6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition

Size: px
Start display at page:

Download "6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition"

Transcription

1 6. Kalma filter implemetatio for liear algebraic equatios. Karhue-Loeve decompositio 6.1. Solvable liear algebraic systems. Probabilistic iterpretatio. Let A be a quadratic matrix (ot obligatory osigular. Cosider a system of solvable liear algebraic equatio Ax = y, (6.1 that is uder sigular matrix A system (6.1 possesses a solutio. It is well kow that all solutios of (6.1 uder the sigular matrix A are described as follows: x = A y + ( I A A h, (6.2 where A is the Moore-Perose pseudoiverse matrix of A ad I is the uite matrix. The vectors A y ad ( I A A h are orthogoal i a sese their ier product is equal to zero. I fact, sice A A is symmetric matrix ad A AA = A (see Sectio 5.2 i Lect. 5 we have A y, ( I A Ah = h T (I A A T A y = h T (I A AA y = h T (A A AA y = 0. Hece, owig to a arbitrariess of h, the solutio A y has the miimal Euclidea orm. Without of a prior iformatio, it is impossible to fid a solutio correspodig to a specific h (uless A is osigular. We give ow a probabilistic descriptio of the solutio x = A y. Let X be a radom vector with EX = 0 ad Cov(X, X = I (here I is the uite matrix ad Y = AX. Assume the radom vector Y is observable (measurable, the matrix A is kow ad it is required to fid the best estimate of X. Clearly that as such estimate X = Ê(X Y ca be take. Notice that Cov(X, Y = Cov(X, XA T = A T ad Cov(Y, Y = ACov(X, XA T = AA T. Therefore, by Theorem 5.1 (Lect. 5, X = A T (AA T. O the other had, sice A T (AA T = A (see, Sectio 5.2, (6, we have Cosider ow the solutio x = A y. Set The X = A Y. (6.3 z = X T x. (6.4 E Xz = EA Y z = EA AXX T x = A ACov(X, Xx. 1

2 Further, sice Cov(X, X = I ad x = A y ad A AA = A, we have E Xz = x. ( Kalma filter for X. For a defiiteess, assume that A = A ad deote by a k, k = 1,..., rows of A. By Y k, k = 1,..., deote etries of Y. For otatioal coveiece, itroduce also a sequece X k, k = 0, 1,..., with X 0 = X ad X k = X k 1. Obviously, X k X. Nevertheless, these otios allow us to preset the relatio Y = AX i a form compatible with oiseless versio of (5.8 (Lect. 5 X k = X k 1 Y k = a k X k 1. (6.6 Sice the Kalma filter is also valid for the oiseless model, required oly the use of pseudoiverse matrices, for X k = Ê(X k M k, where M k is the liear space geerated by 1, Y 1,..., Y k, ad P k = E(X k X k (X k X k T the followig Kalma filter occurs X k = X k 1 + P k 1 a T ak P k 1 a T k Yk a k Xk 1 P k = P k 1 P k 1 a T k ak P k 1 a T ak (6.7 k P k 1 subject to the iitial coditios X 0 = 0 ad P 0 = I. Notice that, whereas X k X, we have X k = Ê(X M k. Hece X = X. Deote by A k the sub-matrix of A cotaiig first k rows of A ad by Y k the sub-vector of Y cotaiig first k etries of Y. Owig to Y k = A k X, we have X k = A k Y k. So, the Kalma filter geerates a sequece of projectios At the same time, sice we fid A 1 Y 1, A 2 Y 2,..., A Y (= A Y. X k X k = X A k y k = X A k A kx = (I A k A kx, P k = (I A k A k; (6.8 recall that Cov(X, X = I, (I A k A k is symmetric matrix, ad (A k A k 2 = A k A k (see, Sectio 5.2, Lect. 5. 2

3 6.3. Kalma filter for x. Deote by y k, k = 1,..., y k etries of y = Ax ad by y k the sub-vector of y cotaiig first k etries of y. Similar to (6.5, with z defied i (6.4, we fid E X k z = E X k X T x = EA k yk X T x Notice that ad = EA k A kxx T x = A k A kcov(x, Xx x = x. = A k A kx = A k yk := x k. (6.9 EY k z = EA k Cov(X, Xx = A k x = y k, EY k z = Ea k Cov(X, Xx = a t x = y k. (6.10 Now, takig ito the cosideratio (6.9 ad (6.10 ad multiplyig the left- ad right-had sides of the first equatio i (6.7 by z ad the takig the expectatio of the expressios obtaied, we trasform (6.7 ito the Kalma filter geeratig x k, k = 1,..., : x k = x k 1 + P k 1 a( T ak P k 1 a T k yk a k Xk 1 P k = P k 1 P k 1 a T k ak P k 1 a T ak (6.11 k P k 1, where x 0 = 0, P 0 = I. A atural questio arises: why it makes sese to use (6.11 for a computatio of A y? Our argumets are the followig. The algorithm give i (6.11 applies the simplest pseudoiverse operatio for ak P k 1 a T k for the scalar ak P k 1 a T k, so that { 1 ak P k 1 a T k = a k P k 1, if a a T k P k 1 a T k > 0 k 0, otherwise. (6.12 It is clear that (6.12, as ay pseudoiverse operatio, is ill-posed, sice a k P k 1 a T k decreases with icreasig k ad beig positive might be too 1 close to zero that the fractal a k P k 1 ca ot be computed correctly. a T k Nevertheless, a structure of (6.12 allows to cotrol the correctess of such type computatio. A verificatio of the computatio correctess heavily uses the fact that a k P k 1 a T k is the trace of the matrix P k 1 a T k a kp k 1 (i fact, by (6.8, trace(p k 1 a T k a kp k 1 = a k Pk 1 2 at k = a k P k 1 a T k. Cosequetly, we have { tracep k 1 a T k ak P k 1 a T ak 1, if a k P k 1 a T k k P k 1 = > 0 0, otherwise ad ay essetial deviatio from 0 or 1 fixes the icorrectess. The ext questio is what idicates a k P k 1 a T k = 0? 3

