EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES

Size: px
Start display at page:

Download "EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES"

Transcription

1 LE MATEMATICHE Vol. LXXIII 208 Fasc. I, pp doi: 0.448/ EXPANSION FORMULAS FOR APOSTOL TYPE Q-APPELL POLYNOMIALS, AND THEIR SPECIAL CASES THOMAS ERNST We preset idetities of various kids for geeralized Apostol- Beroulli ad Apostol-Euler polyomials ad power sums, which resemble aalogues of formulas from the 2009 paper by Liu ad Wag. These formulas are divided ito two types: formulas with oly Apostol- Beroulli, ad oly Apostol-Euler polyomials, or so-called mixed formulas, which cotai polyomials of both kids. This ca be see as a logical coseuece of the fact that the Appell polyomials form a commutative rig. The fuctioal euatios for Ward umbers operatig o the expoetial fuctio, as well as symmetry argumets, are essetial for may of the proofs. We coclude by fidig multiplicatio formulas for two Appell polyomials of geeral form. This brigs us to the H polyomials, which were discussed i a previous paper.. Itroductio I the secod article o aalogues of two Appell polyomials [4], the Apostol- Beroulli ad Apostol-Euler polyomials, focus was o multiplicatio formulas ad o formulas icludig multiple λ power sums. I this article we will fid a correspodig multiplicatio formula for a more geeral Appell polyomial, which is a geeralizatio of both Apostol-Euler ad Apostol-H polyomials. Etrato i redazioe: 4 settembre 207

2 4 THOMAS ERNST There are may ew formulas o this subject, both Apostol-Appell ad similar Appell, which have recetly bee published; i all cases the limit λ is straightforward. Sometimes we write -aalogue of etc., ot botherig about the above dichotomy. This paper is orgaized as follows: I sectio we give a geeral itroductio och the defiitios. I sectio 2 we preset formulas with oly Apostol- Beroulli, ad oly Apostol-Euler polyomials. I sectio 3 we preset mixed formulas for these polyomials. I sectio 4, two geeral polyomials are defied, which geeralize the Apostol-Beroulli ad Apostol-Euler polyomials. The multiplicatio formulas for these polyomials are proved, which specialize to the Apostol-H polyomials. We ow start with the defiitios. Some of the otatio is well-kow ad ca be foud i the book []. The variables i, j,k,l,m,, vill deote positive itegers, ad λ,µ will deote complex umbers whe othig else is stated. Defiitio.. The Gauss biomial coefficiet are defied by {}!,k 0,,...,. k {k}!{ k}! Let a ad b be ay elemets with commutative multiplicatio. The the NWA additio is give by a b k0 a k b k, 0,,2,... 2 k If 0 < < ad z <, the expoetial fuctio is defied by E z k0 {k}! zk. 3 The followig theorem shows how Ward umbers usually appear i applicatios. Theorem.. Assume that,k N. The k k m +...+m k m,...,m, 4 where each partitio of k is multiplied with its umber of permutatios. Theorem.2. Fuctioal euatios for Ward umbers operatig o the expoetial fuctio. First assume that the letters m ad are idepedet,

3 ON Q-APPELL POLYNOMIALS 5 i.e. come from two differet fuctios, whe operatig with the fuctioal. Furthermore, mt <. The we have E m t E m t. 5 Furthermore, E jm E j m E m j. 6 Compare with the semirig of Ward umbers [, p. 67]. Proof. Formula 5 is proved as follows: E m t E t, 7 where the umber of s to the left is m. But this meas exactly E t m, ad the result follows. Defiitio.2. The geeralized NWA Apostol-Beroulli polyomials x are defied by B NWA,λ,, t λe t E xt t B NWA,λ,, x {}!, t + logλ < 2π. 8 Defiitio.3. The geeralized NWA Apostol-Euler polyomials x are defied by F NWA,λ,, 2 λe t + E xt t F NWA,λ,, x {}! Defiitio.4. The geeralized NWA H polyomials are defied by 2t λe t + E xt t H NWA,λ,, x {}! Defiitio.5. The geeralized JHC H polyomials are defied by 2t λe t + E xt t H, t + logλ < π. 9, t + logλ < π. 0 JHC,λ,, x, t + logλ < π. {}!

4 6 THOMAS ERNST Defiitio.6. The geeratig fuctio for H NWA,, x is give by 2t E t + E xt t H NWA,, x {}!, t < 2π. 2 Defiitio.7. The geeratig fuctio for H JHC,, x is give by E 2t t + E xt t H JHC,,, x {}!, t < 2π. 3 The polyomials i 2 ad 3 are aalogues of the geeralized H polyomials. Defiitio.8. The polyomials b λ,, x are defied by t gt λe t E xt Defiitio.9. The e polyomials are defied by 2 gt λe t + E xt t b λ,, x {}! t e λ,, x {}! The f polyomials are more geeral forms of the JHC H polyomials. Defiitio.0. The f polyomials f λ,, x are defied by 2 gt λe t + E xt t f λ,, x {}!. 6 Defiitio.. A aalogue of [7, 20 p. 38], the multiple power sum is defied by s l l NWA,λ,m, j λ k m k, 7 j l where k j + 2 j j, j i 0. Defiitio.2. A aalogue of [7, 46 p. 386], the multiple alteratig power sum is defied by σ l l NWA,λ,m, l j λ k m k, 8 j l where k j + 2 j j, j i 0.

5 ON Q-APPELL POLYNOMIALS 7 Theorem.3. A symmetry relatio for the geeralized H umbers. H JHC,λ,, H NWA,λ,,. 9 Proof. A simple computatio with geeratig fuctios shows the way: t H JHC,λ,, {}! λ t H NWA,λ,,. {}! 2t λ E t + 2tλE t λe t + 20 Euatig the coefficiets of t gives 9. Theorem.4. Assume that gt i 5 ad 6 are eual ad eve fuctios. The f λ,, x λ e λ,, x. 2 This implies a complemetary argumet theorem for the geeralized H polyomials. Theorem.5. H JHC,λ,, x λ H NWA,λ,, x, eve. 22 H JHC,λ,, x + λ H NWA,λ,, x, odd. 23 Defiitio.3. The followig fuctios amed the power sum, ad the alterate power sum with respect to λ, were itroduced i [4]. s NWA,λ,m, k0 λ k k m ad σ NWA,λ,m, Their respective geeratig fuctios are k0 k λ k k m. 24 m0 t m s NWA,λ,m, {m}! λ E t λe t 25 ad m0 t m σ NWA,λ,m, {m}! + λ E t λe t +

6 8 THOMAS ERNST 2. The first expasio formulas Theorem 2.. A triple sum of NWA Apostol-Euler polyomials is eual to aother triple sum of NWA Apostol-Euler polyomials. i j 2 F k NWA,λ i j, x F k, NWA,λ j i, 2 y σ, NWA,λ j, 3,i j 3 F k NWA,λ i,, i j F k NWA,λ j,, j x jm i. i y i λ jm m m0 27 Proof. Defie the followig fuctio, ote that f t is symmetric whe i, j have the same parity. f t E i j x yt i+ λ i j E i j t + λ i E i t + k λ j E j t + k 2 2k E i j x yt 2 k k 2 i+ λ i j E i j t + λ i E i t + λ j E j t + λ j. E j t + 28 By usig the formula for a geometric seuece, we ca expad f t i two ways: f t by26,9 2 2k F k NWA,λ i j x i t σ,, {}! NWA,λ j,m,i j t m m0 {m}! i y j t l 2 2k 2 k λ i E i t + k F k NWA,λ j,l, l0 2 k λ j E j t + k 2 i 2k m0 i m0 {l}! m λ jm m λ jm E l0 j t 0 {}! F k NWA,λ j,, i y. j x j y jm i l t l {l}! F k jm j NWA,λ i,l, x i The theorem follows by euatig the coefficiets of i t {}!. i t 29

