New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7

Size: px
Start display at page:

Download "New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7"

Transcription

1 Joural of Iteger Sequeces, Vol , Article New Ramauja-Type Formulas ad Quasi-Fiboacci Numbers of Order Roma Witu la ad Damia S lota Istitute of Mathematics Silesia Uiversity of Techology Kaszubsa Gliwice Polad r.witula@polsl.pl d.slota@polsl.pl Abstract We give applicatios of the quasi-fiboacci umbers of order ad the so-called sie-fiboacci umbers of order ad may other ew ids of recurret sequeces to the decompositios of some polyomials. We also preset the characteristic equatios, geeratig fuctios ad some properties of all these sequeces. Fially, some ew Ramauja-type formulas are geerated. 1

2 1 Itroductio The scope of the paper is the geeralizatio of the followig decompositios of polyomials [,, 4, 8, 9]: si π si si, 1.1 4si π 4si 4si 14, 1. 8si π 8si 8si 4 1, 1. cos π cos cos 1, 1.4 4cos π 4cos 4cos 5 61, 1.5 8cos π 8cos 8cos 4 111, 1.6 8si π cos 8si cos π 8si cos 14, 1. etc. The mai icetive for geeratig the decompositios of these polyomials is provided by the properties of the so-called quasi-fiboacci umbers of order, A δ, B δ ad C δ, N, described i [10] by meas of the relatios 1δξ ξ 6 A δb δξ ξ 6 C δξ ξ for 1,,, where ξ C is a primitive root of uity of order i.e., ξ 1 ad ξ 1, δ C, δ 0. Besides, a essetial rôle i the decompositios of polyomials discussed i the paper is played by related umbers δ C, N: A δ : A δ B δ C δ 1δξ ξ 6 1δξ ξ 5 1δξ ξ ad B δ : 1 A δ A δ 1δ cos π 1δ cos 1δ cos π 1δ cos 1δ cos 1δ cos A δ A δb δ A δc δ B δc δ B δ C δ A δ A δ A δ B δ C δ B δc δ Furthermore, to simplify the formulas, we will write A A 1, B B 1, A A 1, B B 1 ad C C 1, 1.11

3 for every N. We ote that the tables of values of these umbers ca be foud i the article [10]. Basic decompositios Witu la et al. [10] determied the followig two formulas: ad cos π cos cos B 1 A 1.1 1δ cos π 1δ cos 1δ cos A δ B δ 1 δ δ δ.. From. three special formulas follow: 1cos π 1cos 1cos A 1 6 B ,. ad si π si si A 1 B 1.4 cos π cos cos A 1 B Comparig formulas.1 ad.5 two ew idetities are geerated A B 1 ad B A 1..6 We also have the decompositio 1δξ ξ 6 1δξ ξ 5 1δξ ξ 6 1δξ ξ 4 1δ cos π 1δξ ξ 5 1δξ ξ 4 1δ cos 1δ cos π 1δ cos 6π 1δ cos 1δ cos 6π B δ 1 δ δ δ A δ 1 δ δ δ : r ;δ..

4 Now let us set Ξ : Ξ δ,ε,η δ cos π Υ : Υ δ,ε,η ε cos π Θ : Θ δ,ε,η η cos π for ay δ,ε,η C ad N 0. ε cos η cos δ cos Lemma.1 The followig geeral decompositio formula holds Ξ Υ Θ η cos,.8,.9 δ cos ε cos.10 δ εηa 1 1 δ ε δ η εη A [ δεηb δ ε η 1 δε εη ηδ A 1 δ εε η η δ 1 A 1 ]..11 Below a illustrative example coected with Lemma.1 will be preseted. Examle. A. M. Yaglom ad I. M. Yaglom [11] see also [5, problem 0] ad [6, problem 9] cosidered the followig polyomial: m1 m1 m1 wx x m x m 1 x m ad proved that it has the roots 0 π x cot, 1,,...,m. m1 I particular, for m taig ito accout that cot π cot, cot π cot we have the decompositio see also formula 6.14 below: x cot π x cot x cot x 5x x 1 ad as a corollary the decompositio x cot π x cot x cot x 5x 14x49..1 Accordig to.8 for 1, let us try to fid a liear combiatio cot π δ cos π ε cos η cos 4

5 or, the same, cos π δ cos π ε cos η cos δ cos π ε cos Decreasig powers ad taig ito accout the idetity we fid cos π δ ε η cos π cos cos π cos 1 η cos δ ε η cos δ ε η. Thus, for fidig δ, ε, η we have the liear system see Corollary.5 i [10]: δ ε η 0 δ ε η δ ε η 14 with the solutio Hece, Aalogously, we obtai cot π cot cot δ 1, ε 5, η 1. 1 cos π 1 cos π 5 cos π 5 cos 1 cos 1 cos Thus the decompositio.1 correspods to Lemma.1 with 1 cos. 5 cos,. 1 cos Ξ 1 1,5,1, Υ 1 1,5,1, Θ 1 1,5,1. Remar. The idetity.1 was foud earlier by Shevelev [4]. cos π. Remar.4 The formula.11, i some cases which are subject of our iterest, especially whe coefficiets δ, ε, η are the correspodig values of trigoometric fuctios, becomes rather complicated. Thus, i the ext two sectios we attempt to desigate the relevat coefficiets of decompositio.11, icludig the recurret coefficiets, o the grouds of ew sequeces that are easier to aalyze. 5

6 The first group of special cases of.11 Let us set a 1 [si π cos si cos π si cos ],.1 b 1 [si cos si cos π si π cos ],. c 1 [si cos si π cos π si cos ],. for 0,1,,... Lemma.1 The followig recurrece relatios hold: a 1 a b, b 1 a b c, c 1 c b,.4 for 0,1,,... ad a 0 b 0 c 0. Moreover, elemets of each sequeces {a } 0, {b } 0 ad {c } 0 satisfy the recurrece equatio x 5x 1 6x x 1 0, 0,1,,....5 i view of decompositio 1.5 a appropriate characteristic polyomial is compatible with the defiitio of umbers a, b ad c. Thefirsttwelvevaluesofumbersa a /,b b / adc c / arepreseted i Table 1. Now, let us set α [si π cos 1 si cos π 1 si cos 1 ],.6 β [si cos 1 si cos π 1 si π cos 1 ],. γ [si cos 1 si π cos π 1 si cos 1 ],.8 for 1,,... Lemma. We have α 1 0, β 1, ad γ 1. The elemets of sequeces {α } 1, {β } 1 ad {γ } 1 satisfy the system of recurrece relatios.4 ad, selectively, recurrece relatio.5. The first twelve values of umbers α α /, β β / ad γ γ / are preseted i Table 1. 6

7 Remar. There exists a simple relatioships betwee umbers α, β, γ, N, ad a, b, c, N. We have α c, β a 1 b 1, γ a 1. These relatios are easily derived from the defiitios of respective umbers, for example β 11 [ si cos cos 1 si cosπ cos π 1 si π cos cos 1 ] 11 [ si π si cos 1 si si cos π 1 si π si cos 1 ] a 1 b 1. Let us also set f 1 [cos π cos cos cos cos cos π ],.9 g 1 [cos cos cos π cos cos cos π ],.10 h 1 [ cos π 1 cos 1 cos 1 ],.11 for 0,1,,... Lemma.4 We have ad f 0 g 0 h 0 1, ad h 1 5 f 1 f g, 0, g 1 f h, 0, h 1 g h 1, 1..1 The elemets of sequeces {f } 0, {g } 0 ad {h } 0 satisfy the followig recurrece relatio see formula 1.4: Proof: By.1 we obtai ad, fially, the followig idetity x x x 1 x 0, 0,1,....1 g f 1 f,.14 h g 1 f f f 1 f,.15 f f f 1 f 1 f f 1 f1 f,