4 Lemma 6.1. a k P k 1 a T k = mi a k k 1 c j a j 2. Particularly, if c 1,...,c k 1 a k P k 1 a T k = 0, the the row a k is a liear combiatio of a 1,..., a k. Proof. Set = a k k 1 j=1 c ja j, where umbers a j s are chose such that to miimize the Euclidea orm 2. Let c be the vectorrow with etries c 1,..., c k ad otice that = a k ca k 1 ad so j=1 2 = a k 2 2a k A T k 1c T + ca k 1 A T k 1c T. Sice 2 is the miimal i c, the vector c solves the liear equatio c = 0, that is c(a k 1 A T k 1 = a ka T k 1 ad so c = a k A T k 1(A k 1 A T k 1 = a k A k 1. Hece, = a k (I A k 1 A k 1 ad therefore 2 = a k (I 2A k 1 A k 1 + (A k 1 A k 1 2 a k = a k (I A k 1 A k 1a T k = a k P k 1 a T k (for more details see Sectio 5.2 Lect. 5. Karhue-Loeve decompositio Let ξ k, k = 1,..., be zero mea sequece of radom variables with the correlatio fuctio R(k, l. From poit of view of a theoretical cosideratio ad simulatio as well, it is useful if ξ k are geerated with a help of liear trasformatio of a white oise similar to differet models of statioary radom sequeces i the wide sese give i Lect Orthoormal eigevectors vectors of correlatio matrix. A matrix R = R with etries R(k, l is the correlatio matrix of ξ = ξ 1 ξ 2., that is R = EξξT ad ξ so R is oegative defiite matrix (i fact, x T Rx = Ex ξ ξ T x = E x T ξ 2 0. It is well kow from Theory of matrices that eigevectors of a oegative defiite matrix ca be trasformed i a system of orthoormal vectors. I other words, eigevectors of R ϕ 1 = (ϕ(1, 1,..., ϕ(1, ϕ 2 = (ϕ(2, 1,..., ϕ(2,... =... ϕ N = (ϕ(n, 1,..., ϕ(, 4

5 ca be chose such that for ay k, l ϕk, ϕ l = ϕ(k, jϕ(l, j = j=1 { 1, k = l 0, otherwise. (6.13 Deote S the quadratic matrix with rows ϕ 1, ϕ 2,..., ϕ ad otice that (6.13 provides S T S = I, where I is the uite matrix. Hece, S T = S 1 ad S is called orthogoal matrix. Deote by λ j the right eigevector of R correspodig to ϕ j : Rϕ j = λ j ϕ j. Owig to properties of S, we have λ 1 ϕ 1 λ 2 ϕ 2 S T RS = S T R. λ ϕ = diag(λ 1,..., λ, (6.14 where diag(λ 1,..., λ N is the diagoal matrix with eigevalues of R o the diagoal. Sice R is the oegative matrix, its eigevalues are oegative as well Karhue-Loeve theorem. Theorem 6.2. There exists zero mea radom vector with orthogoal etries ε 1, ε 2,..., ε with Eε 2 j 1 such that for every k = 1, 2,..., ξ k = λj ϕ(k, jε j. (6.15 j=1 Proof. Assume first that R is osigular matrix, that is all λ j s are positive. The diag 1 (λ 1, λ 2,..., λ = diag(λ 1 1, λ 1 2,..., λ 1. Set ε = diag(λ 1/2 1, λ 1/2 S T ξ. (6.16 Notice that Eξ = 0 ad Eξξ T = diag(λ 1/2 1, λ 1/2 S T RSdiag(λ 1/2 1, λ 1/2 = diag(λ 1/2 1, λ 1/2 diag(λ1, λ 2,..., λ diag(λ 1/2 1, λ 1/2 = I, that is etries of radom vector ε are zero mea ad orthogoal. Further, sice S T = S 1 ad diag 1( λ 1/2 1, λ 1/2 ( 1/2 = diag λ, (6.15 is implied by (6.16 uder osigular R, that is Sε. (6.17 ξ = diag ( λ 1/2 If R is sigular, the, istead of (6.16, let us itroduce ε = diag (λ 1/2 5 S T ξ, (6.18

