Department of Energy. del Duomo di Milano. Matteo Passoni Politecnico di Milano

Size: px
Start display at page:

Download "Department of Energy. del Duomo di Milano. Matteo Passoni Politecnico di Milano"

Transcription

1 Department of Energy Enhanced Firma laser-driven convenzione sources for Politecnico nuclear and di material Milano e science Veneranda applications Fabbrica del Duomo di Milano Matteo Passoni Politecnico di Milano Aula Magna Rettorato Mercoledì 27 maggio 2015 Nuclear Photonics, Brasov, 28/06/2018

2 Largest university of engineering, architecture and design in Italy. More than students, ~1400 academic staff, 900 doctoral students 32 BSc, 34 MSc, 18 PhD programmes. 2

3 ERC-2014-CoG No ERC consolidator grant: 5 year project, from September 2015 to September 2020 Goal: To Explore the New Science and engineering unveiled by Ultraintense, ultrashort Radiation interaction with matter Department of Energy, Politecnico di Milano Principal investigator: Matteo Passoni Team: PI, 2 Associate Professor, 1 Assistant Professor, 3 Post-Docs, 3 PhDs + master students and support from NanoLab people 3

4 The ENSURE team at Politecnico di Milano Matteo Passoni Associate professor PI of ENSURE + ERC-POC INTER Margherita Zavelani Associate professor Andrea Pola Associate professor Valeria Russo Assistant professor Luca Fedeli Post-doc Devid Dellasega Post-doc Alessandro Maffini Post-doc Andrea Pazzaglia PhD student Arianna Formenti PhD student Francesco Mirani PhD student Francesca Arioli Master s student 4

5 ENSURE: Main fields of research Theoretical & experimental investigation of laser-driven ion acceleration Advanced target production (low-density foams & multilayer targets) for laser-plasma interaction experiments Application of laser-driven ion acceleration in material & nuclear fields (e.g. Compact neutron sources, Laser-driven Ion Beam Analysis) 5

6 Target is the key: Near-critical layer Ultra-short, super-intense laser pulse Ultra-short, super-intense laser pulse micrometric thick foil micrometric thick foil Conventional TNSA Enhanced TNSA Near-critical layer onto a mm-thick foil M. Passoni et al. Phys Rev Acc Beams 19.6 (2016) 6

7 Target is the key: Hot electron cloud Near-critical layer Hot electron cloud Conventional TNSA Enhanced TNSA Near-critical layer onto a mm-thick foil More and hotter relativistic electrons M. Passoni et al. Phys Rev Acc Beams 19.6 (2016) 7

8 Target is the key: Near-critical layer Accelerated Ions Accelerated Ions Conventional TNSA Enhanced TNSA The target is the key! M. Passoni et al. Phys Rev Acc Beams 19.6 (2016) Near-critical layer onto a mm-thick foil More and hotter relativistic electrons More ions at higher energy 8

9 Near-critical targets for laser-driven acceleration I laser =10 20 W/cm 2 E laser = 3 x V/m = 50 X E atomic Full ionization Plasma! Plasma critical density: n c = π m ec 2 n c 6 mg/cm 3 e l 2 (@ l=800 nm) n n c near critical plasma strong laser-plasma coupling n<<n c underdense plasma n>>n c overdense plasma little laser absorption most of laser is reflected n e /n c mg/cm 3 9

10 H + maximum energy [MeV] C 6+ maximum energy [MeV] Counts [a.u.] Ion PULSER (GIST) in collaboration with: I. W. Choi, C. H. Nam et al. Role of target properties (s-pol, ~ 7 J, 3x10 20 Wcm -2, 30 inc. angle) nearcritical foam thickness: Al (0.75 µm) + foam (6.8 mg/cm 3, 0-36 µm) H + max energy C 6+ max energy bare Al 12 mm foam 8 mm foam 10 S polarization (peak intensity) Target thickness [mm] Energy (MeV) There is an optimum in near critical layer thickness Maximum proton energy enhanced by a factor ~ 1.7 Number of proton enhanced by a factor ~ 7 M. Passoni et al., Phys. Rev. Accel. Beams 19, (2016) I. Prencipe et al., Plasma Phys. Control. Fus. 58 (2016) 10

