. Explicit Feynman

More information

Physics 582, Problem Set 1 Solutions

Physics 582, Problem Set 1 Solutions Physics 582, Problem Set 1 Solutions TAs: Hart Goldman and Ramanjit Sohal Fall 2018 1. THE DIRAC EQUATION [20 PTS] Consider a four-component fermion Ψ(x) in 3+1D, L[ Ψ, Ψ] = Ψ(i/ m)ψ, (1.1) where we use

More information

Lecture 6:Feynman diagrams and QED

Lecture 6:Feynman diagrams and QED Lecture 6:Feynman diagrams and QED 0 Introduction to current particle physics 1 The Yukawa potential and transition amplitudes 2 Scattering processes and phase space 3 Feynman diagrams and QED 4 The weak

More information

IX. Electroweak unification

IX. Electroweak unification IX. Electroweak unification The problem of divergence A theory of weak interactions only by means of W ± bosons leads to infinities e + e - γ W - W + e + W + ν e ν µ e - W - µ + µ Divergent integrals Figure

More information

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1

6. QED. Particle and Nuclear Physics. Dr. Tina Potter. Dr. Tina Potter 6. QED 1 6. QED Particle and Nuclear Physics Dr. Tina Potter Dr. Tina Potter 6. QED 1 In this section... Gauge invariance Allowed vertices + examples Scattering Experimental tests Running of alpha Dr. Tina Potter

More information