7 ON Q-APPELL POLYNOMIALS 9 Theorem 2.2. Almost a aalogue of [5, p. 335]. Assume that i ad j are either both odd, or both eve. The we have j i F k NWA,λ i,, i j F k NWA,λ j,, i λ jm m F k NWA,λ i,, m0 j y j λ im m F k im i NWA,λ j,, x m0 j i y j x jm i 30 Proof. This follows from the previous proof, ad the usig the symmetry for i ad j. Theorem 2.3. A triple sum of NWA Apostol-Beroulli polyomials is eual to a double sum of NWA Apostol-Beroulli polyomials. i j 2 j 3 B k NWA,λ i,, i j B k NWA,λ j,, j x B k NWA,λ j, 2, i y s NWA,λ j, 3,i i y i λ jm B k jm j NWA,λ i,, x m0 i 3 Proof. Defie the followig symmetric fuctio φ t E i j x ytλ i j E i j t λ i E i t k λ j E j t k tk E i j x yt k k i t j t λ i j E i j t t 2k λ i E i t λ j E j t λ j E j t i k j k. 32 By usig the formula for a geometric seuece, we ca expad φ t i two

8 0 THOMAS ERNST ways: φ t by25 B k NWA,λ j,l, l0 j t k λ j E j t k t 2k i k j k B k NWA,λ i j x i t,, i y j t l {l}! j t 0 {}! Bk NWA,λ j,, i y. s {}! NWA,λ j,m,i j t m m0 {m}! t 2k i k j k i t k λ i E i t k i λ jm jm E j x j y m0 i i λ jm i l t l m0 l0 {l}! Bk NWA,λ i,l, The theorem follows by euatig the coefficiets of j x jm i t {}!. Theorem 2.4. A aalogue of [2, p. 2994], [, p. 55]. i j 2 j 3 B k NWA,λ i,, j i 2 i 3 B k NWA,λ j,, Proof. Use the symmetry i φ t. t 2k i t i k j k 33 j x B k NWA,λ j, 2, i y s NWA,λ j, 3,i i x B k NWA,λ i, 2, j y s NWA,λ i, 3, j 34 Theorem 2.5. A aalogue of [2, p. 2996]. We have i j λ l+m i j B k NWA,λ,, l0 m0 B k NWA,λ,, j i l0 m0 B k NWA,λ,, i y im j λ l+m j i B k NWA,λ,, j y jm i j x jl i il i x j 35

9 ON Q-APPELL POLYNOMIALS Proof. We ca expad the followig symmetric fuctio φ t by usig the formula for a geometric seuece: φ t E i j x ytλ i E i j t λ j E i j t λe i t k λe j t k t 2k 2 E i j x yt i k j k k k i t j t λ i E i j t λ j E i j t λe i t λe j t λe j t λe i t i j k k i k j k λ l+m i t j t l0 m0 λe i t λe j t jl im E j x i t E i y j i j t i k j k j λ m m0 2 0 i λ l l0 j 2t 2 0 { 2 }! Bk NWA,λ, 2, i t { }! Bk NWA,λ,, i y im j. j x jl i 36 The theorem follows by usig the symmetry i φ t ad chagig k to k. Theorem 2.6. A aalogue of [2, p. 2997]. We have i l0 j λ l+m B k NWA,λ,, m0 i j B k j l0 i λ l+m B k NWA,λ,, m0 NWA,λ,, j x jl i m j i B k i y NWA,λ,, il i x m. j j y 37 Proof. Similar to above.

10 2 THOMAS ERNST Theorem 2.7. A aalogue of [, p. 552]. We have i k j k i m j m m m0 B k NWA,λ j, m, j k i k B k NWA,λ i, m, i y i m0 l0 m λ jl B k NWA,λ i,m, j m i m j y j λ il B k NWA,λ j,m, l0 j x jl i i x il j. 38 Proof. We ca expad the followig symmetric fuctio ψ t by usig the formula for a geometric seuece: ψ t E i j x ytλ i j E i j t λ i E i t k λ j E j t k t2k E i j x yt i k j k k k i t j t λ i j E i j t λ i E i t λ j E j t λ j E j t k k i t j t i i k j k λ i E i t λ j E λ l j j t l0 jl E j x i t E i y j t i i i k j k l0 λ jl 0 j 2t { 2 }! Bk NWA,λ j i, 2 y, λ jl i m j m B k NWA,λ i,m, i t jl { }! Bk NWA,λ i, j, x i k j k j x jl i 0 m0 i m i l0 B k NWA,λ j i y t, m, {}!. 39 The theorem follows by usig the symmetry i ψ t. 3. Mixed formulas This is a cotiuatio of the very similar computatios i [4], to which we will refer.

11 ON Q-APPELL POLYNOMIALS 3 Corollary 3.. A aalogue of [0, 3 p. 34]. If i is eve the λ im im F NWA,λ 2,, i x m0 2 2 i k {} 2 k0 k 2 k k0 2 i {} 2 i i 2 k B NWA,λ i,k, 2 x σ NWA,λ 2, k,i 2 k i k F NWA,λ 2,k, i x s NWA,λ i, k,2 i m0 m λ 2m B NWA,λ i,, 2m 2 x. i Proof. Put j 2 i formula 56 [4], ad multiply by 2 {} Corollary 3.2. A aalogue of [0, 32 p. 34]. m0 m+ λ m 2m B NWA,λ,, x {} λ m 2m F NWA,λ,, x m Proof. Put i 2 i formula 40, replace x ad λ 2 by x 2 ad λ, ad multiply by {} 2 2. Corollary 3.3. A aalogue of [0, 33 p. 34]. m0 m λ jm B NWA,λ 2,, m0 j x jm 2 {} 2 k0 j k 2 k F NWA,λ j,k, 2 x s NWA,λ 2, k, j {} 2 j j λ 2m 2m F NWA,λ j,, 2 x. j k 42 Proof. Put i 2 i formula 56 [4], ad multiply by 2 2. The followig formula is a geeralizatio of [4, 57].

12 4 THOMAS ERNST Theorem 3.. A aalogue of [5, 3.9 p. 3356]. B k NWA,λ i,, i j 2 B k NWA,λ i,, i j F k NWA,λ j,, j x jm i Proof. Defie the followig fuctio. j x F k NWA,λ j i, 2 y σ, NWA,λ j, 3,i j 3 i y i λ jm m m0 g t E i j x yt i+ λ i j E i j t + λ i E i t k λ j E j t + k 2 k i t k E i j x yt k k i t 2 i+ λ i j E i j t + λ i E i t λ j E j t + λ j. E j t By usig the formula for a geometric seuece, we ca expad g t i two ways: g t by26 2 k i t k F k NWA,λ j,l, l0 2 k λ j E j t + k 2 k i t k i m0 B k NWA,λ i j x i t,, {}! m0 i y j t l i m0 m λ jm 2 k {l}! i t k m λ jm E l0 j t 0 {}! F k NWA,λ j,, i y. i t λ i E i t σ NWA,λ j,m,i j t m {m}! k j x j y jm i l t l jm {l}! Bk j NWA,λ i,l, x i The theorem follows by euatig the coefficiets of i t {}!. i t 45