6 here diag is defied similarly to diag 1 with zeros located o same place where λ s are zeros. Now, itroduce zero mea radom vector (colum of ξ size η with orthogoal etries of the uite variace. Also assume that η ad ξ are orthogoal ad itroduce ε = ( I diag ( λ 1/2 diag (λ 1/2 (6.19 Heceforth, omittig argumets i diag(λ 1/2 2,..., λ 1/2, write. ε = ε + ε = diag S T ξ + ( I diag diag η. (6.20 Takig ito cosideratio of the pseudoiverse matrix properties (see, Sectio 5.2 i Lect. 5 it is readily to check that Eε = 0 ad Eεε T = I. Uder sigular R, the formula, give i (6.17, remais with ε from (6.20. Ideed, deote by ξ the right had of (6.17 with that ε ad show that ξ = ξ with probability oe. For this purpose, it suffices to prove that E ξ ξ 2 = 0. Write E ξ ξ 2 = E(ξ ξ(ξ ξ T = ( I Sdiag( diag ( S T R ( I Sdiag( diag ( S T T = ( I Sdiag( diag ( S T Sdiag 2 ( S T ( I Sdiag( diag ( S T = 0. Remark 6.3. The Karhue-Loeve decompositio holds true for a radom vector ξ with etries from a coutable set ξ 1, ξ 2,..., ξ,..., provided that R(k, k <. k=1 6

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Algebra of Least Squares

Algebra of Least Squares October 19, 2018 Algebra of Least Squares Geometry of Least Squares Recall that out data is like a table [Y X] where Y collects observatios o the depedet variable Y ad X collects observatios o the k-dimesioal

More information

Session 5. (1) Principal component analysis and Karhunen-Loève transformation

Session 5. (1) Principal component analysis and Karhunen-Loève transformation 200 Autum semester Patter Iformatio Processig Topic 2 Image compressio by orthogoal trasformatio Sessio 5 () Pricipal compoet aalysis ad Karhue-Loève trasformatio Topic 2 of this course explais the image

More information

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT OCTOBER 7, 2016 LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT Geometry of LS We ca thik of y ad the colums of X as members of the -dimesioal Euclidea space R Oe ca

More information

Symmetric Matrices and Quadratic Forms

Symmetric Matrices and Quadratic Forms 7 Symmetric Matrices ad Quadratic Forms 7.1 DIAGONALIZAION OF SYMMERIC MARICES SYMMERIC MARIX A symmetric matrix is a matrix A such that. A = A Such a matrix is ecessarily square. Its mai diagoal etries

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture & 3: Pricipal Compoet Aalysis The text i black outlies high level ideas. The text i blue provides simple mathematical details to derive or get to the algorithm

More information

5.1 Review of Singular Value Decomposition (SVD)

5.1 Review of Singular Value Decomposition (SVD) MGMT 69000: Topics i High-dimesioal Data Aalysis Falll 06 Lecture 5: Spectral Clusterig: Overview (cotd) ad Aalysis Lecturer: Jiamig Xu Scribe: Adarsh Barik, Taotao He, September 3, 06 Outlie Review of

More information

Singular value decomposition. Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine

Singular value decomposition. Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine Lecture 11 Sigular value decompositio Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaie V1.2 07/12/2018 1 Sigular value decompositio (SVD) at a glace Motivatio: the image of the uit sphere S

More information

Lecture 8: October 20, Applications of SVD: least squares approximation

Lecture 8: October 20, Applications of SVD: least squares approximation Mathematical Toolkit Autum 2016 Lecturer: Madhur Tulsiai Lecture 8: October 20, 2016 1 Applicatios of SVD: least squares approximatio We discuss aother applicatio of sigular value decompositio (SVD) of

More information

LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK)

LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK) LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK) Everythig marked by is ot required by the course syllabus I this lecture, all vector spaces is over the real umber R. All vectors i R is viewed as a colum

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture 9: Pricipal Compoet Aalysis The text i black outlies mai ideas to retai from the lecture. The text i blue give a deeper uderstadig of how we derive or get

More information

MATH10212 Linear Algebra B Proof Problems

MATH10212 Linear Algebra B Proof Problems MATH22 Liear Algebra Proof Problems 5 Jue 26 Each problem requests a proof of a simple statemet Problems placed lower i the list may use the results of previous oes Matrices ermiats If a b R the matrix

More information

5.1. The Rayleigh s quotient. Definition 49. Let A = A be a self-adjoint matrix. quotient is the function. R(x) = x,ax, for x = 0.