8 i.e., f f 4f 1 f f But we also have the followig decompositio of respective characteristic polyomial x 4 x 4x x x x x x 1, which implies the followig form of.16: f f f 1 f f f 1 f f 1..1 Sice f f f 1 f 0 0 so, we obtai the required idetity.1 from.1,.14 ad.15. The first twelve elemets of the sequeces {f } 0, {g } 0 ad {h } 0 are preseted i Table 1. Remar.5 We ote, that h 1 B 1 A A, 1,, is a accelerator sequece for Catala s costat see [1] ad A []. The ext lemma cotais a sequece of eight idetities ad simultaously six ewly defied auxiliary sequeces of real umbers {Ã}, { B }, { C }, {F }, {G } ad {H }. Lemma.6 The followig idetities hold 4 cos π 4 cos π cos 4 cos 4 cos π cos 4 cos 4 cos cos f g h h 1 h 4h 1 f : F,.19 cos π 4 cos π cos cos 4 cos cos cos 4 cos π cos F h f h 1 h h 1 : G,.0 cos π 4 cos cos cos 4 cos π cos cos 4 cos π cos f h h 1 F h h 1 G : H,.1 g h 1 f 1 A A 1 A G F,. f h h 1 1 A A H F,. 8

9 si π 4 cos π cos si 4 cos cos si 4 cos π cos a a h 1 h 1 h 4 1 : Ã,.4 si π 4 cos π cos si 4 cos π cos si 4 cos cos b b h 1 h 1 h 4 1 : B,.5 si π 4 cos cos si 4 cos π cos si 4 cos π cos c c h 1 h 1 h 4 1 : C,.6 Now we are ready to preset the fial result of this sectio. All recurret sequeces defied i this sectio are applied below to the descriptio of the coefficiets of certai polyomials. Theorem. The followig decompositios of polyomials hold: si π cos si cos π si cos { a B, for, α 1 B 1., for 1, si cos si cos π si π cos { b C B, for, β 1 B 1 C 1.8, for 1, si π cos π si cos si cos { c C, for, γ 1 C 1.9, for 1, cos π cos cos cos cos cos π f 1 A A 1,.0 cos cos cos π cos cos cos π g 1 A A 1 A 1,.1 9

10 cos π 4 cos π cos cos 4 cos π cos cos 4 cos cos F f h 1,. cos π 4 cos π cos cos 4 cos cos cos 4 cos π cos G f g 1,. cos π 4 cos cos cos 4 cos π cos cos 4 cos π cos H g h 1..4 Proof: Ad.0 We have hece, by 1.4 we obtai 4 cos cos 4 cos cos 1 cos π [ cos π cos cos cosπ cos cos 4 cos cos cos π cos cos π ] 4 cos cos 4 cos cos 4 cos π cos 4 cos cos Treatig, i a similar way, the followig products: 4 cos π cos 1 ad 4 cos cos 1. 4 cos π cos 1, ad addig all three received decompositios, by.1, we obtai 1 A 1 A A 1 4 cos π cos 4 cos cos 4 cos π cos 4 cos π cos 4 cos cos 4 cos π cos. But, by [10], we have hece which implies decompositio.0. A A A 1 A 0, A 1 A A 1 A A, Remar.8 It should also be oted that the followig iterestig idetity holds: 4A A A..5 10

11 4 The secod group of special cases of.11 Let us set u cos π si π cos si cos si, 4.1 v cos si π cos si cos π si, 4. w cos si π cos π si cos si, 4. x si si π si si si π si, 4.4 y si si π si π si si si, 4.5 z si π 1 si 1 si 1, 4.6 for N ad u 0 v 0 w 0 1 ad z 0 y 0 z 0, z 1 see Table, ad for sequece { w 1 / } see A [], ad see A0909 [] for sequece {z / }. The, as may by verified without difficulty, the followig recurrece relatios hold u 1 x, v 1 y z x z 1, w 1 y x, 4. x 1 u w, y 1 w v, z 1 z 1 v, for every N. Hece, we easily obtai x x w 1 x y, y y v 1 x y x z, z y z, 4.8 for every N ad fially the recurrece relatio see also equatio 1.: z 6 z 4 14z z 0, 4.9 which also satisfies the remaiig sequeces discussed i this sectio: {x }, {y }, {u }, {v } ad {w }. Remar 4.1 The characteristic polyomial of equatio 4.9 after rescalig has the form of 1. ad was recogized by Johaes Kepler The roots of this polyomial are equal to A 1 A, A 1 A ad A 1 A 4, where A 1 A...A is a regular covex heptago iscribed i the uit circle []. Theorem 4. The followig decompositios of polyomials hold: cos π si π cos si cos si u 1 u v z 1,

12 cos si π cos si cos π si v 1 v w z 1, 4.11 cos si π cos π si cos si w 1 w u z 1, 4.1 si si π si si si π si x 1 x w z 1 1, 4.1 si si π si π si si si y 1 y u z 1 1, 4.14 si π 1 si 1 si 1 z 1 z z Additioally, primarily to describe the geeratig fuctios of the sequeces {u }, {v }, {w }, {x }, {y } ad {z } see Sectio six ew recurrece sequeces were itroduced, which, from a certai poit of view, are cojugated with sequeces {u },..., {z }. Let us set u cos π 4 si si cos 4 si π si cos 4 si π si, 4.16 v cos π 4 si π si cos 4 si si cos 4 si π si, 4.1 w cos π 4 si π si cos 4 si π si cos 4 si si, 4.18 x si π 4 si π si si 4 si si si 4 si π si, 4.19 y si π 4 si π si si 4 si π si si 4 si si, 4.0 z si π 4 si si si 4 si π si si 4 si π si, 4.1 for N ad u 0 v 0 w 0 1 ad x 0 y 0 z 0 see Table 4. A easy computatio shows that the followig recurrece relatios hold u 1 u w v z 1 z 1, v 1 z 1 z 1 u, w 1 u w, 1 4.

13 for every 1. Hece, we obtai u 1 v1 w v, 4. u w1 w, 4.4 w w1 w v1 v, 4.5 w w1 w z 1 z 1 z z for every 1. Also the followig recurrece relatios hold x 1 y z, y 1 x y z, z 1 x y z, 4. for every N, which implies the idetities for every 1. y 1 x x 1 x, 4.8 x x x Theorem 4. The followig decompositios of polyomials hold: cos π 4 si si cos 4 si π si cos 4 si π si u u v, 4.0 cos π 4 si π si cos 4 si si cos 4 si π si v v w, 4.1 cos π 4 si π si cos 4 si π si cos 4 si si w u w, 4. si π 4 si π si si 4 si si si 4 si π si x w v, 4. 1

14 si π 4 si π si si 4 si π si si 4 si si y u w, 4.4 si π 4 si si si 4 si π si si 4 si π si Lemma 4.4 The followig two groups of idetities hold: z v w. 4.5 ad u z 1 v v u, v z 1 w v w, w z 1 u u w, x z 1 w w v, y z 1 u u w, z z 1 v u, u z 1 z 4 1 v u v, v z 1 z 4 1 w v w, w z 1 z 4 1 u u w, x z 1 z 4 1 w w v, y z 1 z 4 1 u u w, z z 1 z 4 1 v v u Some Ramauja-type formulas Let p,q,r R. Shevelev [4] see also [] proved that if z 1, z, z are roots of the polyomial wz z pz qz r ad z 1, z, z are all reals ad at least the followig coditio holds p r r q 0, 5.1 the the followig formula holds z1 z z p 6 r p6 r p r p 6 r 9r p r p r 5. 14

15 all radicals are determied to be real. It was verified that oly followig polyomials amog all discussed i this paper satisfy the coditio 5.1; simultaously below the respective form of idetity 5. is preseted: polyomial 1.4 ad polyomial.1 for 1 it is the classical Ramauja formula: cos π cos cos 5 ; 5. polyomial.1 for 4: cos π sec cos sec π cos sec 1 18 ; 5.4 polyomial.1 for : cos π cos cos cos cos cos π 49; 5.5 polyomial. for,, respectively: cos π 1cos cos 1cos π cos 1cos 11 49, 5.6 sec cos π sec cos secπ cos 91 ; 5. polyomial.0 for 1, polyomial.1 for 1 ad polyomial.4 for : polyomial 4.11 for 6: sec π sec sec 8 6 ; 5.8 si π cos si cos si cos π 1 61 ; polyomial 4.1 for : polyomial 4.14 for : si π si si π si si si π si si 15 si si si si π 5 ; ; 5.11