11 Max proton energy [MeV] Ion PULSER (GIST) Max proton energy [MeV] in collaboration with: I. W. Choi, C. H. Nam et al. Role of pulse properties Al (0.75 µm) + foam (6.8 mg/cm 3, 8 µm) pulse intensity pulse polarization: s, p and circular polarization 30 Al, p pol. 35 Al ( 0,75 mm) Al, s pol. Al, c pol. foam, c pol. foam, p pol. foam, s pol mm foam 12 mm foam 18 mm foam 36 mm foam ,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 Intensity on target [10 20 W/cm 2 ] Intensity on target [10 20 W/cm 2 ] Dependence on polarization: strong for Al foils reduced for foam targets foam vs Al: volume vs surface interaction irregular foam surface: polarization definition role of target nanostructure 11

12 H + max. energy [MeV] H + max. energy [MeV] # Particles [1/(MeV*sr)] Ion DRACO 150 TW (preliminary data!) Laser Draco (HZDR, Dresden) 30 Energy on target = 2 J Intensity = up to 5 x W/cm 2 Angle of incidence = 2 Foam PLD parameters F = 2.1 J/cm 2 P = 1000 Pa Ar d ts = 4.5 cm Substrate = Al 1.5 µm Foam thickness = 4, 8, 12 µm ¹² in collaboration with: I. Prencipe, T. Cowan, U. Schram et al. 4 mm C foam on 1.5 mm Al 1.5 mm Al, no foam Laser power fraction (%) 25 Optimal foam thickness 10¹¹ ¹⁰ 10 No foam 10⁹ Foam thickness [mm] 10⁸ Energy [MeV] 12

13 Near-critical targets for laser-driven acceleration I laser =10 20 W/cm 2 E laser = 3 x V/m = 50 X E atomic Full ionization Plasma! Plasma critical density: n c = π m ec 2 n c 6 mg/cm 3 e l 2 (@ l=800 nm) n n c near critical plasma strong laser-plasma coupling n<<n c underdense plasma n>>n c overdense plasma little laser absorption most of laser is reflected n e /n c 0.06 Gas-jets C foams: one of the (few) options Solids mg/cm 3 13

14 How to produce C foams: ns Pulsed Laser Deposition (PLD) Target Plasma plume Laser Beam l= 266, 532, 1064 nm Pulse duration= 7ns Energy= J Fluence: J/cm 2 Max rep. rate= 10 Hz target-to-substrate distance Laser fluence Substrate (almost any kind of substrate) Background Gas Inert (He, Ar..) Reactive (O 2 ) Gas pressure atom by atom deposition Nanoparticle deposition 14

15 New experimental Nanolab fs-pld interaction chamber PLD mode + Laser processing up to 4 targets Upstream + downstream pressure control Fast substrate heater Fully automated software Coherent Astrella Ti:Shappire l=800 nm Ep > 5 mj Pulse duration < 100 fs Peak Power > 50 GW Rep Rate = 1000 Hz 15

16 New experimental Nanolab High Power Impulse Magnetron Sputtering (HiPIMS): Peak power density = 10³ W/cm² Peak current density = 1 10 A/cm² Two cathodes, multi-elemental targets Fully automated software Laser Pulse Combined fs-pld & HiPIMS deposition techniques to fully control target preparation! fs-pld HiPIMS C-foam Substrate 16

17 Foam property control with ns-pld Nano-scale Micro-scale Macro-scale - Crystalline structure - Composition - Average density - Morphology -. - Uniformity - Thickness profile Laser Wavelength Laser Fluence Gas pressure Geometry Deposition time ns-pld process parameters 17

18 Density (mg/cm 3 ) How to produce carbon foams µm l=532 nm F= 2.1 J/cm 2 d T-S = 4.5 cm nano-trees 4 µm 17.2 n e /n c 4 µm 10 Foams 1.7 A. Zani et al., Carbon, (2013) I. Prencipe et al., Sci. Technol. Adv. Mater. 16 (2015) Pressure (Pa) A. Maffini et al., On the growth dynamics of low-density carbon foams, in preparation 18