13 ON Q-APPELL POLYNOMIALS 5 Theorem 3.2. A aalogue of [5, p. 3353]. Uder the assumptio that i is eve, we have i j 2 B k NWA,λ i j, x F k, NWA,λ j i, 2 y s, NWA,λ j, 3,i j 3 j y {} i k 2i k F k NWA,λ j, 2, i x s NWA,λ i, 3, j. i j 2 j 3 B k NWA,λ i,, 46 Proof. We ca write g t as follows: g t by25,44 F k NWA,λ j,l, l0 2 λ j E j t + 2 k 2 k i t k B k NWA,λ i j x i t s,, {}! NWA,λ j,m,i j t m m0 {m}! k 2 k {l}! i t k E i t i j x yt λ i E i t by25 λ i E i t i y j t l k λ i j E i j t F k NWA,λ j,, i x j t {}! i t k s NWA,λ i,m, j j t m B k m0 {m}! NWA,λ i,l, l0 j y i t l. {l}! 47 The theorem follows by euatig the coefficiets of t {}!. Theorem 3.3. A aalogue of [5, p. 3353]. Uder the assumptio that i is

14 6 THOMAS ERNST eve, i j F k NWA,λ j i y i,, m0 B k NWA,λ i,, {} i k 2i k F k NWA,λ j,k, j x jm k0 i k i x im j Proof. We ca expad g t as follows: g t by44 2 k i t k E i j x yt i t λ i E i t λ jm m i k j k B k NWA,λ i, k,. j y j λ im m0 k k 2 λ i j E i j t λ j E j t + λ i. E i t 48 2 k i t k 2 k λ j E j t + k 2 k i t k i t λ i E i t k j λ im im E i x m0 j j t j λ im i l t l m0 l0 {l}! Bk NWA,λ i j y,l, j t 0 {}! F k NWA,λ j,, i im x. j The theorem follows by euatig the coefficiets of Theorem 3.4. i j 2 j 3 F k NWA,λ i,, i j B k NWA,λ j,, t {}!. E i j yt 49 j x B k NWA,λ j, 2, i y s NWA,λ j, 3,i i y i m0 λ jm F k NWA,λ i,, j x jm i 50

15 Proof. Defie the followig fuctio ON Q-APPELL POLYNOMIALS 7 Ψ t E i j x ytλ i j E i j t λ i E i t + k λ j E j t k tk E i j x yt 2 k k j t λ i j E i j t 2 k λ i E i t + λ j E j t λ j E j t j k. 5 By usig the formula for a geometric seuece, we ca expad Ψ t i two ways: Ψ t by25 F k NWA,λ i j x i t s,, NWA,λ j,m,i j t m {m}! B k NWA,λ j,l, l0 j t k λ j E j t k i m0 2 k λ jm j k i y j t l {l}! {}! m0 2 k j k 2 k λ i E i t k i λ jm jm E j x j y m0 i i l t l l0 {l}! F k NWA,λ i,l, j t 0 {}! Bk NWA,λ j,, i y. j x jm i The theorem follows by euatig the coefficiets of t {}!. i t 2 k j k 52 The followig example illustrates that similar formulas with H polyomials ca easily be costructed. Theorem 3.5. i j 2 j 3 H k NWA,λ i,, i j B k NWA,λ j,, Proof. Use Ψ t agai. Theorem 3.6. A aalogue of [5, 3. p. 3356]. j x B k NWA,λ j, 2, i y s NWA,λ j, 3,i i y i λ jm H k jm j NWA,λ i,, x m0 i 53

16 8 THOMAS ERNST i j 2 j 3 F k NWA,λ i,, i j B k NWA,λ j,, Proof. Defie the followig fuctio j x B k NWA,λ j, 2, i y NWA,λ j, 3,i i y i λ jm F k jm j NWA,λ i,, x m0 i 54 f t E i j x ytλ i j E i j t λ i E i t + k λ j E j t k tk E i j x yt 2 k k j t λ i j E i j t λ i E i t + λ j E j t λ j E j t 2 k j k. 55 By usig the formula for a geometric seuece, we ca expad f t i two ways: f t by25 B k NWA,λ i j x i t,, B k NWA,λ j,l, l0 j t k λ j E j t k i m0 λ jm 2 k j k i y j t l {l}! s {}! NWA,λ j,m,i j t m m0 {m}! 2 k j k 2 k λ i E i t + k i λ jm jm E j x j y m0 i i l t l l0 {l}! F k NWA,λ i,l, j t 0 {}! Bk NWA,λ j,, i y. j x jm i The theorem follows by euatig the coefficiets of t {}!. i t 2 k j k Multiplicatio formulas We will ow defie two uite geeral Appell polyomials, which have some similarities with the Appell polyomials i [9]. The ames are chose to resemble the Euler ad Beroulli polyomials.

17 ON Q-APPELL POLYNOMIALS 9 Defiitio 4.. A aalogue of Lu, Luo [6, p. 4]. The geeratig fuctio for the geeralized NWA Apostol E polyomials of degree ad order, E NWA,λ,µ,θ;, x, is give by 2 µ t θ t E xt λe t + {}! E NWA,λ,µ,θ;, x,θ N. 57 Several Appell polyomials i this article are special cases of these polyomials, e.g. the Euler polyomial is the case θ 0, µ. Theorem 4.. A aalogue of [6, 2.3 p. 5], first multiplicatio formula for Apostol-E polyomials E NWA,λ,µ,θ;, m x m m θ λ k E k j NWA,λ m,µ,θ;, x, m j 58 where k j + 2 j m j m, m odd. Proof. E NWA,λ,µ,θ;, m x t {}! m 2 µ t θ λ m E m t + by6 2 µ t θ m θ λ m E m t + m m θ j i0 2 µ t θ λe t + E m xt λ i E i t E m xt j j λ k k E x m t m j λ k E NWA,λ m,µ,θ;, m θ k x t m {}!. 59 The theorem follows by euatig the coefficiets of t {}!. The followig formula oly applies for special values of the itegers. Theorem 4.2. A aalogue of [6, 2.4 p. 5], secod multiplicatio formula for Apostol-E polyomials. E NWA,λ,µ,θ;, m x 2 µ m + θ { + } θ, m λ k j j B NWA,λ m,+ θ, k x, m 60

18 20 THOMAS ERNST where k j + 2 j m j m, m eve, θ. Proof. E NWA,λ,µ,θ;, m x t {}! m 2 µ t θ λe t + E m xt 2 µ t θ λ m E m t λ i E i t E m xt i0 2 µ tm λ m E m t j λ k k t θ E x m t m m j t θ 2 µ m m j λ k B k NWA,λ m,; x t m {}! j 6 The theorem follows by euatig the coefficiets of t {}!. Corollary 4.2. A aalogue of [8, 2. p. 49], [6, p. 7], first multiplicatio formula for geeralized H polyomials. H NWA,λ,, m x m m λ k H k j NWA,λ m,, x, m 62 j where k j + 2 j m j m, m odd. Corollary 4.3. A aalogue of [8, 2.2 p. 49], [6, p. 7], secod multiplicatio formula for geeralized H polyomials. H NWA,λ,, m x 2 m m λ k j B k NWA,λ m,, x, m j 63 where k j + 2 j m j m, m eve. Theorem 4.3. A aalogue of [8, p. 5], a explicit formula for the multiple alteratig power sum: σ l l NWA,λ,, 2 l +l m0 + l m j0 H j NWA,λ,m, l j λ j+l j { + } l, j + l H l j NWA,λ,+l m,m,, 64