16 polyomial 4.14 for 5: si π si si π si polyomial 4.0 for : si π si si si si ; csc π cos π csc cos csc cos polyomial 4. for : 6 csc cos π csc cos cscπ cos polyomial 4. for 6: 49; 5.1 5; 5.14 csc cos π csc cos csc π cos Remar 5.1 Shevelev [4] preseted the idetities 5.10 ad 5.11 i the followig alterative form: sec π sec sec ad 1 cos π 1 cos 1 cos cos π cos π1 cos cos 1 cos cos 1 4, 5.1 respectively. Remar 5. By 5.9, 5. ad by applied the formula si α 1 cosα we obtai cos π cos π cos cos cos cos Moreover, from 5., 5.8 ad the equality 8 cos π cos cos 1 we get cos π cos cos

17 6 The sie-fiboacci umbers of order The quasi-fiboacci umbers of order itroduced by Witu la et al. i [10] ad further developed i Sectio 1 costitute the simplest, oly oe-parameter type of the so-called cosie-fiboacci umbers of order. The ame cosie-fiboacci umbers is derived from the form of the decompositio of formulas: 1δξ ξ 6 1δ cos π,...i this Sectio we shall itroduce ad aalyze a sie variety of these umbers, created i the course of decomposig formulas: 1δξ ξ 6 1iδ si π,... Theorem 6.1 Let ξ,δ C, ξ 1 ad ξ 1. The, for every N, there exist polyomials p,r,s,,l Z[δ], called here the sie-fiboacci umbers of order, so that 1δξ ξ 6 p δr δξ ξ 6 s δξ ξ 5 δξ ξ 6 l δξ ξ 5, 6.1 1δξ ξ 5 p δr δξ ξ 5 s δξ 4 ξ δξ ξ 5 l δξ 4 ξ, 6. 1δξ 4 ξ p δr δξ 4 ξ s δξ ξ 6 δξ 4 ξ l δξ ξ We have p 1 δ 1, r 1 δ δ ad s 1 δ 1 δ l 1 δ 0 see Table, where the iitial values of these polyomial are preseted. These polyomials are coected by recurrece relatios p 1 δ p δ δs δ δr δ i δl δ, r 1 δ r δδp δ, s 1 δ s δδ δδl δ, δ δ δs δ, l 1 δ l δδr δ δs δ, for N. Hece, the followig relatioships ca be deduced: δp δ r 1 δ r δ, 6.5 δs δ 1 δ δ, 6.6 δ l δ δ 1 δ 1δ δ, 6. δ r δ δ δ 1δ 1 δ1δ δ 6.8 ad, at last, the mai idetity 5 δ δ δi δ 15δ 10 δ δ 4 i δ 15δ 5 1 δ i δ 5 δ 4 i δ 5δ 1 δ This idetity satisfies, also by , the remaiig polyomials: p δ, r δ, s δ, ad l δ, N. The characteristic polyomial correspodig to idetity 6.9 has the 1

18 followig decompositio: δ i δ 15δ 10 δ 4 i δ 15δ 5 i δ 5 δ 4 i δ 5δ 1 1 δξ ξ 6 1 δξ ξ 5 1 δξ 4 ξ 1δξ ξ ξ 4 1δξ ξ 5 ξ 6 i δ i δi δ i δ 1 i δ1 δ i δ Hece, we obtai, for example, the followig explicit form of δ: δ a1δξ ξ 6 b1δξ ξ 5 where c1δξ 4 ξ d1 δξ ξ ξ 4 e1δξ ξ 5 ξ 6, 6.11 a 5ξ ξ 5 ξ ξ ξ ξ 6 5ξ ξ 4 11, b ξ ξ 5 6ξ ξ ξ ξ 6 46ξ ξ 5 5, c 46ξ ξ 5 ξ ξ ξ ξ 5 46ξ ξ 4 11, d 5ξ ξ ξ ξ ξ 5 ξ 6, e ξ ξ ξ ξ ξ 5 ξ 6. Corollary 6. The followig idetity holds: Ω δ : 1δξ ξ 6 1δξ ξ 5 1δξ 4 ξ p δ δ l δi r δs δ. 6.1 Defiitio 6. To simplify the otatio, we shall write Ω istead of Ω 1. Theorem 6.4 The followig decompositios of the polyomials hold: q ;δ : 1δi si π 1δi si 1δi si Ω δ 1 Ω δ Ω δ 1i δ i δ, 6.1 x cot π x cot x cot Moreover, the followig idetity holds: x A x Ω i x Ω δ Ω δ p δ l δ δ p δ δ p δl δ r δs δ δl δi p δr δp δs δ r δ δ s δl δ i r δl δ δs δ Ω δ4p δω δ p δ l δ δ r δs δ δl δ i r δl δ r δ δ δs δ s δl δ

19 Geeratig fuctios The geeratig fuctios of almost all sequeces discussed ad defied i this paper are preseted i this sectio. By 1.9 ad. we obtai for N: A δ 1 1δξ ξ δξ ξ δξ ξ 4 1 A δb δ 1 A δb δ 1 δ δ δ,.1 ad, i the sequel, for 1 we get A δ 1 1δξ ξ δξ ξ /;δ 1 1δξ ξ 4 1 p p 1/;δ δ δ δ 1δ δ δ 1δ δ δ,. where p,δ δ δ δ 1δ δ δ see [10]. By 1.10 ad. we get for N: B δ r 1/;δ r 1/;δ 0 B δ1 δ δ δ A δ 1 B δ1 δ δ δ A δ 1 δ δ δ,. where r,δ is defied i.. By.19 from [10] we obtai A δ 0 ξ ξ 4 1 1δξ ξ 6 ξ ξ 6 1 1δξ ξ 5 by.18 ad.1 from [10] we obtai respectively: B δ 0 ξ ξ 5 1 1δξ ξ 4 1 δ1 δ p 1/;δ ;.4 ξ ξ 6 ξ ξ 4 1 1δξ ξ 6 ξ ξ 5 ξ ξ 6 1 1δξ ξ 5 ξ ξ 4 ξ ξ 5 1 1δξ ξ 4 δδ δ p 1/;δ.5 19

20 ad C δ 0 A δ B δ A δ 0 δ p 1/;δ..6 Equally, o the grouds of.1. ad.4.6, we obtai the followig formulas: a b c à 1 B A,. 0 b a c 1 B 0 A,.8 c a b 1 B A..9 0 The special cases for 1 ca also be geerated i the followig selective ways: by.1 ad 1.5 we obtai a 0 si π 1 4 cos however, by. ad.4 we obtai ad b 0 si si 1 4 cos π 1 4 cos a1 a 1 a 0 0 si si 1 4 cos c 0 0 By 6.1 ad 6.1 we get 1 4 cos π 1 56 ;.10 si π 1 4 cos a b b Ω δ 1 1δξ ξ δξ ξ /;δ 1 1δξ ξ 4 1 q q 1/;δ Ω δ 1 Ω δ Ω δ 1 Ω δ 1 Ω δ Ω δ 1i δ i.1 δ, 0