5.1. The Rayleigh s quotient. Definition 49. Let A = A be a self-adjoint matrix. quotient is the function. R(x) = x,ax, for x = 0. 40 RODICA D. COSTIN 5. The Rayleigh s priciple ad the i priciple for the eigevalues of a self-adjoit matrix Eigevalues of self-adjoit matrices are easy to calculate. This sectio shows how this is doe usig

More information

Homework Set #3 - Solutions

Homework Set #3 - Solutions EE 15 - Applicatios of Covex Optimizatio i Sigal Processig ad Commuicatios Dr. Adre Tkaceko JPL Third Term 11-1 Homework Set #3 - Solutios 1. a) Note that x is closer to x tha to x l i the Euclidea orm

More information

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Inverse Matrix. A meaning that matrix B is an inverse of matrix A. Iverse Matrix Two square matrices A ad B of dimesios are called iverses to oe aother if the followig holds, AB BA I (11) The otio is dual but we ofte write 1 B A meaig that matrix B is a iverse of matrix

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 9 Multicolliearity Dr Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Multicolliearity diagostics A importat questio that

More information

Cov(aX, cy ) Var(X) Var(Y ) It is completely invariant to affine transformations: for any a, b, c, d R, ρ(ax + b, cy + d) = a.s. X i. as n.

Cov(aX, cy ) Var(X) Var(Y ) It is completely invariant to affine transformations: for any a, b, c, d R, ρ(ax + b, cy + d) = a.s. X i. as n. CS 189 Itroductio to Machie Learig Sprig 218 Note 11 1 Caoical Correlatio Aalysis The Pearso Correlatio Coefficiet ρ(x, Y ) is a way to measure how liearly related (i other words, how well a liear model

More information

TMA4205 Numerical Linear Algebra. The Poisson problem in R 2 : diagonalization methods

TMA4205 Numerical Linear Algebra. The Poisson problem in R 2 : diagonalization methods TMA4205 Numerical Liear Algebra The Poisso problem i R 2 : diagoalizatio methods September 3, 2007 c Eiar M Røquist Departmet of Mathematical Scieces NTNU, N-749 Trodheim, Norway All rights reserved A

More information

Matrix Algebra from a Statistician s Perspective BIOS 524/ Scalar multiple: ka

Matrix Algebra from a Statistician s Perspective BIOS 524/ Scalar multiple: ka Matrix Algebra from a Statisticia s Perspective BIOS 524/546. Matrices... Basic Termiology a a A = ( aij ) deotes a m matrix of values. Whe =, this is a am a m colum vector. Whe m= this is a row vector..2.

More information

Convergence of random variables. (telegram style notes) P.J.C. Spreij

Convergence of random variables. (telegram style notes) P.J.C. Spreij Covergece of radom variables (telegram style otes).j.c. Spreij this versio: September 6, 2005 Itroductio As we kow, radom variables are by defiitio measurable fuctios o some uderlyig measurable space

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

Math Solutions to homework 6

Math Solutions to homework 6 Math 175 - Solutios to homework 6 Cédric De Groote November 16, 2017 Problem 1 (8.11 i the book): Let K be a compact Hermitia operator o a Hilbert space H ad let the kerel of K be {0}. Show that there

More information

Solution to Chapter 2 Analytical Exercises

Solution to Chapter 2 Analytical Exercises Nov. 25, 23, Revised Dec. 27, 23 Hayashi Ecoometrics Solutio to Chapter 2 Aalytical Exercises. For ay ε >, So, plim z =. O the other had, which meas that lim E(z =. 2. As show i the hit, Prob( z > ε =

More information

Applications in Linear Algebra and Uses of Technology

Applications in Linear Algebra and Uses of Technology 1 TI-89: Let A 1 4 5 6 7 8 10 Applicatios i Liear Algebra ad Uses of Techology,adB 4 1 1 4 type i: [1,,;4,5,6;7,8,10] press: STO type i: A type i: [4,-1;-1,4] press: STO (1) Row Echelo Form: MATH/matrix

More information

Chimica Inorganica 3

Chimica Inorganica 3 himica Iorgaica Irreducible Represetatios ad haracter Tables Rather tha usig geometrical operatios, it is ofte much more coveiet to employ a ew set of group elemets which are matrices ad to make the rule

More information

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y

1 1 2 = show that: over variables x and y. [2 marks] Write down necessary conditions involving first and second-order partial derivatives for ( x0, y Questio (a) A square matrix A= A is called positive defiite if the quadratic form waw > 0 for every o-zero vector w [Note: Here (.) deotes the traspose of a matrix or a vector]. Let 0 A = 0 = show that:

More information

arxiv: v1 [math.pr] 13 Oct 2011

arxiv: v1 [math.pr] 13 Oct 2011 A tail iequality for quadratic forms of subgaussia radom vectors Daiel Hsu, Sham M. Kakade,, ad Tog Zhag 3 arxiv:0.84v math.pr] 3 Oct 0 Microsoft Research New Eglad Departmet of Statistics, Wharto School,

More information

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator Slide Set 13 Liear Model with Edogeous Regressors ad the GMM estimator Pietro Coretto pcoretto@uisa.it Ecoometrics Master i Ecoomics ad Fiace (MEF) Uiversità degli Studi di Napoli Federico II Versio: Friday

More information

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15 17. Joit distributios of extreme order statistics Lehma 5.1; Ferguso 15 I Example 10., we derived the asymptotic distributio of the maximum from a radom sample from a uiform distributio. We did this usig

More information

The Jordan Normal Form: A General Approach to Solving Homogeneous Linear Systems. Mike Raugh. March 20, 2005

The Jordan Normal Form: A General Approach to Solving Homogeneous Linear Systems. Mike Raugh. March 20, 2005 The Jorda Normal Form: A Geeral Approach to Solvig Homogeeous Liear Sstems Mike Raugh March 2, 25 What are we doig here? I this ote, we describe the Jorda ormal form of a matrix ad show how it ma be used

More information

Assignment 2 Solutions SOLUTION. ϕ 1 Â = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ.