19 ON Q-APPELL POLYNOMIALS 2 Proof. We use the geeratig fuctio techiue. Put k j + 2 j j. It is assumed that j i 0, i. All zeros are eglected. σ l NWA,λ,, t by7 l {}! l j λ k k t {}! j l λe t λ 2 E 2 t + + λ E t l λ E t λe t + + λe l t λe t + l l λ E t j λe t l j j0 j λe t + λe t + by6 2t l l l j λ j+l j0 j H j t m NWA,λ,m, j + l m0 {m}! [ l j t i H NWA,λ,i, 2 l l l j λ j+l j { + } l, i0 +l m0 + l m {i}! j0 j + l H H j NWA,λ,m, l j NWA,λ,+l m,m, ] t {}!. 65 The theorem follows by euatig the coefficiets of t {}!. Theorem 4.4. For m odd, we have the followig recurrece relatio for Apostol-E -umbers. E l NWA,λ,µ,θ;, m l l j0 j m θ l E m j NWA,λ m,µ,θ; j, σ l 66 where k j + 2 j m j m i σ l NWA,λ, j, m. Proof. E l by58 NWA,λ,µ,θ;, m m θ l l λ k l j0 m m θ l m j m j m θ l E l j0 l λ k E l k NWA,λ m,µ,θ;, m l j k j E l NWA,λ m,µ,θ; j, NWA,λ m,µ,θ; j, l m l λ k NWA,λ, j, m, j by7 k LHS. 67

20 22 THOMAS ERNST Defiitio 4.4. The geeratig fuctio for the geeralized NWA Apostol C polyomials of degree ad order, C NWA,λ,θ;, x, is give by t θ t E xt λe t {}! C NWA,λ,θ;, x,θ N. 68 Theorem 4.5. Multiplicatio formula for Apostol-C polyomials C NWA,λ,θ;, m x m m θ where k j + 2 j m j m. Proof. λ k C k j NWA,λ m,θ;, x, m 69 j C NWA,λ,θ;, m x t θ t {}! m λ m E m t by6 t θ m θ λ m E m t m m θ j i0 t θ λe t E m xt λ i E i t E m xt j jλ k k E x m t m j λ k C NWA,λ m,θ;, m θ k x t m {}!. 70 The theorem follows by euatig the coefficiets of t {}!. 5. Discussio This was the first multiplicatio formula for a Appell polyomial of geeral form; the Ward umbers replace the itegers i the fuctio argumet. Certaily there are other geeral Appell polyomials with similar expasio ad multiplicatio formulas. May of the proofs use the formula for a geometric seuece i form ad the geeratig fuctio for the Appell polyomials ad the power sums. The itegers i ad j are crucial for the formulas; by the geeratig fuctio, if λ i, appears as idex i a polyomial, certaily the factor i will also appear. If the orders of two polyomials i a formula are k ad k, the last oe with

21 ON Q-APPELL POLYNOMIALS 23 idex λ j, ad argumet i y, surely a fuctio σ NWA,λ j,m,i or s NWA,λ j,m,i, together with j m will appear. If a polyomial has λ i, as idex, it will have j i the fuctio argumet, ad vice versa. These cosideratios also hold for the case. Eve if the reader is ot iterested i calculus, this paper is a good summary of the recet treds o Apostol type Appell polyomials; just put. REFERENCES [] Erst.T., A comprehesive treatmet of calculus, Birkhäuser 202. [2] Erst, T. O certai geeralized Appell polyomial expasios A. Uiv. Marie Curie, Sect. A 68, No. 2, [3] Erst, T. A solid foudatio for Appell Polyomials. ADSA 0, [4] Erst, T. O multiplicatio formulas for Apostol-Beroulli ad Apostol- Euler polyomials ad the multiple power sums, A. Uiv. Marie Curie, Sect. A 70, No., [5] Liu, Hogmei; Wag, Weipig Some idetities o the Beroulli, Euler ad Geocchi polyomials via power sums ad alterate power sums. Discrete Math , o. 0, [6] Lu, D., Luo, Q.: Some uified formulas ad represetatios for the Apostol-type polyomials. Advaces i Differece Euatios 205:37 [7] Luo, Q.-M. The multiplicatio formulas for the Apostol-Beroulli ad Apostol- Euler polyomials of higher order. Itegral Trasforms Spec. Fuct , o. 5-6, [8] Luo, Q.-M Multiplicatio formulas for Apostol-type polyomials ad multiple alteratig sums. A traslatio of Mat. Zametki 9 202, o., Math. Notes 9 202, o. -2, [9] T.R. Prabhakar ad Reva, A Appell cross-seuece suggested by the Beroulli ad Euler polyomials of geeral order. Idia J. Pure Appl. Math. 0 o , [0] Wag, Weipig; Wag, Wewe Some results o power sums ad Apostol-type polyomials. Itegral Trasforms Spec. Fuct , o. 3-4, [] Yag, Sheg-liag A idetity of symmetry for the Beroulli polyomials. Discrete Math , o. 4, [2] Zhag, Zhizheg; Yag, Haig Several idetities for the geeralized Apostol- Beroulli polyomials. Comput. Math. Appl , o. 2,

22 24 THOMAS ERNST THOMAS ERNST Departmet of Mathematics Uppsala Uiversity P.O. Box 480, SE Uppsala, Swede

A solid Foundation for q-appell Polynomials

A solid Foundation for q-appell Polynomials Advaces i Dyamical Systems ad Applicatios ISSN 0973-5321, Volume 10, Number 1, pp. 27 35 2015) http://campus.mst.edu/adsa A solid Foudatio for -Appell Polyomials Thomas Erst Uppsala Uiversity Departmet

More information

MAT 271 Project: Partial Fractions for certain rational functions

MAT 271 Project: Partial Fractions for certain rational functions MAT 7 Project: Partial Fractios for certai ratioal fuctios Prerequisite kowledge: partial fractios from MAT 7, a very good commad of factorig ad complex umbers from Precalculus. To complete this project,

More information

Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K-functions

Some families of generating functions for the multiple orthogonal polynomials associated with modified Bessel K-functions J. Math. Aal. Appl. 297 2004 186 193 www.elsevier.com/locate/jmaa Some families of geeratig fuctios for the multiple orthogoal polyomials associated with modified Bessel K-fuctios M.A. Özarsla, A. Altı

More information

A note on the p-adic gamma function and q-changhee polynomials

A note on the p-adic gamma function and q-changhee polynomials Available olie at wwwisr-publicatioscom/jmcs J Math Computer Sci, 18 (2018, 11 17 Research Article Joural Homepage: wwwtjmcscom - wwwisr-publicatioscom/jmcs A ote o the p-adic gamma fuctio ad q-chaghee

More information

AMS Mathematics Subject Classification : 40A05, 40A99, 42A10. Key words and phrases : Harmonic series, Fourier series. 1.

AMS Mathematics Subject Classification : 40A05, 40A99, 42A10. Key words and phrases : Harmonic series, Fourier series. 1. J. Appl. Math. & Computig Vol. x 00y), No. z, pp. A RECURSION FOR ALERNAING HARMONIC SERIES ÁRPÁD BÉNYI Abstract. We preset a coveiet recursive formula for the sums of alteratig harmoic series of odd order.