21 ad, the special case, for 1 by 6.1 ad 6.10: Ω δ 1 1δξ ξ δξ ξ /;δ 1 1δξ 4 ξ 1 q 1 q 1 1/;δ i δi δ 1 i δi δ 1i δ i.14 δ, where q ;δ is defied i 6.1. By 1.4,.9.11 ad.19.1 the followig formulas may be obtaied: f 0 g 0 cos π 1 cos cos π 1 cos cos 1 cos cos 1 cos π 1 g h F 1 h 1 1 h 1 h 1,.15 cos 1 cos π cos 1 cos 1 f h G 1 h 1 1 h 1 h 1,.16 h cos π 1 1 cos 1 cos h 1 1 h 1 h 1 by.1 B 1 A 1 h 1 1 h 1 h 1 1 B 1 A..1 h 1 : 1. We ote that the special case of the formulas.15 ad.16 for 1 ca be treated i aother way polyomial 1.4 will be deoted here by p : h 0 ξ ξ 6 1 ξ ξ 6 ξ ξ 5 1 ξ ξ 5 ξ ξ 4 1 ξ ξ 4 p 1/ 14 p 1/ 1,.18 1

22 hece by.1: g 1 0 h1 h h 1 h 0 h 1 0 ad, fially, usig.1 agai we get f 0 g1 h g h 0 h h By 1.1, , 4.15 ad we have x si π 1 si si 1 si si π 1 si y z x 1 z 1 1 z 1 z 1,.1 0 y 0 z 0 ad z 1 : 1: z 1 0 si π 1 si si π 1 si π si 1 si si 1 si π x z y 1 z 1 1 z 1 z 1,. si 1 si si 1 si x y z 1 z 1 1 z 1 z 1,. 1 si π 1 1 si 1 1 si 1 z 1 1 z 1 z 1 1 z 1 1 z 1 z 1..4

23 By 1.1, 1.4, , 4.15, , ad 4.6, respectively, we get u 0 v 0 w 0 u 0 cos π 1 si π cos 1 si π cos 1 si π cos π 1 4 si si cos 1 4 si π si v 0 cos 1 si cos 1 si 1 v w u 1 z 1 1 z 1 z 1,.5 cos 1 si cos π 1 si 1 u w v 1 z 1 1 z 1 z 1,.6 cos π 1 si cos 1 si 1 u v w 1 z 1 1 z 1 z 1,. 1 1 cos π 1 4 si π si cos 1 4 si π si w 0 cos 1 4 si π si 1 v w u z z z 1, 1 1 cos π 1 4 si π si cos 1 4 si si cos 1 4 si si 1 u w v z z z 1, 1 1 cos 1 4 si π si 1 u v w z z z 1.

24 By 1.1, , ad 4.6, we obtai x 0 si π 1 4 si π si si 1 4 si π si y si π 1 4 si π si si 1 4 si si z si π 1 4 si si si 1 4 si π si Jorda decompositio si 1 4 si si y z x z z z 1, si 1 4 si π si x z y z z 1. 1 z 1, si 1 4 si π si x y z z z 1. 1 z 1. For sequeces A δ, B δ ad C δ we have the equality A 1 δ A δ B 1 δ Wδ B δ, N, 8.1 C 1 δ C δ where Wδ 1 δ δ δ δ 1 δ. 8. Matrix Wδ is a diagoalized matrix, ad the followig decompositio ca be obtaied 1δξ ξ Wδ A 0 1δξ ξ 5 0 A 1, δξ ξ 4 where A 1ξ ξ 6 1 1ξ ξ 5 1 1ξ ξ 4 1 ξ ξ 6 ξ ξ 6 1 ξ ξ 5 ξ ξ 5 1 ξ ξ 4 ξ ξ 4 1 ξ ξ 6 ξ ξ 5 ξ ξ 4 4

25 ad A 1 1 ξ ξ 6 ξ ξ 6 ξ ξ 6 4 ξ ξ 5 ξ ξ 5 ξ ξ 5 4 ξ ξ 4 ξ ξ 4 ξ ξ It should be oticed, that characteristic polyomial wλ of matrix Wδ is equal to 9 Tables λ 1 wλ δ p. δ. Table 1: a / b / c / α / β / γ / f g h Table : ε ω Ψ

26 Table : u v w x y z Table 4: u v w x / y/ z/

27 Table 5: F G H Ã / B / C / Table 6: Ω δ 0 1 i δ δ i δ 4i δ 1δ i δ 4 1δ 4 16i δ 4δ 4i δ 5 14i δ 5 105δ 4 40i δ 0δ 5i δ 6 0δ 6 84i δ 5 15δ 4 80i δ 105δ 6i δ 49i δ 490δ 6 94i δ 5 5δ 4 140i δ 14δ i δ

28 Table : p δ δ 1 i δ 6δ 1 4 δ 4 4i δ 1δ 1 5 5i δ 5 15δ 4 10i δ 0δ 1 6 8δ 6 0i δ 5 45δ 4 0i δ 0δ 1 1i δ 56δ 6 105i δ 5 105δ 4 5i δ 4δ 1 r δ δ δ δ δ 4 i δ 4 8δ 4δ 5 δ 5 5i δ 4 0δ 5δ 6 5i δ 6 18δ 5 15i δ 4 40δ 6δ 8δ 5i δ 6 6δ 5 5i δ 4 0δ δ s δ δ δ 0 4 4δ δ 4 5 5δ 5 10δ 10δ 4 6 i δ 6 0δ 5 0δ 10δ 6 0δ 4 18δ i δ 6 105δ 5 5δ i δ 0δ 6 0δ 4 l δ δ δ 4 δ 4 6δ 5 i δ 5 15δ 4 10δ 6 8δ 6 6i δ 5 45δ 4 15δ 6i δ 56δ 6 1i δ 5 105δ 4 1δ 10 Acowledgmets The authors wish to express their gratitude to the referee for several helpful commets ad suggestios cocerig the first versio of our paper, especially for preparig Example., which is added to the preset versio of the paper. 8

29 Refereces [1] D. M. Bradley, A class of series acceleratio formulae for Catala s costat, Ramauja J. 1999, [] R. Grzymowsi ad R. Witu la, Calculus Methods i Algebra, Part Oe, WPKJS, 000 i Polish. [] K. Irelad, M. Rose, A Classical Itroductio to Moder Number Theory, Spriger Verlag, 198. [4] V. S. Shevelev, Three Ramauja s formulas, Kvat , 5 55 i Russia. [5] D. O. Shlyarsy, N. N. Chetzov, I. M. Yaglom, The USSR Olympiad Problem Boo, W. H. Freema & Co., 196. [6] D. O. Shlyarsy, N. N. Chetsov, I. M. Yaglom, Selected Problems ad Theorems i Elemetary Mathematics, Arithmetic ad Algebra, Mir, 199. [] N. J. A. Sloae, The O-Lie Ecyclopedia of Iteger Sequeces, 00. [8] D. Surowsi ad P. McCombs, Homogeeous polyomials ad the miimal polyomial of cosπ/, Missouri J. Math. Sci , [9] W. Watis ad J. Zeitli, The miimal polyomials of cosπ/, Amer. Math. Mothly , [10] R. Witu la, D. S lota ad A. Warzyńsi, Quasi-Fiboacci umbers of the seveth order, J. Iteger Seq , Article [11] A. M. Yaglom ad I. M. Yaglom, A elemetary proof of the Wallis, Leibiz ad Euler formulas for π, Uspehi Matem. Nau VIII 195, i Russia. 000 Mathematics Subject Classificatio: Primary 11B8, 11A0; Secodary 9A10. Keywords: Ramauja s formulas, Fiboacci umbers, primitive roots of uity, recurrece relatio. Cocered with sequeces A00160, A0049, A0909, A094648, A11051, ad A Received April 19 00; revised versio received May Published i Joural of Iteger Sequeces, Jue Retur to Joural of Iteger Sequeces home page. 9

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS Folia Mathematica Vol. 5, No., pp. 4 6 Acta Uiversitatis Lodziesis c 008 for Uiversity of Lódź Press SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS ROMAN WITU LA, DAMIAN S

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca Idia J Pure Appl Math 45): 75-89 February 204 c Idia Natioal Sciece Academy A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS Mircea Merca Departmet of Mathematics Uiversity