Assignment 2 Solutions SOLUTION. ϕ 1  = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ. PHYSICS 34 QUANTUM PHYSICS II (25) Assigmet 2 Solutios 1. With respect to a pair of orthoormal vectors ϕ 1 ad ϕ 2 that spa the Hilbert space H of a certai system, the operator  is defied by its actio

More information

ON WELLPOSEDNESS QUADRATIC FUNCTION MINIMIZATION PROBLEM ON INTERSECTION OF TWO ELLIPSOIDS * M. JA]IMOVI], I. KRNI] 1.

ON WELLPOSEDNESS QUADRATIC FUNCTION MINIMIZATION PROBLEM ON INTERSECTION OF TWO ELLIPSOIDS * M. JA]IMOVI], I. KRNI] 1. Yugoslav Joural of Operatios Research 1 (00), Number 1, 49-60 ON WELLPOSEDNESS QUADRATIC FUNCTION MINIMIZATION PROBLEM ON INTERSECTION OF TWO ELLIPSOIDS M. JA]IMOVI], I. KRNI] Departmet of Mathematics

More information

Problem Set 2 Solutions

Problem Set 2 Solutions CS271 Radomess & Computatio, Sprig 2018 Problem Set 2 Solutios Poit totals are i the margi; the maximum total umber of poits was 52. 1. Probabilistic method for domiatig sets 6pts Pick a radom subset S

More information

Application to Random Graphs

Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors 5 Eigevalues ad Eigevectors 5.3 DIAGONALIZATION DIAGONALIZATION Example 1: Let. Fid a formula for A k, give that P 1 1 = 1 2 ad, where Solutio: The stadard formula for the iverse of a 2 2 matrix yields

More information

Estimation of the Mean and the ACVF

Estimation of the Mean and the ACVF Chapter 5 Estimatio of the Mea ad the ACVF A statioary process {X t } is characterized by its mea ad its autocovariace fuctio γ ), ad so by the autocorrelatio fuctio ρ ) I this chapter we preset the estimators

More information

PROBLEM SET I (Suggested Solutions)

PROBLEM SET I (Suggested Solutions) Eco3-Fall3 PROBLE SET I (Suggested Solutios). a) Cosider the followig: x x = x The quadratic form = T x x is the required oe i matrix form. Similarly, for the followig parts: x 5 b) x = = x c) x x x x

More information

36-755, Fall 2017 Homework 5 Solution Due Wed Nov 15 by 5:00pm in Jisu s mailbox

36-755, Fall 2017 Homework 5 Solution Due Wed Nov 15 by 5:00pm in Jisu s mailbox Poits: 00+ pts total for the assigmet 36-755, Fall 07 Homework 5 Solutio Due Wed Nov 5 by 5:00pm i Jisu s mailbox We first review some basic relatios with orms ad the sigular value decompositio o matrices

More information

CALCULATION OF FIBONACCI VECTORS

CALCULATION OF FIBONACCI VECTORS CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College

More information

State Space Representation

State Space Representation Optimal Cotrol, Guidace ad Estimatio Lecture 2 Overview of SS Approach ad Matrix heory Prof. Radhakat Padhi Dept. of Aerospace Egieerig Idia Istitute of Sciece - Bagalore State Space Represetatio Prof.

More information

Lecture 3 The Lebesgue Integral

Lecture 3 The Lebesgue Integral Lecture 3: The Lebesgue Itegral 1 of 14 Course: Theory of Probability I Term: Fall 2013 Istructor: Gorda Zitkovic Lecture 3 The Lebesgue Itegral The costructio of the itegral Uless expressly specified

More information

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer. 6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

More information

arxiv: v1 [math.fa] 3 Apr 2016

arxiv: v1 [math.fa] 3 Apr 2016 Aticommutator Norm Formula for Proectio Operators arxiv:164.699v1 math.fa] 3 Apr 16 Sam Walters Uiversity of Norther British Columbia ABSTRACT. We prove that for ay two proectio operators f, g o Hilbert

More information

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled

The picture in figure 1.1 helps us to see that the area represents the distance traveled. Figure 1: Area represents distance travelled 1 Lecture : Area Area ad distace traveled Approximatig area by rectagles Summatio The area uder a parabola 1.1 Area ad distace Suppose we have the followig iformatio about the velocity of a particle, how

More information

Generalized Semi- Markov Processes (GSMP)

Generalized Semi- Markov Processes (GSMP) Geeralized Semi- Markov Processes (GSMP) Summary Some Defiitios Markov ad Semi-Markov Processes The Poisso Process Properties of the Poisso Process Iterarrival times Memoryless property ad the residual

More information

Topics in Eigen-analysis

Topics in Eigen-analysis Topics i Eige-aalysis Li Zajiag 28 July 2014 Cotets 1 Termiology... 2 2 Some Basic Properties ad Results... 2 3 Eige-properties of Hermitia Matrices... 5 3.1 Basic Theorems... 5 3.2 Quadratic Forms & Noegative

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

Chapter Vectors

Chapter Vectors Chapter 4. Vectors fter readig this chapter you should be able to:. defie a vector. add ad subtract vectors. fid liear combiatios of vectors ad their relatioship to a set of equatios 4. explai what it

More information

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014.