More information

Infinite Series and Improper Integrals

Infinite Series and Improper Integrals 8 Special Fuctios Ifiite Series ad Improper Itegrals Ifiite series are importat i almost all areas of mathematics ad egieerig I additio to umerous other uses, they are used to defie certai fuctios ad to

More information

1 6 = 1 6 = + Factorials and Euler s Gamma function

1 6 = 1 6 = + Factorials and Euler s Gamma function Royal Holloway Uiversity of Lodo Departmet of Physics Factorials ad Euler s Gamma fuctio Itroductio The is a self-cotaied part of the course dealig, essetially, with the factorial fuctio ad its geeralizatio

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

EVALUATION OF SUMS INVOLVING PRODUCTS OF GAUSSIAN q-binomial COEFFICIENTS WITH APPLICATIONS

EVALUATION OF SUMS INVOLVING PRODUCTS OF GAUSSIAN q-binomial COEFFICIENTS WITH APPLICATIONS EALATION OF SMS INOLING PRODCTS OF GASSIAN -BINOMIAL COEFFICIENTS WITH APPLICATIONS EMRAH KILIÇ* AND HELMT PRODINGER** Abstract Sums of products of two Gaussia -biomial coefficiets are ivestigated oe of

More information

Harmonic Number Identities Via Euler s Transform

Harmonic Number Identities Via Euler s Transform 1 2 3 47 6 23 11 Joural of Iteger Sequeces, Vol. 12 2009), Article 09.6.1 Harmoic Number Idetities Via Euler s Trasform Khristo N. Boyadzhiev Departmet of Mathematics Ohio Norther Uiversity Ada, Ohio 45810

More information

Introductions to HarmonicNumber2

Introductions to HarmonicNumber2 Itroductios to HarmoicNumber2 Itroductio to the differetiated gamma fuctios Geeral Almost simultaeously with the developmet of the mathematical theory of factorials, biomials, ad gamma fuctios i the 8th

More information

Sequences of Definite Integrals, Factorials and Double Factorials

Sequences of Definite Integrals, Factorials and Double Factorials 47 6 Joural of Iteger Sequeces, Vol. 8 (5), Article 5.4.6 Sequeces of Defiite Itegrals, Factorials ad Double Factorials Thierry Daa-Picard Departmet of Applied Mathematics Jerusalem College of Techology

More information

Some p-adic congruences for p q -Catalan numbers

Some p-adic congruences for p q -Catalan numbers Some p-adic cogrueces for p q -Catala umbers Floria Luca Istituto de Matemáticas Uiversidad Nacioal Autóoma de México C.P. 58089, Morelia, Michoacá, México fluca@matmor.uam.mx Paul Thomas Youg Departmet

More information

Introductions to PartitionsP

Introductions to PartitionsP Itroductios to PartitiosP Itroductio to partitios Geeral Iterest i partitios appeared i the 7th cetury whe G. W. Leibiz (669) ivestigated the umber of ways a give positive iteger ca be decomposed ito a

More information

SOME RELATIONS ON HERMITE MATRIX POLYNOMIALS. Levent Kargin and Veli Kurt

SOME RELATIONS ON HERMITE MATRIX POLYNOMIALS. Levent Kargin and Veli Kurt Mathematical ad Computatioal Applicatios, Vol. 18, No. 3, pp. 33-39, 013 SOME RELATIONS ON HERMITE MATRIX POLYNOMIALS Levet Kargi ad Veli Kurt Departmet of Mathematics, Faculty Sciece, Uiversity of Adeiz

More information

A q-analogue of some binomial coefficient identities of Y. Sun

A q-analogue of some binomial coefficient identities of Y. Sun A -aalogue of some biomial coefficiet idetities of Y. Su arxiv:008.469v2 [math.co] 5 Apr 20 Victor J. W. Guo ad Da-Mei Yag 2 Departmet of Mathematics, East Chia Normal Uiversity Shaghai 200062, People

More information

CHAPTER I: Vector Spaces

CHAPTER I: Vector Spaces CHAPTER I: Vector Spaces Sectio 1: Itroductio ad Examples This first chapter is largely a review of topics you probably saw i your liear algebra course. So why cover it? (1) Not everyoe remembers everythig

More information

The r-generalized Fibonacci Numbers and Polynomial Coefficients

The r-generalized Fibonacci Numbers and Polynomial Coefficients It. J. Cotemp. Math. Scieces, Vol. 3, 2008, o. 24, 1157-1163 The r-geeralized Fiboacci Numbers ad Polyomial Coefficiets Matthias Schork Camillo-Sitte-Weg 25 60488 Frakfurt, Germay mschork@member.ams.org,

More information

The Riemann Zeta Function

The Riemann Zeta Function Physics 6A Witer 6 The Riema Zeta Fuctio I this ote, I will sketch some of the mai properties of the Riema zeta fuctio, ζ(x). For x >, we defie ζ(x) =, x >. () x = For x, this sum diverges. However, we

More information

Modular Relations for the Sextodecic Analogues of the Rogers-Ramanujan Functions with its Applications to Partitions

Modular Relations for the Sextodecic Analogues of the Rogers-Ramanujan Functions with its Applications to Partitions America Joural of Mathematical Aalysis 0 Vol. No. 6- Available olie at http://pubs.sciepub.com/ajma/// Sciece ad Educatio Publishig DOI:0.69/ajma--- Modular Relatios for the Sextodecic Aalogues of the

More information

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play.

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play. Number Theory Math 5840 otes. Sectio 1: Axioms. I umber theory we will geerally be workig with itegers, though occasioally fractios ad irratioals will come ito play. Notatio: Z deotes the set of all itegers

More information

Taylor polynomial solution of difference equation with constant coefficients via time scales calculus

Taylor polynomial solution of difference equation with constant coefficients via time scales calculus TMSCI 3, o 3, 129-135 (2015) 129 ew Treds i Mathematical Scieces http://wwwtmscicom Taylor polyomial solutio of differece equatio with costat coefficiets via time scales calculus Veysel Fuat Hatipoglu

More information

Enumerative & Asymptotic Combinatorics

Enumerative & Asymptotic Combinatorics C50 Eumerative & Asymptotic Combiatorics Notes 4 Sprig 2003 Much of the eumerative combiatorics of sets ad fuctios ca be geeralised i a maer which, at first sight, seems a bit umotivated I this chapter,

More information

The Arakawa-Kaneko Zeta Function

The Arakawa-Kaneko Zeta Function The Arakawa-Kaeko Zeta Fuctio Marc-Atoie Coppo ad Berard Cadelpergher Nice Sophia Atipolis Uiversity Laboratoire Jea Alexadre Dieudoé Parc Valrose F-0608 Nice Cedex 2 FRANCE Marc-Atoie.COPPO@uice.fr Berard.CANDELPERGHER@uice.fr

More information

Chimica Inorganica 3

Chimica Inorganica 3 himica Iorgaica Irreducible Represetatios ad haracter Tables Rather tha usig geometrical operatios, it is ofte much more coveiet to employ a ew set of group elemets which are matrices ad to make the rule

More information

#A51 INTEGERS 14 (2014) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES

#A51 INTEGERS 14 (2014) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES #A5 INTEGERS 4 (24) MULTI-POLY-BERNOULLI-STAR NUMBERS AND FINITE MULTIPLE ZETA-STAR VALUES Kohtaro Imatomi Graduate School of Mathematics, Kyushu Uiversity, Nishi-ku, Fukuoka, Japa k-imatomi@math.kyushu-u.ac.p

More information

Abstract. 1. Introduction This note is a supplement to part I ([4]). Let. F x (1.1) x n (1.2) Then the moments L x are the Catalan numbers

Abstract. 1. Introduction This note is a supplement to part I ([4]). Let. F x (1.1) x n (1.2) Then the moments L x are the Catalan numbers Abstract Some elemetary observatios o Narayaa polyomials ad related topics II: -Narayaa polyomials Joha Cigler Faultät für Mathemati Uiversität Wie ohacigler@uivieacat We show that Catala umbers cetral

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers Quadratic Trasformatios of Hypergeometric Fuctio ad Series with Harmoic Numbers Marti Nicholso I this brief ote, we show how to apply Kummer s ad other quadratic trasformatio formulas for Gauss ad geeralized