More information

The log-behavior of n p(n) and n p(n)/n

The log-behavior of n p(n) and n p(n)/n Ramauja J. 44 017, 81-99 The log-behavior of p ad p/ William Y.C. Che 1 ad Ke Y. Zheg 1 Ceter for Applied Mathematics Tiaji Uiversity Tiaji 0007, P. R. Chia Ceter for Combiatorics, LPMC Nakai Uivercity

More information

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction Acta Math. Uiv. Comeiaae Vol. LXXXVI, 2 (2017), pp. 279 286 279 k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c N. IRMAK ad M. ALP Abstract. The k-geeralized Fiboacci sequece { F (k)

More information

Sequences of Definite Integrals, Factorials and Double Factorials

Sequences of Definite Integrals, Factorials and Double Factorials 47 6 Joural of Iteger Sequeces, Vol. 8 (5), Article 5.4.6 Sequeces of Defiite Itegrals, Factorials ad Double Factorials Thierry Daa-Picard Departmet of Applied Mathematics Jerusalem College of Techology

More information

Harmonic Number Identities Via Euler s Transform

Harmonic Number Identities Via Euler s Transform 1 2 3 47 6 23 11 Joural of Iteger Sequeces, Vol. 12 2009), Article 09.6.1 Harmoic Number Idetities Via Euler s Trasform Khristo N. Boyadzhiev Departmet of Mathematics Ohio Norther Uiversity Ada, Ohio 45810

More information

SOME TRIBONACCI IDENTITIES

SOME TRIBONACCI IDENTITIES Mathematics Today Vol.7(Dec-011) 1-9 ISSN 0976-38 Abstract: SOME TRIBONACCI IDENTITIES Shah Devbhadra V. Sir P.T.Sarvajaik College of Sciece, Athwalies, Surat 395001. e-mail : drdvshah@yahoo.com The sequece

More information

The Phi Power Series

The Phi Power Series The Phi Power Series I did this work i about 0 years while poderig the relatioship betwee the golde mea ad the Madelbrot set. I have fially decided to make it available from my blog at http://semresearch.wordpress.com/.

More information

Matrix representations of Fibonacci-like sequences

Matrix representations of Fibonacci-like sequences NTMSCI 6, No. 4, 03-0 08 03 New Treds i Mathematical Scieces http://dx.doi.org/0.085/tmsci.09.33 Matrix represetatios of Fiboacci-like sequeces Yasemi Tasyurdu Departmet of Mathematics, Faculty of Sciece

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

MAT 271 Project: Partial Fractions for certain rational functions

MAT 271 Project: Partial Fractions for certain rational functions MAT 7 Project: Partial Fractios for certai ratioal fuctios Prerequisite kowledge: partial fractios from MAT 7, a very good commad of factorig ad complex umbers from Precalculus. To complete this project,

More information

CALCULATION OF FIBONACCI VECTORS

CALCULATION OF FIBONACCI VECTORS CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College

More information

P. Z. Chinn Department of Mathematics, Humboldt State University, Arcata, CA

P. Z. Chinn Department of Mathematics, Humboldt State University, Arcata, CA RISES, LEVELS, DROPS AND + SIGNS IN COMPOSITIONS: EXTENSIONS OF A PAPER BY ALLADI AND HOGGATT S. Heubach Departmet of Mathematics, Califoria State Uiversity Los Ageles 55 State Uiversity Drive, Los Ageles,

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS

ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS Joural of Algebra, Number Theory: Advaces ad Applicatios Volume, Number, 00, Pages 7-89 ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS OLCAY KARAATLI ad REFİK KESKİN Departmet

More information

2.4 - Sequences and Series

2.4 - Sequences and Series 2.4 - Sequeces ad Series Sequeces A sequece is a ordered list of elemets. Defiitio 1 A sequece is a fuctio from a subset of the set of itegers (usually either the set 80, 1, 2, 3,... < or the set 81, 2,

More information

You may work in pairs or purely individually for this assignment.

You may work in pairs or purely individually for this assignment. CS 04 Problem Solvig i Computer Sciece OOC Assigmet 6: Recurreces You may work i pairs or purely idividually for this assigmet. Prepare your aswers to the followig questios i a plai ASCII text file or

More information

Chapter 4. Fourier Series

Chapter 4. Fourier Series Chapter 4. Fourier Series At this poit we are ready to ow cosider the caoical equatios. Cosider, for eample the heat equatio u t = u, < (4.) subject to u(, ) = si, u(, t) = u(, t) =. (4.) Here,

More information

Asymptotic Formulae for the n-th Perfect Power

Asymptotic Formulae for the n-th Perfect Power 3 47 6 3 Joural of Iteger Sequeces, Vol. 5 0, Article.5.5 Asymptotic Formulae for the -th Perfect Power Rafael Jakimczuk Divisió Matemática Uiversidad Nacioal de Lujá Bueos Aires Argetia jakimczu@mail.ulu.edu.ar

More information

A Study on Some Integer Sequences

A Study on Some Integer Sequences It. J. Cotemp. Math. Scieces, Vol. 3, 008, o. 3, 03-09 A Study o Some Iteger Sequeces Serpil Halıcı Sakarya Uiversity, Departmet of Mathematics Esetepe Campus, Sakarya, Turkey shalici@sakarya.edu.tr Abstract.

More information

GAMALIEL CERDA-MORALES 1. Blanco Viel 596, Valparaíso, Chile. s: /

GAMALIEL CERDA-MORALES 1. Blanco Viel 596, Valparaíso, Chile.  s: / THE GELIN-CESÀRO IDENTITY IN SOME THIRD-ORDER JACOBSTHAL SEQUENCES arxiv:1810.08863v1 [math.co] 20 Oct 2018 GAMALIEL CERDA-MORALES 1 1 Istituto de Matemáticas Potificia Uiversidad Católica de Valparaíso

More information

Pellian sequence relationships among π, e, 2

Pellian sequence relationships among π, e, 2 otes o umber Theory ad Discrete Mathematics Vol. 8, 0, o., 58 6 Pellia sequece relatioships amog π, e, J. V. Leyedekkers ad A. G. Shao Faculty of Sciece, The Uiversity of Sydey Sydey, SW 006, Australia

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS. H. W. Gould Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS. H. W. Gould Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 7 (2007), #A58 FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS H. W. Gould Departmet of Mathematics, West Virgiia Uiversity, Morgatow, WV

More information

The value of Banach limits on a certain sequence of all rational numbers in the interval (0,1) Bao Qi Feng

The value of Banach limits on a certain sequence of all rational numbers in the interval (0,1) Bao Qi Feng The value of Baach limits o a certai sequece of all ratioal umbers i the iterval 0, Bao Qi Feg Departmet of Mathematical Scieces, Ket State Uiversity, Tuscarawas, 330 Uiversity Dr. NE, New Philadelphia,

More information

WHAT ARE THE BERNOULLI NUMBERS? 1. Introduction

WHAT ARE THE BERNOULLI NUMBERS? 1. Introduction WHAT ARE THE BERNOULLI NUMBERS? C. D. BUENGER Abstract. For the "What is?" semiar today we will be ivestigatig the Beroulli umbers. This surprisig sequece of umbers has may applicatios icludig summig powers

More information

INEQUALITIES BJORN POONEN

INEQUALITIES BJORN POONEN INEQUALITIES BJORN POONEN 1 The AM-GM iequality The most basic arithmetic mea-geometric mea (AM-GM) iequality states simply that if x ad y are oegative real umbers, the (x + y)/2 xy, with equality if ad

More information

A Simplified Binet Formula for k-generalized Fibonacci Numbers

A Simplified Binet Formula for k-generalized Fibonacci Numbers A Simplified Biet Formula for k-geeralized Fiboacci Numbers Gregory P. B. Dresde Departmet of Mathematics Washigto ad Lee Uiversity Lexigto, VA 440 dresdeg@wlu.edu Zhaohui Du Shaghai, Chia zhao.hui.du@gmail.com

More information

Some identities involving Fibonacci, Lucas polynomials and their applications

Some identities involving Fibonacci, Lucas polynomials and their applications Bull. Math. Soc. Sci. Math. Roumaie Tome 55103 No. 1, 2012, 95 103 Some idetities ivolvig Fiboacci, Lucas polyomials ad their applicatios by Wag Tigtig ad Zhag Wepeg Abstract The mai purpose of this paper

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

ROSE WONG. f(1) f(n) where L the average value of f(n). In this paper, we will examine averages of several different arithmetic functions.