Product measures, Tonelli s and Fubini s theorems For use in MAT3400/4400, autumn 2014 Nadia S. Larsen. Version of 13 October 2014. Product measures, Toelli s ad Fubii s theorems For use i MAT3400/4400, autum 2014 Nadia S. Larse Versio of 13 October 2014. 1. Costructio of the product measure The purpose of these otes is to preset the

More information

Problem Set 4 Due Oct, 12

Problem Set 4 Due Oct, 12 EE226: Radom Processes i Systems Lecturer: Jea C. Walrad Problem Set 4 Due Oct, 12 Fall 06 GSI: Assae Gueye This problem set essetially reviews detectio theory ad hypothesis testig ad some basic otios

More information

Matrices and vectors

Matrices and vectors Oe Matrices ad vectors This book takes for grated that readers have some previous kowledge of the calculus of real fuctios of oe real variable It would be helpful to also have some kowledge of liear algebra

More information

Determinants of order 2 and 3 were defined in Chapter 2 by the formulae (5.1)

Determinants of order 2 and 3 were defined in Chapter 2 by the formulae (5.1) 5. Determiats 5.. Itroductio 5.2. Motivatio for the Choice of Axioms for a Determiat Fuctios 5.3. A Set of Axioms for a Determiat Fuctio 5.4. The Determiat of a Diagoal Matrix 5.5. The Determiat of a Upper

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

1 Last time: similar and diagonalizable matrices

1 Last time: similar and diagonalizable matrices Last time: similar ad diagoalizable matrices Let be a positive iteger Suppose A is a matrix, v R, ad λ R Recall that v a eigevector for A with eigevalue λ if v ad Av λv, or equivaletly if v is a ozero

More information

A class of spectral bounds for Max k-cut

A class of spectral bounds for Max k-cut A class of spectral bouds for Max k-cut Miguel F. Ajos, José Neto December 07 Abstract Let G be a udirected ad edge-weighted simple graph. I this paper we itroduce a class of bouds for the maximum k-cut

More information

Notes on Snell Envelops and Examples

Notes on Snell Envelops and Examples Notes o Sell Evelops ad Examples Example (Secretary Problem): Coside a pool of N cadidates whose qualificatios are represeted by ukow umbers {a > a 2 > > a N } from best to last. They are iterviewed sequetially

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

Lecture 3 : Random variables and their distributions

Lecture 3 : Random variables and their distributions Lecture 3 : Radom variables ad their distributios 3.1 Radom variables Let (Ω, F) ad (S, S) be two measurable spaces. A map X : Ω S is measurable or a radom variable (deoted r.v.) if X 1 (A) {ω : X(ω) A}

More information

Solutions to HW Assignment 1

Solutions to HW Assignment 1 Solutios to HW: 1 Course: Theory of Probability II Page: 1 of 6 Uiversity of Texas at Austi Solutios to HW Assigmet 1 Problem 1.1. Let Ω, F, {F } 0, P) be a filtered probability space ad T a stoppig time.

More information

7.1 Convergence of sequences of random variables

7.1 Convergence of sequences of random variables Chapter 7 Limit Theorems Throughout this sectio we will assume a probability space (, F, P), i which is defied a ifiite sequece of radom variables (X ) ad a radom variable X. The fact that for every ifiite

More information

Stochastic Matrices in a Finite Field

Stochastic Matrices in a Finite Field Stochastic Matrices i a Fiite Field Abstract: I this project we will explore the properties of stochastic matrices i both the real ad the fiite fields. We first explore what properties 2 2 stochastic matrices

More information

Matrix Theory, Math6304 Lecture Notes from October 25, 2012 taken by Manisha Bhardwaj

Matrix Theory, Math6304 Lecture Notes from October 25, 2012 taken by Manisha Bhardwaj Matrix Theory, Math6304 Lecture Notes from October 25, 2012 take by Maisha Bhardwaj Last Time (10/23/12) Example for low-rak perturbatio, re-examied Relatig eigevalues of matrices ad pricipal submatrices

More information

Matrix Algebra 2.2 THE INVERSE OF A MATRIX Pearson Education, Inc.