More information

CERTAIN GENERAL BINOMIAL-FIBONACCI SUMS

CERTAIN GENERAL BINOMIAL-FIBONACCI SUMS CERTAIN GENERAL BINOMIAL-FIBONACCI SUMS J. W. LAYMAN Virgiia Polytechic Istitute State Uiversity, Blacksburg, Virgiia Numerous writers appear to have bee fasciated by the may iterestig summatio idetitites

More information

Shivley s Polynomials of Two Variables

Shivley s Polynomials of Two Variables It. Joural of Math. Aalysis, Vol. 6, 01, o. 36, 1757-176 Shivley s Polyomials of Two Variables R. K. Jaa, I. A. Salehbhai ad A. K. Shukla Departmet of Mathematics Sardar Vallabhbhai Natioal Istitute of

More information

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS

SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS Folia Mathematica Vol. 5, No., pp. 4 6 Acta Uiversitatis Lodziesis c 008 for Uiversity of Lódź Press SOME TRIGONOMETRIC IDENTITIES RELATED TO POWERS OF COSINE AND SINE FUNCTIONS ROMAN WITU LA, DAMIAN S

More information

On the Inverse of a Certain Matrix Involving Binomial Coefficients

On the Inverse of a Certain Matrix Involving Binomial Coefficients It. J. Cotemp. Math. Scieces, Vol. 3, 008, o. 3, 5-56 O the Iverse of a Certai Matrix Ivolvig Biomial Coefficiets Yoshiari Iaba Kitakuwada Seior High School Keihokushimoyuge, Ukyo-ku, Kyoto, 60-0534, Japa

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

-ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION

-ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION NEW NEWTON-TYPE METHOD WITH k -ORDER CONVERGENCE FOR FINDING SIMPLE ROOT OF A POLYNOMIAL EQUATION R. Thukral Padé Research Cetre, 39 Deaswood Hill, Leeds West Yorkshire, LS7 JS, ENGLAND ABSTRACT The objective

More information

CALCULATION OF FIBONACCI VECTORS

CALCULATION OF FIBONACCI VECTORS CALCULATION OF FIBONACCI VECTORS Stuart D. Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithaca.edu ad Dai Novak Departmet of Mathematics, Ithaca College

More information

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers 3 47 6 3 Joural of Iteger Sequeces, Vol. 5 (0), Article..7 Series with Cetral Biomial Coefficiets, Catala Numbers, ad Harmoic Numbers Khristo N. Boyadzhiev Departmet of Mathematics ad Statistics Ohio Norther

More information

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca Idia J Pure Appl Math 45): 75-89 February 204 c Idia Natioal Sciece Academy A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS Mircea Merca Departmet of Mathematics Uiversity

More information

ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS

ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS Joural of Algebra, Number Theory: Advaces ad Applicatios Volume, Number, 00, Pages 7-89 ON SOME DIOPHANTINE EQUATIONS RELATED TO SQUARE TRIANGULAR AND BALANCING NUMBERS OLCAY KARAATLI ad REFİK KESKİN Departmet

More information

q-durrmeyer operators based on Pólya distribution

q-durrmeyer operators based on Pólya distribution Available olie at wwwtjsacom J Noliear Sci Appl 9 206 497 504 Research Article -Durrmeyer operators based o Pólya distributio Vijay Gupta a Themistocles M Rassias b Hoey Sharma c a Departmet of Mathematics

More information

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer. 6 Itegers Modulo I Example 2.3(e), we have defied the cogruece of two itegers a,b with respect to a modulus. Let us recall that a b (mod ) meas a b. We have proved that cogruece is a equivalece relatio

More information

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis

Recursive Algorithms. Recurrences. Recursive Algorithms Analysis Recursive Algorithms Recurreces Computer Sciece & Egieerig 35: Discrete Mathematics Christopher M Bourke cbourke@cseuledu A recursive algorithm is oe i which objects are defied i terms of other objects

More information

Journal of Ramanujan Mathematical Society, Vol. 24, No. 2 (2009)

Journal of Ramanujan Mathematical Society, Vol. 24, No. 2 (2009) Joural of Ramaua Mathematical Society, Vol. 4, No. (009) 199-09. IWASAWA λ-invariants AND Γ-TRANSFORMS Aupam Saikia 1 ad Rupam Barma Abstract. I this paper we study a relatio betwee the λ-ivariats of a

More information

TEACHER CERTIFICATION STUDY GUIDE

TEACHER CERTIFICATION STUDY GUIDE COMPETENCY 1. ALGEBRA SKILL 1.1 1.1a. ALGEBRAIC STRUCTURES Kow why the real ad complex umbers are each a field, ad that particular rigs are ot fields (e.g., itegers, polyomial rigs, matrix rigs) Algebra

More information

and Genocchi Polynomials

and Genocchi Polynomials Applied Mathematics & Iformatio Scieces 53 011, 390-444 A Iteratioal Joural c 011 NSP Some Geeralizatios ad Basic or - Extesios of the Beroulli, Euler ad Geocchi Polyomials H. M. Srivastava Departmet of

More information

REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS

REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS LIVIU I. NICOLAESCU ABSTRACT. We ivestigate the geeralized covergece ad sums of series of the form P at P (x, where P R[x], a R,, ad T : R[x] R[x]

More information

A TYPE OF PRIMITIVE ALGEBRA*

A TYPE OF PRIMITIVE ALGEBRA* A TYPE OF PRIMITIVE ALGEBRA* BT J. H. M. WEDDERBURN I a recet paper,t L. E. Dickso has discussed the liear associative algebra, A, defied by the relatios xy = yo(x), y = g, where 8 ( x ) is a polyomial

More information

Weighted Approximation by Videnskii and Lupas Operators

Weighted Approximation by Videnskii and Lupas Operators Weighted Approximatio by Videsii ad Lupas Operators Aif Barbaros Dime İstabul Uiversity Departmet of Egieerig Sciece April 5, 013 Aif Barbaros Dime İstabul Uiversity Departmet Weightedof Approximatio Egieerig

More information

An enumeration of flags in finite vector spaces

An enumeration of flags in finite vector spaces A eumeratio of flags i fiite vector spaces C Rya Viroot Departmet of Mathematics College of William ad Mary P O Box 8795 Williamsburg VA 23187 viroot@mathwmedu Submitted: Feb 2 2012; Accepted: Ju 27 2012;

More information

Some identities involving Fibonacci, Lucas polynomials and their applications

Some identities involving Fibonacci, Lucas polynomials and their applications Bull. Math. Soc. Sci. Math. Roumaie Tome 55103 No. 1, 2012, 95 103 Some idetities ivolvig Fiboacci, Lucas polyomials ad their applicatios by Wag Tigtig ad Zhag Wepeg Abstract The mai purpose of this paper

More information

A Mean Paradox. John Konvalina, Jack Heidel, and Jim Rogers. Department of Mathematics University of Nebraska at Omaha Omaha, NE USA

A Mean Paradox. John Konvalina, Jack Heidel, and Jim Rogers. Department of Mathematics University of Nebraska at Omaha Omaha, NE USA A Mea Paradox by Joh Kovalia, Jac Heidel, ad Jim Rogers Departmet of Mathematics Uiversity of Nebrasa at Omaha Omaha, NE 6882-243 USA Phoe: (42) 554-2836 Fax: (42) 554-2975 E-mail: joho@uomaha.edu A Mea

More information

Chapter 7 COMBINATIONS AND PERMUTATIONS. where we have the specific formula for the binomial coefficients:

Chapter 7 COMBINATIONS AND PERMUTATIONS. where we have the specific formula for the binomial coefficients: Chapter 7 COMBINATIONS AND PERMUTATIONS We have see i the previous chapter that (a + b) ca be writte as 0 a % a & b%þ% a & b %þ% b where we have the specific formula for the biomial coefficiets: '!!(&)!