19 Aggregation model to study the foam growth Diffusion-Limited Cluster-Cluster Aggregation (DLCCA): 1) Brownian motion of particles 2) Particle aggregation in clusters by irreversible sticking 3) Clusters deposition on substrate Real Foam Simulated Foam 19

20 Particle In Cell (PIC) Simulations Well established and powerful tool to study laser plasma interaction Inclusion of the nanostructure morphology to properly model physical processes With homogeneous foam With DLCCA foam L. Fedeli et al. Scientific Reports, volume 8, Article number: 3834 (2018) 20

21 Integrated numerical simulation of laser-ion app A novel tool to study laser-driven ion sources for nuclear and material science DLCCA simulation of foam aggregation Monte Carlo simulation (Geant4) of Laser-Driven Ion Beam Analysis (IBA) PIC simulation of laser-matter interaction M. Passoni et al., Scientific Reports (2018), under review 21

22 Laser-driven Particle Induced X-ray Emission (PIXE) PIXE: Particle Accelerator MeV energy, low current Ion beam Laser accelerated proton spectrum 1) Simulated experiment Laser-driven PIXE: Unconventional features of ion beam (broad spectrum, tunable energy, ns bunch duration) Cheaper, portable PIXE setup Commercial codes not ok for laser PIXE Ad-hoc code developed 2) X-ray spectra E [MeV] Concentration [%] real retrived 3) Sample composition Concentration [%] Varnish Lead White X-rays energy [kev] Dedicated software to process x-ray data Ca Fe HgS 22

23 Towards portable neutron sources ERC-2016-PoC No INTER Compact neutron sources for material characterization fast-neutron spectroscopy neutron radiography Preliminary studies with coupled PIC - Monte Carlo simulations Strong collaboration with industrial partners See Maffini (P39), Mirani (P46) posters! A. Tentori, MSc thesis in Nuclear Engineering (2018) F. Arioli, MSc in Nuclear Engineering, in preparation 23

24 Preliminary announcement of the 4 th Targetry Workshop Monday 10 th - Wednesday 12 th, June 2019 Politecnico di Milano, Milano, Italy Contact: matteo.passoni@polimi.it ENSURE, ERC-2014-CoG No

Advances in Pulsed Laser Deposition of ultra-low density carbon foams

Advances in Pulsed Laser Deposition of ultra-low density carbon foams Advances in Pulsed Laser Deposition of ultra-low density carbon foams Alessandro Maffini Department of Energy, Politecnico di Milano, Italy E-MRS Spring Meeting, Strasbourg Symposium X :Photon-assisted

More information

Numerical simulations of Laser-Plasma interaction at POLIMI Matteo Passoni

Numerical simulations of Laser-Plasma interaction at POLIMI Matteo Passoni Numerical simulations of Laser-Plasma interaction at POLIMI Matteo Passoni Pisa, 23/02/2017 ERC-2014-CoG No. 647554 ENSURE The group at Politecnico di Milano NanoLab (Ed.19 ex-cesnef) Via Ponzio 34/3 Milano

More information

Simulations of Ion Beam Analysis with laser-driven proton sources at Politecnico di Milano. Francesco Mirani Frascati, February 21ˢ, 2018

Simulations of Ion Beam Analysis with laser-driven proton sources at Politecnico di Milano. Francesco Mirani Frascati, February 21ˢ, 2018 Simulations of Ion Beam Analysis with laser-driven proton sources at Politecnico di Milano Francesco Mirani Frascati, February 21ˢ, 2018 The ENSURE team at Politecnico di Milano Matteo Passoni Associate

More information

Proton acceleration in thin foils with micro-structured surface

Proton acceleration in thin foils with micro-structured surface Proton acceleration in thin foils with micro-structured surface J. Pšikal*, O. Klimo*, J. Limpouch*, J. Proška, F. Novotný, J. Vyskočil Czech Technical University in Prague, Faculty of Nuclear Sciences