Matrix Algebra 2.2 THE INVERSE OF A MATRIX Pearson Education, Inc. 2 Matrix Algebra 2.2 THE INVERSE OF A MATRIX MATRIX OPERATIONS A matrix A is said to be ivertible if there is a matrix C such that CA = I ad AC = I where, the idetity matrix. I = I I this case, C is a

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

1 Duality revisited. AM 221: Advanced Optimization Spring 2016

1 Duality revisited. AM 221: Advanced Optimization Spring 2016 AM 22: Advaced Optimizatio Sprig 206 Prof. Yaro Siger Sectio 7 Wedesday, Mar. 9th Duality revisited I this sectio, we will give a slightly differet perspective o duality. optimizatio program: f(x) x R

More information

Math 61CM - Solutions to homework 3

Math 61CM - Solutions to homework 3 Math 6CM - Solutios to homework 3 Cédric De Groote October 2 th, 208 Problem : Let F be a field, m 0 a fixed oegative iteger ad let V = {a 0 + a x + + a m x m a 0,, a m F} be the vector space cosistig

More information

( ) (( ) ) ANSWERS TO EXERCISES IN APPENDIX B. Section B.1 VECTORS AND SETS. Exercise B.1-1: Convex sets. are convex, , hence. and. (a) Let.

( ) (( ) ) ANSWERS TO EXERCISES IN APPENDIX B. Section B.1 VECTORS AND SETS. Exercise B.1-1: Convex sets. are convex, , hence. and. (a) Let. Joh Riley 8 Jue 03 ANSWERS TO EXERCISES IN APPENDIX B Sectio B VECTORS AND SETS Exercise B-: Covex sets (a) Let 0 x, x X, X, hece 0 x, x X ad 0 x, x X Sice X ad X are covex, x X ad x X The x X X, which

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

First, note that the LS residuals are orthogonal to the regressors. X Xb X y = 0 ( normal equations ; (k 1) ) So,

First, note that the LS residuals are orthogonal to the regressors. X Xb X y = 0 ( normal equations ; (k 1) ) So, 0 2. OLS Part II The OLS residuals are orthogoal to the regressors. If the model icludes a itercept, the orthogoality of the residuals ad regressors gives rise to three results, which have limited practical

More information

THE KALMAN FILTER RAUL ROJAS

THE KALMAN FILTER RAUL ROJAS THE KALMAN FILTER RAUL ROJAS Abstract. This paper provides a getle itroductio to the Kalma filter, a umerical method that ca be used for sesor fusio or for calculatio of trajectories. First, we cosider

More information

Brief Review of Functions of Several Variables

Brief Review of Functions of Several Variables Brief Review of Fuctios of Several Variables Differetiatio Differetiatio Recall, a fuctio f : R R is differetiable at x R if ( ) ( ) lim f x f x 0 exists df ( x) Whe this limit exists we call it or f(

More information

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) =

NICK DUFRESNE. 1 1 p(x). To determine some formulas for the generating function of the Schröder numbers, r(x) = a(x) = AN INTRODUCTION TO SCHRÖDER AND UNKNOWN NUMBERS NICK DUFRESNE Abstract. I this article we will itroduce two types of lattice paths, Schröder paths ad Ukow paths. We will examie differet properties of each,

More information

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001.

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001. Physics 324, Fall 2002 Dirac Notatio These otes were produced by David Kapla for Phys. 324 i Autum 2001. 1 Vectors 1.1 Ier product Recall from liear algebra: we ca represet a vector V as a colum vector;

More information

Chandrasekhar Type Algorithms. for the Riccati Equation of Lainiotis Filter

Chandrasekhar Type Algorithms. for the Riccati Equation of Lainiotis Filter Cotemporary Egieerig Scieces, Vol. 3, 00, o. 4, 9-00 Chadrasekhar ype Algorithms for the Riccati Equatio of Laiiotis Filter Nicholas Assimakis Departmet of Electroics echological Educatioal Istitute of

More information

Introduction to Optimization Techniques. How to Solve Equations

Introduction to Optimization Techniques. How to Solve Equations Itroductio to Optimizatio Techiques How to Solve Equatios Iterative Methods of Optimizatio Iterative methods of optimizatio Solutio of the oliear equatios resultig form a optimizatio problem is usually

More information

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1

Solution. 1 Solutions of Homework 1. Sangchul Lee. October 27, Problem 1.1 Solutio Sagchul Lee October 7, 017 1 Solutios of Homework 1 Problem 1.1 Let Ω,F,P) be a probability space. Show that if {A : N} F such that A := lim A exists, the PA) = lim PA ). Proof. Usig the cotiuity

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Bounds for the Extreme Eigenvalues Using the Trace and Determinant

Bounds for the Extreme Eigenvalues Using the Trace and Determinant ISSN 746-7659, Eglad, UK Joural of Iformatio ad Computig Sciece Vol 4, No, 9, pp 49-55 Bouds for the Etreme Eigevalues Usig the Trace ad Determiat Qi Zhog, +, Tig-Zhu Huag School of pplied Mathematics,

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

(VII.A) Review of Orthogonality

(VII.A) Review of Orthogonality VII.A Review of Orthogoality At the begiig of our study of liear trasformatios i we briefly discussed projectios, rotatios ad projectios. I III.A, projectios were treated i the abstract ad without regard

More information

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices A Hadamard-type lower boud for symmetric diagoally domiat positive matrices Christopher J. Hillar, Adre Wibisoo Uiversity of Califoria, Berkeley Jauary 7, 205 Abstract We prove a ew lower-boud form of