More information

ANOTHER GENERALIZED FIBONACCI SEQUENCE 1. INTRODUCTION

ANOTHER GENERALIZED FIBONACCI SEQUENCE 1. INTRODUCTION ANOTHER GENERALIZED FIBONACCI SEQUENCE MARCELLUS E. WADDILL A N D LOUIS SACKS Wake Forest College, Wisto Salem, N. C., ad Uiversity of ittsburgh, ittsburgh, a. 1. INTRODUCTION Recet issues of umerous periodicals

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Self-normalized deviation inequalities with application to t-statistic

Self-normalized deviation inequalities with application to t-statistic Self-ormalized deviatio iequalities with applicatio to t-statistic Xiequa Fa Ceter for Applied Mathematics, Tiaji Uiversity, 30007 Tiaji, Chia Abstract Let ξ i i 1 be a sequece of idepedet ad symmetric

More information

On Generalized Fibonacci Numbers

On Generalized Fibonacci Numbers Applied Mathematical Scieces, Vol. 9, 215, o. 73, 3611-3622 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/ams.215.5299 O Geeralized Fiboacci Numbers Jerico B. Bacai ad Julius Fergy T. Rabago Departmet

More information

Section 5.1 The Basics of Counting

Section 5.1 The Basics of Counting 1 Sectio 5.1 The Basics of Coutig Combiatorics, the study of arragemets of objects, is a importat part of discrete mathematics. I this chapter, we will lear basic techiques of coutig which has a lot of

More information

MATH 324 Summer 2006 Elementary Number Theory Solutions to Assignment 2 Due: Thursday July 27, 2006

MATH 324 Summer 2006 Elementary Number Theory Solutions to Assignment 2 Due: Thursday July 27, 2006 MATH 34 Summer 006 Elemetary Number Theory Solutios to Assigmet Due: Thursday July 7, 006 Departmet of Mathematical ad Statistical Scieces Uiversity of Alberta Questio [p 74 #6] Show that o iteger of the

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

On a general q-identity

On a general q-identity O a geeral -idetity Aimi Xu Istitute of Mathematics Zheiag Wali Uiversity Nigbo 3500, Chia xuaimi009@hotmailcom; xuaimi@zwueduc Submitted: Dec 2, 203; Accepted: Apr 24, 204; Published: May 9, 204 Mathematics

More information

Appendix K. The three-point correlation function (bispectrum) of density peaks

Appendix K. The three-point correlation function (bispectrum) of density peaks Appedix K The three-poit correlatio fuctio (bispectrum) of desity peaks Cosider the smoothed desity field, ρ (x) ρ [ δ (x)], with a geeral smoothig kerel W (x) δ (x) d yw (x y)δ(y). (K.) We defie the peaks

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

Factors of sums and alternating sums involving binomial coefficients and powers of integers

Factors of sums and alternating sums involving binomial coefficients and powers of integers Factors of sums ad alteratig sums ivolvig biomial coefficiets ad powers of itegers Victor J. W. Guo 1 ad Jiag Zeg 2 1 Departmet of Mathematics East Chia Normal Uiversity Shaghai 200062 People s Republic

More information

A symbolic approach to multiple zeta values at the negative integers

A symbolic approach to multiple zeta values at the negative integers A symbolic approach to multiple zeta values at the egative itegers Victor H. Moll a, Li Jiu a Christophe Vigat a,b a Departmet of Mathematics, Tulae Uiversity, New Orleas, USA Correspodig author b LSS/Supelec,

More information

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

Course : Algebraic Combinatorics

Course : Algebraic Combinatorics Course 18.312: Algebraic Combiatorics Lecture Notes # 18-19 Addedum by Gregg Musier March 18th - 20th, 2009 The followig material ca be foud i a umber of sources, icludig Sectios 7.3 7.5, 7.7, 7.10 7.11,

More information

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS DEMETRES CHRISTOFIDES Abstract. Cosider a ivertible matrix over some field. The Gauss-Jorda elimiatio reduces this matrix to the idetity

More information

gcd(n, k) = 1 Kwang Ho Kim 1 and Sihem Mesnager 2 Pyongyang, Democratic People s Republic of Korea

gcd(n, k) = 1 Kwang Ho Kim 1 and Sihem Mesnager 2 Pyongyang, Democratic People s Republic of Korea Solvig x 2k + + x + a = 0 i F 2 gcd, k = with Kwag Ho Kim ad Sihem Mesager 2 Istitute of Mathematics, State Academy of Scieces ad PGItech Corp., Pyogyag, Democratic People s Republic of Korea khk.cryptech@gmail.com

More information

Lecture Overview. 2 Permutations and Combinations. n(n 1) (n (k 1)) = n(n 1) (n k + 1) =

Lecture Overview. 2 Permutations and Combinations. n(n 1) (n (k 1)) = n(n 1) (n k + 1) = COMPSCI 230: Discrete Mathematics for Computer Sciece April 8, 2019 Lecturer: Debmalya Paigrahi Lecture 22 Scribe: Kevi Su 1 Overview I this lecture, we begi studyig the fudametals of coutig discrete objects.

More information

Asymptotic distribution of products of sums of independent random variables

Asymptotic distribution of products of sums of independent random variables Proc. Idia Acad. Sci. Math. Sci. Vol. 3, No., May 03, pp. 83 9. c Idia Academy of Scieces Asymptotic distributio of products of sums of idepedet radom variables YANLING WANG, SUXIA YAO ad HONGXIA DU ollege

More information

arxiv: v1 [cs.sc] 2 Jan 2018

arxiv: v1 [cs.sc] 2 Jan 2018 Computig the Iverse Melli Trasform of Holoomic Sequeces usig Kovacic s Algorithm arxiv:8.9v [cs.sc] 2 Ja 28 Research Istitute for Symbolic Computatio RISC) Johaes Kepler Uiversity Liz, Alteberger Straße

More information

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT

TR/46 OCTOBER THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION A. TALBOT TR/46 OCTOBER 974 THE ZEROS OF PARTIAL SUMS OF A MACLAURIN EXPANSION by A. TALBOT .. Itroductio. A problem i approximatio theory o which I have recetly worked [] required for its solutio a proof that the

More information

Math 475, Problem Set #12: Answers

Math 475, Problem Set #12: Answers Math 475, Problem Set #12: Aswers A. Chapter 8, problem 12, parts (b) ad (d). (b) S # (, 2) = 2 2, sice, from amog the 2 ways of puttig elemets ito 2 distiguishable boxes, exactly 2 of them result i oe

More information

Bertrand s Postulate

Bertrand s Postulate Bertrad s Postulate Lola Thompso Ross Program July 3, 2009 Lola Thompso (Ross Program Bertrad s Postulate July 3, 2009 1 / 33 Bertrad s Postulate I ve said it oce ad I ll say it agai: There s always a

More information

An Asymptotic Expansion for the Number of Permutations with a Certain Number of Inversions

An Asymptotic Expansion for the Number of Permutations with a Certain Number of Inversions A Asymptotic Expasio for the Number of Permutatios with a Certai Number of Iversios Lae Clark Departmet of Mathematics Souther Illiois Uiversity Carbodale Carbodale, IL 691-448 USA lclark@math.siu.edu

More information

On Involutions which Preserve Natural Filtration

On Involutions which Preserve Natural Filtration Proceedigs of Istitute of Mathematics of NAS of Ukraie 00, Vol. 43, Part, 490 494 O Ivolutios which Preserve Natural Filtratio Alexader V. STRELETS Istitute of Mathematics of the NAS of Ukraie, 3 Tereshchekivska