ROSE WONG. f(1) f(n) where L the average value of f(n). In this paper, we will examine averages of several different arithmetic functions. AVERAGE VALUES OF ARITHMETIC FUNCTIONS ROSE WONG Abstract. I this paper, we will preset problems ivolvig average values of arithmetic fuctios. The arithmetic fuctios we discuss are: (1)the umber of represetatios

More information

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE UPB Sci Bull, Series A, Vol 79, Iss, 207 ISSN 22-7027 NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE Gabriel Bercu We itroduce two ew sequeces of Euler-Mascheroi type which have fast covergece

More information

On Generalized Fibonacci Numbers

On Generalized Fibonacci Numbers Applied Mathematical Scieces, Vol. 9, 215, o. 73, 3611-3622 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.215.5299 O Geeralized Fiboacci Numbers Jerico B. Bacai ad Julius Fergy T. Rabago Departmet

More information

Some Trigonometric Identities Involving Fibonacci and Lucas Numbers

Some Trigonometric Identities Involving Fibonacci and Lucas Numbers 1 2 3 47 6 23 11 Joural of Iteger Sequeces, Vol. 12 (2009), Article 09.8.4 Some Trigoometric Idetities Ivolvig Fiboacci ad Lucas Numbers Kh. Bibak ad M. H. Shirdareh Haghighi Departmet of Mathematics Shiraz

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES Sequeces ad 6 Sequeces Ad SEQUENCES AND SERIES Successio of umbers of which oe umber is desigated as the first, other as the secod, aother as the third ad so o gives rise to what is called a sequece. Sequeces

More information

#A51 INTEGERS 14 (2014) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES

#A51 INTEGERS 14 (2014) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES #A5 INTEGERS 4 (24) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES Kohtaro Imatomi Graduate School of Mathematics, Kyushu Uiversity, Nishi-ku, Fukuoka, Japa k-imatomi@math.kyushu-u.ac.p

More information

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers 3 47 6 3 Joural of Iteger Sequeces, Vol. 5 (0), Article..7 Series with Cetral Biomial Coefficiets, Catala Numbers, ad Harmoic Numbers Khristo N. Boyadzhiev Departmet of Mathematics ad Statistics Ohio Norther

More information

A solid Foundation for q-appell Polynomials

A solid Foundation for q-appell Polynomials Advaces i Dyamical Systems ad Applicatios ISSN 0973-5321, Volume 10, Number 1, pp. 27 35 2015) http://campus.mst.edu/adsa A solid Foudatio for -Appell Polyomials Thomas Erst Uppsala Uiversity Departmet

More information

Abstract. 1. Introduction This note is a supplement to part I ([4]). Let. F x (1.1) x n (1.2) Then the moments L x are the Catalan numbers

Abstract. 1. Introduction This note is a supplement to part I ([4]). Let. F x (1.1) x n (1.2) Then the moments L x are the Catalan numbers Abstract Some elemetary observatios o Narayaa polyomials ad related topics II: -Narayaa polyomials Joha Cigler Faultät für Mathemati Uiversität Wie ohacigler@uivieacat We show that Catala umbers cetral

More information

The r-generalized Fibonacci Numbers and Polynomial Coefficients

The r-generalized Fibonacci Numbers and Polynomial Coefficients It. J. Cotemp. Math. Scieces, Vol. 3, 2008, o. 24, 1157-1163 The r-geeralized Fiboacci Numbers ad Polyomial Coefficiets Matthias Schork Camillo-Sitte-Weg 25 60488 Frakfurt, Germay mschork@member.ams.org,

More information

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION J Korea Math Soc 44 (2007), No 2, pp 487 498 GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION Gi-Sag Cheo ad Moawwad E A El-Miawy Reprited from the Joural of the Korea Mathematical

More information

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ.

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ. 2 5. Weighted umber of late jobs 5.1. Release dates ad due dates: maximimizig the weight of o-time jobs Oce we add release dates, miimizig the umber of late jobs becomes a sigificatly harder problem. For

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

8. Applications To Linear Differential Equations

8. Applications To Linear Differential Equations 8. Applicatios To Liear Differetial Equatios 8.. Itroductio 8.. Review Of Results Cocerig Liear Differetial Equatios Of First Ad Secod Orders 8.3. Eercises 8.4. Liear Differetial Equatios Of Order N 8.5.

More information

The log-concavity and log-convexity properties associated to hyperpell and hyperpell-lucas sequences

The log-concavity and log-convexity properties associated to hyperpell and hyperpell-lucas sequences Aales Mathematicae et Iformaticae 43 2014 pp. 3 12 http://ami.etf.hu The log-cocavity ad log-covexity properties associated to hyperpell ad hyperpell-lucas sequeces Moussa Ahmia ab, Hacèe Belbachir b,

More information

CALCULATING FIBONACCI VECTORS

CALCULATING FIBONACCI VECTORS THE GENERALIZED BINET FORMULA FOR CALCULATING FIBONACCI VECTORS Stuart D Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithacaedu ad Dai Novak Departmet

More information

Number of Spanning Trees of Circulant Graphs C 6n and their Applications

Number of Spanning Trees of Circulant Graphs C 6n and their Applications Joural of Mathematics ad Statistics 8 (): 4-3, 0 ISSN 549-3644 0 Sciece Publicatios Number of Spaig Trees of Circulat Graphs C ad their Applicatios Daoud, S.N. Departmet of Mathematics, Faculty of Sciece,

More information

~W I F

~W I F A FIBONACCI PROPERTY OF WYTHOFF PAIRS ROBERT SILBER North Carolia State Uiversity, Raleigh, North Carolia 27607 I this paper we poit out aother of those fasciatig "coicideces" which are so characteristically

More information

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS VERNER E. HOGGATT, JR. Sa Jose State Uiversity, Sa Jose, Califoria 95192 ad CALVIN T. LONG Washigto State Uiversity, Pullma, Washigto 99163

More information

ON RUEHR S IDENTITIES

ON RUEHR S IDENTITIES ON RUEHR S IDENTITIES HORST ALZER AND HELMUT PRODINGER Abstract We apply completely elemetary tools to achieve recursio formulas for four polyomials with biomial coefficiets I particular, we obtai simple

More information

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA.

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA. INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 2008, #A05 Q-BINOMIALS AND THE GREATEST COMMON DIVISOR Keith R. Slavi 8474 SW Chevy Place, Beaverto, Orego 97008, USA slavi@dsl-oly.et Received:

More information

-ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION

-ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION NEW NEWTON-TYPE METHOD WITH k -ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION R. Thukral Padé Research Cetre, 39 Deaswood Hill, Leeds West Yorkshire, LS7 JS, ENGLAND ABSTRACT The objective

More information

The Arakawa-Kaneko Zeta Function

The Arakawa-Kaneko Zeta Function The Arakawa-Kaeko Zeta Fuctio Marc-Atoie Coppo ad Berard Cadelpergher Nice Sophia Atipolis Uiversity Laboratoire Jea Alexadre Dieudoé Parc Valrose F-0608 Nice Cedex 2 FRANCE Marc-Atoie.COPPO@uice.fr Berard.CANDELPERGHER@uice.fr

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

EVALUATION OF SUMS INVOLVING PRODUCTS OF GAUSSIAN q-binomial COEFFICIENTS WITH APPLICATIONS

EVALUATION OF SUMS INVOLVING PRODUCTS OF GAUSSIAN q-binomial COEFFICIENTS WITH APPLICATIONS EALATION OF SMS INOLING PRODCTS OF GASSIAN -BINOMIAL COEFFICIENTS WITH APPLICATIONS EMRAH KILIÇ* AND HELMT PRODINGER** Abstract Sums of products of two Gaussia -biomial coefficiets are ivestigated oe of