More information

Matrix Representation of Data in Experiment

Matrix Representation of Data in Experiment Matrix Represetatio of Data i Experimet Cosider a very simple model for resposes y ij : y ij i ij, i 1,; j 1,,..., (ote that for simplicity we are assumig the two () groups are of equal sample size ) Y

More information

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS Folia Mathematica Vol. 5, No., pp. 4 6 Acta Uiversitatis Lodziesis c 008 for Uiversity of Lódź Press SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS ROMAN WITU LA, DAMIAN S

More information

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations

ECE-S352 Introduction to Digital Signal Processing Lecture 3A Direct Solution of Difference Equations ECE-S352 Itroductio to Digital Sigal Processig Lecture 3A Direct Solutio of Differece Equatios Discrete Time Systems Described by Differece Equatios Uit impulse (sample) respose h() of a DT system allows

More information

Some examples of vector spaces

Some examples of vector spaces Roberto s Notes o Liear Algebra Chapter 11: Vector spaces Sectio 2 Some examples of vector spaces What you eed to kow already: The te axioms eeded to idetify a vector space. What you ca lear here: Some

More information

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx)

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx) Cosider the differetial equatio y '' k y 0 has particular solutios y1 si( kx) ad y cos( kx) I geeral, ay liear combiatio of y1 ad y, cy 1 1 cy where c1, c is also a solutio to the equatio above The reaso

More information

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4. 4. BASES I BAACH SPACES 39 4. BASES I BAACH SPACES Sice a Baach space X is a vector space, it must possess a Hamel, or vector space, basis, i.e., a subset {x γ } γ Γ whose fiite liear spa is all of X ad

More information

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = = Review Problems ICME ad MS&E Refresher Course September 9, 0 Warm-up problems. For the followig matrices A = 0 B = C = AB = 0 fid all powers A,A 3,(which is A times A),... ad B,B 3,... ad C,C 3,... Solutio:

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Theorem: Let A n n. In this case that A does reduce to I, we search for A 1 as the solution matrix X to the matrix equation A X = I i.e.

Theorem: Let A n n. In this case that A does reduce to I, we search for A 1 as the solution matrix X to the matrix equation A X = I i.e. Theorem: Let A be a square matrix The A has a iverse matrix if ad oly if its reduced row echelo form is the idetity I this case the algorithm illustrated o the previous page will always yield the iverse

More information

Introduction to Machine Learning DIS10

Introduction to Machine Learning DIS10 CS 189 Fall 017 Itroductio to Machie Learig DIS10 1 Fu with Lagrage Multipliers (a) Miimize the fuctio such that f (x,y) = x + y x + y = 3. Solutio: The Lagragia is: L(x,y,λ) = x + y + λ(x + y 3) Takig

More information

LONG SNAKES IN POWERS OF THE COMPLETE GRAPH WITH AN ODD NUMBER OF VERTICES

LONG SNAKES IN POWERS OF THE COMPLETE GRAPH WITH AN ODD NUMBER OF VERTICES J Lodo Math Soc (2 50, (1994, 465 476 LONG SNAKES IN POWERS OF THE COMPLETE GRAPH WITH AN ODD NUMBER OF VERTICES Jerzy Wojciechowski Abstract I [5] Abbott ad Katchalski ask if there exists a costat c >

More information

A Note On The Exponential Of A Matrix Whose Elements Are All 1

A Note On The Exponential Of A Matrix Whose Elements Are All 1 Applied Mathematics E-Notes, 8(208), 92-99 c ISSN 607-250 Available free at mirror sites of http://wwwmaththuedutw/ ame/ A Note O The Expoetial Of A Matrix Whose Elemets Are All Reza Farhadia Received

More information

CHAPTER I: Vector Spaces

CHAPTER I: Vector Spaces CHAPTER I: Vector Spaces Sectio 1: Itroductio ad Examples This first chapter is largely a review of topics you probably saw i your liear algebra course. So why cover it? (1) Not everyoe remembers everythig

More information

Singular Continuous Measures by Michael Pejic 5/14/10

Singular Continuous Measures by Michael Pejic 5/14/10 Sigular Cotiuous Measures by Michael Peic 5/4/0 Prelimiaries Give a set X, a σ-algebra o X is a collectio of subsets of X that cotais X ad ad is closed uder complemetatio ad coutable uios hece, coutable

More information

Introduction to Optimization Techniques

Introduction to Optimization Techniques Itroductio to Optimizatio Techiques Basic Cocepts of Aalysis - Real Aalysis, Fuctioal Aalysis 1 Basic Cocepts of Aalysis Liear Vector Spaces Defiitio: A vector space X is a set of elemets called vectors

More information

CS / MCS 401 Homework 3 grader solutions

CS / MCS 401 Homework 3 grader solutions CS / MCS 401 Homework 3 grader solutios assigmet due July 6, 016 writte by Jāis Lazovskis maximum poits: 33 Some questios from CLRS. Questios marked with a asterisk were ot graded. 1 Use the defiitio of

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 3 9//203 Large deviatios Theory. Cramér s Theorem Cotet.. Cramér s Theorem. 2. Rate fuctio ad properties. 3. Chage of measure techique.

More information