More information

Week 5-6: The Binomial Coefficients

Week 5-6: The Binomial Coefficients Wee 5-6: The Biomial Coefficiets March 6, 2018 1 Pascal Formula Theorem 11 (Pascal s Formula For itegers ad such that 1, ( ( ( 1 1 + 1 The umbers ( 2 ( 1 2 ( 2 are triagle umbers, that is, The petago umbers

More information

Numerical Conformal Mapping via a Fredholm Integral Equation using Fourier Method ABSTRACT INTRODUCTION

Numerical Conformal Mapping via a Fredholm Integral Equation using Fourier Method ABSTRACT INTRODUCTION alaysia Joural of athematical Scieces 3(1): 83-93 (9) umerical Coformal appig via a Fredholm Itegral Equatio usig Fourier ethod 1 Ali Hassa ohamed urid ad Teh Yua Yig 1, Departmet of athematics, Faculty

More information

Recursive Algorithm for Generating Partitions of an Integer. 1 Preliminary

Recursive Algorithm for Generating Partitions of an Integer. 1 Preliminary Recursive Algorithm for Geeratig Partitios of a Iteger Sug-Hyuk Cha Computer Sciece Departmet, Pace Uiversity 1 Pace Plaza, New York, NY 10038 USA scha@pace.edu Abstract. This article first reviews the

More information

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction Acta Math. Uiv. Comeiaae Vol. LXXXVI, 2 (2017), pp. 279 286 279 k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c N. IRMAK ad M. ALP Abstract. The k-geeralized Fiboacci sequece { F (k)

More information

David Vella, Skidmore College.

David Vella, Skidmore College. David Vella, Skidmore College dvella@skidmore.edu Geeratig Fuctios ad Expoetial Geeratig Fuctios Give a sequece {a } we ca associate to it two fuctios determied by power series: Its (ordiary) geeratig

More information

The natural exponential function

The natural exponential function The atural expoetial fuctio Attila Máté Brookly College of the City Uiversity of New York December, 205 Cotets The atural expoetial fuctio for real x. Beroulli s iequality.....................................2

More information

Lecture 23: Minimal sufficiency

Lecture 23: Minimal sufficiency Lecture 23: Miimal sufficiecy Maximal reductio without loss of iformatio There are may sufficiet statistics for a give problem. I fact, X (the whole data set) is sufficiet. If T is a sufficiet statistic

More information

arxiv: v1 [math.nt] 10 Dec 2014

arxiv: v1 [math.nt] 10 Dec 2014 A DIGITAL BINOMIAL THEOREM HIEU D. NGUYEN arxiv:42.38v [math.nt] 0 Dec 204 Abstract. We preset a triagle of coectios betwee the Sierpisi triagle, the sum-of-digits fuctio, ad the Biomial Theorem via a

More information

Random Models. Tusheng Zhang. February 14, 2013

Random Models. Tusheng Zhang. February 14, 2013 Radom Models Tusheg Zhag February 14, 013 1 Radom Walks Let me describe the model. Radom walks are used to describe the motio of a movig particle (object). Suppose that a particle (object) moves alog the

More information

6.003 Homework #3 Solutions

6.003 Homework #3 Solutions 6.00 Homework # Solutios Problems. Complex umbers a. Evaluate the real ad imagiary parts of j j. π/ Real part = Imagiary part = 0 e Euler s formula says that j = e jπ/, so jπ/ j π/ j j = e = e. Thus the

More information

Generating Functions for Laguerre Type Polynomials. Group Theoretic method

Generating Functions for Laguerre Type Polynomials. Group Theoretic method It. Joural of Math. Aalysis, Vol. 4, 2010, o. 48, 257-266 Geeratig Fuctios for Laguerre Type Polyomials α of Two Variables L ( xy, ) by Usig Group Theoretic method Ajay K. Shula* ad Sriata K. Meher** *Departmet

More information

Some remarks for codes and lattices over imaginary quadratic

Some remarks for codes and lattices over imaginary quadratic Some remarks for codes ad lattices over imagiary quadratic fields Toy Shaska Oaklad Uiversity, Rochester, MI, USA. Caleb Shor Wester New Eglad Uiversity, Sprigfield, MA, USA. shaska@oaklad.edu Abstract

More information

Sum of cubes: Old proofs suggest new q analogues

Sum of cubes: Old proofs suggest new q analogues Sum of cubes: Old proofs suggest ew aalogues Joha Cigler Faultät für Mathemati, Uiversität Wie ohacigler@uivieacat Abstract We prove a ew aalogue of Nicomachus s theorem about the sum of cubes ad some

More information

Counting Well-Formed Parenthesizations Easily

Counting Well-Formed Parenthesizations Easily Coutig Well-Formed Parethesizatios Easily Pekka Kilpeläie Uiversity of Easter Filad School of Computig, Kuopio August 20, 2014 Abstract It is well kow that there is a oe-to-oe correspodece betwee ordered

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

Matrix representations of Fibonacci-like sequences

Matrix representations of Fibonacci-like sequences NTMSCI 6, No. 4, 03-0 08 03 New Treds i Mathematical Scieces http://dx.doi.org/0.085/tmsci.09.33 Matrix represetatios of Fiboacci-like sequeces Yasemi Tasyurdu Departmet of Mathematics, Faculty of Sciece

More information

Integral Representations and Binomial Coefficients

Integral Representations and Binomial Coefficients 2 3 47 6 23 Joural of Iteger Sequeces, Vol. 3 (2, Article.6.4 Itegral Represetatios ad Biomial Coefficiets Xiaoxia Wag Departmet of Mathematics Shaghai Uiversity Shaghai, Chia xiaoxiawag@shu.edu.c Abstract

More information

arxiv: v2 [math.nt] 9 May 2017

arxiv: v2 [math.nt] 9 May 2017 arxiv:6.42v2 [math.nt] 9 May 27 Itegral Represetatios of Equally Positive Iteger-Idexed Harmoic Sums at Ifiity Li Jiu Research Istitute for Symbolic Computatio Johaes Kepler Uiversity 44 Liz, Austria ljiu@risc.ui-liz.ac.at

More information

Benaissa Bernoussi Université Abdelmalek Essaadi, ENSAT de Tanger, B.P. 416, Tanger, Morocco

Benaissa Bernoussi Université Abdelmalek Essaadi, ENSAT de Tanger, B.P. 416, Tanger, Morocco EXTENDING THE BERNOULLI-EULER METHOD FOR FINDING ZEROS OF HOLOMORPHIC FUNCTIONS Beaissa Beroussi Uiversité Abdelmalek Essaadi, ENSAT de Tager, B.P. 416, Tager, Morocco e-mail: Beaissa@fstt.ac.ma Mustapha

More information

A PROOF OF THE TWIN PRIME CONJECTURE AND OTHER POSSIBLE APPLICATIONS

A PROOF OF THE TWIN PRIME CONJECTURE AND OTHER POSSIBLE APPLICATIONS A PROOF OF THE TWI PRIME COJECTURE AD OTHER POSSIBLE APPLICATIOS by PAUL S. BRUCKMA 38 Frot Street, #3 aaimo, BC V9R B8 (Caada) e-mail : pbruckma@hotmail.com ABSTRACT : A elemetary proof of the Twi Prime

More information

Some results on the Apostol-Bernoulli and Apostol-Euler polynomials

Some results on the Apostol-Bernoulli and Apostol-Euler polynomials Soe results o the Apostol-Beroulli ad Apostol-Euler polyoials Weipig Wag a, Cagzhi Jia a Tiaig Wag a, b a Departet of Applied Matheatics, Dalia Uiversity of Techology Dalia 116024, P. R. Chia b Departet

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information