More information

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? 1. My Motivation Some Sort of an Introduction

WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? 1. My Motivation Some Sort of an Introduction WHEN IS THE (CO)SINE OF A RATIONAL ANGLE EQUAL TO A RATIONAL NUMBER? JÖRG JAHNEL 1. My Motivatio Some Sort of a Itroductio Last term I taught Topological Groups at the Göttige Georg August Uiversity. This

More information

COMPLEX FACTORIZATIONS OF THE GENERALIZED FIBONACCI SEQUENCES {q n } Sang Pyo Jun

COMPLEX FACTORIZATIONS OF THE GENERALIZED FIBONACCI SEQUENCES {q n } Sang Pyo Jun Korea J. Math. 23 2015) No. 3 pp. 371 377 http://dx.doi.org/10.11568/kjm.2015.23.3.371 COMPLEX FACTORIZATIONS OF THE GENERALIZED FIBONACCI SEQUENCES {q } Sag Pyo Ju Abstract. I this ote we cosider a geeralized

More information

Dirichlet s Theorem on Arithmetic Progressions

Dirichlet s Theorem on Arithmetic Progressions Dirichlet s Theorem o Arithmetic Progressios Athoy Várilly Harvard Uiversity, Cambridge, MA 0238 Itroductio Dirichlet s theorem o arithmetic progressios is a gem of umber theory. A great part of its beauty

More information

6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition

6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition 6. Kalma filter implemetatio for liear algebraic equatios. Karhue-Loeve decompositio 6.1. Solvable liear algebraic systems. Probabilistic iterpretatio. Let A be a quadratic matrix (ot obligatory osigular.

More information

The Riemann Zeta Function

The Riemann Zeta Function Physics 6A Witer 6 The Riema Zeta Fuctio I this ote, I will sketch some of the mai properties of the Riema zeta fuctio, ζ(x). For x >, we defie ζ(x) =, x >. () x = For x, this sum diverges. However, we

More information

Generating Functions for Laguerre Type Polynomials. Group Theoretic method

Generating Functions for Laguerre Type Polynomials. Group Theoretic method It. Joural of Math. Aalysis, Vol. 4, 2010, o. 48, 257-266 Geeratig Fuctios for Laguerre Type Polyomials α of Two Variables L ( xy, ) by Usig Group Theoretic method Ajay K. Shula* ad Sriata K. Meher** *Departmet

More information

Evaluation of Some Non-trivial Integrals from Finite Products and Sums

Evaluation of Some Non-trivial Integrals from Finite Products and Sums Turkish Joural of Aalysis umber Theory 6 Vol. o. 6 7-76 Available olie at http://pubs.sciepub.com/tjat//6/5 Sciece Educatio Publishig DOI:.69/tjat--6-5 Evaluatio of Some o-trivial Itegrals from Fiite Products

More information

Recursive Algorithm for Generating Partitions of an Integer. 1 Preliminary

Recursive Algorithm for Generating Partitions of an Integer. 1 Preliminary Recursive Algorithm for Geeratig Partitios of a Iteger Sug-Hyuk Cha Computer Sciece Departmet, Pace Uiversity 1 Pace Plaza, New York, NY 10038 USA scha@pace.edu Abstract. This article first reviews the

More information

BINOMIAL PREDICTORS. + 2 j 1. Then n + 1 = The row of the binomial coefficients { ( n

BINOMIAL PREDICTORS. + 2 j 1. Then n + 1 = The row of the binomial coefficients { ( n BINOMIAL PREDICTORS VLADIMIR SHEVELEV arxiv:0907.3302v2 [math.nt] 22 Jul 2009 Abstract. For oegative itegers, k, cosider the set A,k = { [0, 1,..., ] : 2 k ( ). Let the biary epasio of + 1 be: + 1 = 2

More information

Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K-functions

Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K-functions J. Math. Aal. Appl. 297 2004 186 193 www.elsevier.com/locate/jmaa Some families of geeratig fuctios for the multiple orthogoal polyomials associated with modified Bessel K-fuctios M.A. Özarsla, A. Altı

More information

AN ALMOST LINEAR RECURRENCE. Donald E. Knuth Calif. Institute of Technology, Pasadena, Calif.

AN ALMOST LINEAR RECURRENCE. Donald E. Knuth Calif. Institute of Technology, Pasadena, Calif. AN ALMOST LINEAR RECURRENCE Doald E. Kuth Calif. Istitute of Techology, Pasadea, Calif. form A geeral liear recurrece with costat coefficiets has the U 0 = a l* U l = a 2 " ' " U r - l = a r ; u = b, u,

More information

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play.

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play. Number Theory Math 5840 otes. Sectio 1: Axioms. I umber theory we will geerally be workig with itegers, though occasioally fractios ad irratioals will come ito play. Notatio: Z deotes the set of all itegers

More information

ON THE LEHMER CONSTANT OF FINITE CYCLIC GROUPS

ON THE LEHMER CONSTANT OF FINITE CYCLIC GROUPS ON THE LEHMER CONSTANT OF FINITE CYCLIC GROUPS NORBERT KAIBLINGER Abstract. Results of Lid o Lehmer s problem iclude the value of the Lehmer costat of the fiite cyclic group Z/Z, for 5 ad all odd. By complemetary

More information

Complex Numbers Solutions

Complex Numbers Solutions Complex Numbers Solutios Joseph Zoller February 7, 06 Solutios. (009 AIME I Problem ) There is a complex umber with imagiary part 64 ad a positive iteger such that Fid. [Solutio: 697] 4i + + 4i. 4i 4i

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

Some remarks for codes and lattices over imaginary quadratic

Some remarks for codes and lattices over imaginary quadratic Some remarks for codes ad lattices over imagiary quadratic fields Toy Shaska Oaklad Uiversity, Rochester, MI, USA. Caleb Shor Wester New Eglad Uiversity, Sprigfield, MA, USA. shaska@oaklad.edu Abstract

More information

AMS Mathematics Subject Classification : 40A05, 40A99, 42A10. Key words and phrases : Harmonic series, Fourier series. 1.

AMS Mathematics Subject Classification : 40A05, 40A99, 42A10. Key words and phrases : Harmonic series, Fourier series. 1. J. Appl. Math. & Computig Vol. x 00y), No. z, pp. A RECURSION FOR ALERNAING HARMONIC SERIES ÁRPÁD BÉNYI Abstract. We preset a coveiet recursive formula for the sums of alteratig harmoic series of odd order.

More information

De la Vallée Poussin Summability, the Combinatorial Sum 2n 1

De la Vallée Poussin Summability, the Combinatorial Sum 2n 1 J o u r a l of Mathematics ad Applicatios JMA No 40, pp 5-20 (2017 De la Vallée Poussi Summability, the Combiatorial Sum 1 ( 2 ad the de la Vallée Poussi Meas Expasio Ziad S. Ali Abstract: I this paper

More information

Addition: Property Name Property Description Examples. a+b = b+a. a+(b+c) = (a+b)+c

Addition: Property Name Property Description Examples. a+b = b+a. a+(b+c) = (a+b)+c Notes for March 31 Fields: A field is a set of umbers with two (biary) operatios (usually called additio [+] ad multiplicatio [ ]) such that the followig properties hold: Additio: Name Descriptio Commutativity

More information

4 The Sperner property.

4 The Sperner property. 4 The Sperer property. I this sectio we cosider a surprisig applicatio of certai adjacecy matrices to some problems i extremal set theory. A importat role will also be played by fiite groups. I geeral,

More information

arxiv: v1 [math.fa] 3 Apr 2016

arxiv: v1 [math.fa] 3 Apr 2016 Aticommutator Norm Formula for Proectio Operators arxiv:164.699v1 math.fa] 3 Apr 16 Sam Walters Uiversity of Norther British Columbia ABSTRACT. We prove that for ay two proectio operators f, g o Hilbert

More information

On the Determinants and Inverses of Skew Circulant and Skew Left Circulant Matrices with Fibonacci and Lucas Numbers

On the Determinants and Inverses of Skew Circulant and Skew Left Circulant Matrices with Fibonacci and Lucas Numbers WSEAS TRANSACTIONS o MATHEMATICS Yu Gao Zhaoli Jiag Yapeg Gog O the Determiats ad Iverses of Skew Circulat ad Skew Left Circulat Matrices with Fiboacci ad Lucas Numbers YUN GAO Liyi Uiversity Departmet

More information

Chapter 1. Complex Numbers. Dr. Pulak Sahoo

Chapter 1. Complex Numbers. Dr. Pulak Sahoo Chapter 1 Complex Numbers BY Dr. Pulak Sahoo Assistat Professor Departmet of Mathematics Uiversity Of Kalyai West Begal, Idia E-mail : sahoopulak1@gmail.com 1 Module-2: Stereographic Projectio 1 Euler

More information

Section 1.1. Calculus: Areas And Tangents. Difference Equations to Differential Equations

Section 1.1. Calculus: Areas And Tangents. Difference Equations to Differential Equations Differece Equatios to Differetial Equatios Sectio. Calculus: Areas Ad Tagets The study of calculus begis with questios about chage. What happes to the velocity of a swigig pedulum as its positio chages?

More information

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials Math 60 www.timetodare.com 3. Properties of Divisio 3.3 Zeros of Polyomials 3.4 Complex ad Ratioal Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered

More information

Math 475, Problem Set #12: Answers

Math 475, Problem Set #12: Answers Math 475, Problem Set #12: Aswers A. Chapter 8, problem 12, parts (b) ad (d). (b) S # (, 2) = 2 2, sice, from amog the 2 ways of puttig elemets ito 2 distiguishable boxes, exactly 2 of them result i oe

More information

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis Recursive Algorithms Recurreces Computer Sciece & Egieerig 35: Discrete Mathematics Christopher M Bourke cbourke@cseuledu A recursive algorithm is oe i which objects are defied i terms of other objects

More information

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II C. T. LONG J. H. JORDAN* Washigto State Uiversity, Pullma, Washigto 1. INTRODUCTION I the first paper [2 ] i this series, we developed certai properties

More information

CERTAIN GENERAL BINOMIAL-FIBONACCI SUMS

CERTAIN GENERAL BINOMIAL-FIBONACCI SUMS CERTAIN GENERAL BINOMIAL-FIBONACCI SUMS J. W. LAYMAN Virgiia Polytechic Istitute State Uiversity, Blacksburg, Virgiia Numerous writers appear to have bee fasciated by the may iterestig summatio idetitites

More information

Commutativity in Permutation Groups

Commutativity in Permutation Groups Commutativity i Permutatio Groups Richard Wito, PhD Abstract I the group Sym(S) of permutatios o a oempty set S, fixed poits ad trasiet poits are defied Prelimiary results o fixed ad trasiet poits are

More information

Concavity of weighted arithmetic means with applications

Concavity of weighted arithmetic means with applications Arch. Math. 69 (1997) 120±126 0003-889X/97/020120-07 $ 2.90/0 Birkhäuser Verlag, Basel, 1997 Archiv der Mathematik Cocavity of weighted arithmetic meas with applicatios By ARKADY BERENSTEIN ad ALEK VAINSHTEIN*)

More information

Linear recurrence sequences and periodicity of multidimensional continued fractions

Linear recurrence sequences and periodicity of multidimensional continued fractions arxiv:1712.08810v1 [math.nt] 23 Dec 2017 Liear recurrece sequeces ad periodicity of multidimesioal cotiued fractios Nadir Murru Departmet of Mathematics Uiversity of Turi 10123 Turi, Italy E-mail: adir.murru@uito.it

More information

EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES

EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES LE MATEMATICHE Vol. LXXIII 208 Fasc. I, pp. 3 24 doi: 0.448/208.73.. EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES THOMAS ERNST We preset idetities of various kids for

More information

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series Applied Mathematical Scieces, Vol. 7, 03, o. 6, 3-337 HIKARI Ltd, www.m-hikari.com http://d.doi.org/0.988/ams.03.3430 Compariso Study of Series Approimatio ad Covergece betwee Chebyshev ad Legedre Series

More information

On a Problem Regarding the n-sectors of a Triangle

On a Problem Regarding the n-sectors of a Triangle Forum Geometricorum Volume 5 (2005) 47 52. FORUM GEOM ISSN 1534-1178 O a Problem Regardig the -Sectors of a Triagle Bart De Bruy Abstract. Let be a triagle with vertices A, B, C ad agles α = BAC, β = ÂBC,

More information

On the Linear Complexity of Feedback Registers

On the Linear Complexity of Feedback Registers O the Liear Complexity of Feedback Registers A. H. Cha M. Goresky A. Klapper Northeaster Uiversity Abstract I this paper, we study sequeces geerated by arbitrary feedback registers (ot ecessarily feedback

More information

arxiv: v3 [math.nt] 24 Dec 2017

arxiv: v3 [math.nt] 24 Dec 2017 DOUGALL S 5 F SUM AND THE WZ-ALGORITHM Abstract. We show how to prove the examples of a paper by Chu ad Zhag usig the WZ-algorithm. arxiv:6.085v [math.nt] Dec 07 Keywords. Geeralized hypergeometric series;

More information

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = = Review Problems ICME ad MS&E Refresher Course September 9, 0 Warm-up problems. For the followig matrices A = 0 B = C = AB = 0 fid all powers A,A 3,(which is A times A),... ad B,B 3,... ad C,C 3,... Solutio:

More information

Interesting Series Associated with Central Binomial Coefficients, Catalan Numbers and Harmonic Numbers

Interesting Series Associated with Central Binomial Coefficients, Catalan Numbers and Harmonic Numbers 3 47 6 3 Joural of Iteger Sequeces Vol. 9 06 Article 6.. Iterestig Series Associated with Cetral Biomial Coefficiets Catala Numbers ad Harmoic Numbers Hogwei Che Departmet of Mathematics Christopher Newport

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

A New Solution Method for the Finite-Horizon Discrete-Time EOQ Problem

A New Solution Method for the Finite-Horizon Discrete-Time EOQ Problem This is the Pre-Published Versio. A New Solutio Method for the Fiite-Horizo Discrete-Time EOQ Problem Chug-Lu Li Departmet of Logistics The Hog Kog Polytechic Uiversity Hug Hom, Kowloo, Hog Kog Phoe: +852-2766-7410

More information

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION Iteratioal Joural of Pure ad Applied Mathematics Volume 103 No 3 2015, 537-545 ISSN: 1311-8080 (prited versio); ISSN: 1314-3395 (o-lie versio) url: http://wwwijpameu doi: http://dxdoiorg/1012732/ijpamv103i314

More information

Some p-adic congruences for p q -Catalan numbers

Some p-adic congruences for p q -Catalan numbers Some p-adic cogrueces for p q -Catala umbers Floria Luca Istituto de Matemáticas Uiversidad Nacioal Autóoma de México C.P. 58089, Morelia, Michoacá, México fluca@matmor.uam.mx Paul Thomas Youg Departmet

More information

Summary: CORRELATION & LINEAR REGRESSION. GC. Students are advised to refer to lecture notes for the GC operations to obtain scatter diagram.

Summary: CORRELATION & LINEAR REGRESSION. GC. Students are advised to refer to lecture notes for the GC operations to obtain scatter diagram. Key Cocepts: 1) Sketchig of scatter diagram The scatter diagram of bivariate (i.e. cotaiig two variables) data ca be easily obtaied usig GC. Studets are advised to refer to lecture otes for the GC operatios

More information