More information

Master Thesis Projects at NanoLab

Master Thesis Projects at NanoLab Master Thesis Projects at NanoLab Micro and Nanostructured Materials Lab - NanoLab Department of Energy (Cesnef site Building 19) Leonardo Campus NEMAS Center for NanoEngineered Materials and Surfaces

More information

Towards 100 MeV proton generation using ultrathin targets irradiated with petawatt laser pulses

Towards 100 MeV proton generation using ultrathin targets irradiated with petawatt laser pulses IZEST_Tokyo 2013.11.18 Towards 100 MeV proton generation using ultrathin targets irradiated with petawatt laser pulses Chang Hee Nam 1,2, I J. Kim 1,3, H. T. Kim 1,3, I. W. Choi 1,3, K. H. Pae 1,3, C.

More information

Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil

Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil Matthew Allen Department of Nuclear Engineering UC Berkeley mallen@nuc.berkeley.edu March 15, 2004 8th Nuclear Energy

More information

Lecture 1. Introduction

Lecture 1. Introduction Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Ion acceleration in plasmas Lecture 1. Introduction Dr. Ashutosh Sharma Zoltán Tibai 1 Contents

More information

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets at LCLS MEC Instrument

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets at LCLS MEC Instrument Measurements of Radiation Doses Induced by High Intensity Laser between 10 16 and 10 21 W/cm 2 onto Solid Targets at LCLS MEC Instrument T. Liang 1,2, J. Bauer 1, M. Cimeno 1, A. Ferrari 3, E. Galtier

More information

A laser-driven source to reproduce the space radiation environment. José Manuel Álvarez

A laser-driven source to reproduce the space radiation environment. José Manuel Álvarez A laser-driven source to reproduce the space radiation environment José Manuel Álvarez jmalvarez@clpu.es Spanish Center for Pulsed Lasers (CLPU by its Spanish initials) Unique Research and Technology Infrastructures

More information

Robust energy enhancement of ultra-short pulse laser accelerated protons from reduced mass targets

Robust energy enhancement of ultra-short pulse laser accelerated protons from reduced mass targets Robust energy enhancement of ultra-short pulse laser accelerated protons from reduced mass targets K. Zeil, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey, B. Schmidt, M. Zier,

More information

Understanding the femtosecond laser-solid interaction near and beyond the material damage threshold.

Understanding the femtosecond laser-solid interaction near and beyond the material damage threshold. Understanding the femtosecond laser-solid interaction near and beyond the material damage threshold. Enam Chowdhury Department of Physics The Ohio State University Outline Goals Background Proposed Experimental

More information

Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas

Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas T.Okada, Y.Mikado and A.Abudurexiti Tokyo University of Agriculture and Technology, Tokyo -5, Japan

More information

Investigations on warm dense plasma with PHELIX facility

Investigations on warm dense plasma with PHELIX facility 2 nd EMMI Workshop on Plasma Physics with Intense Laser and Heavy Ion Beams, May 14-15, Moscow Investigations on warm dense plasma with PHELIX facility S.A. Pikuz Jr., I.Yu. Skobelev, A.Ya. Faenov, T.A.

More information

Relativistic Laser self-focusing

Relativistic Laser self-focusing Relativistic Laser self-focusing Kazuo A. Tanaka Graduate School of Engineering, Osaka University Suita, Osaka 565-0871 Japan GRE OLUG Workshop on HEDS Rochester, N.Y., U.S.A. Apr. 27, 2010 Ne/Nc Concept

More information

Laser matter interaction

Laser matter interaction Laser matter interaction PH413 Lasers & Photonics Lecture 26 Why study laser matter interaction? Fundamental physics Chemical analysis Material processing Biomedical applications Deposition of novel structures

More information

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Laser heating of noble gas droplet sprays: EUV source efficiency considerations Laser heating of noble gas droplet sprays: EUV source efficiency considerations S.J. McNaught, J. Fan, E. Parra and H.M. Milchberg Institute for Physical Science and Technology University of Maryland College

More information

PIC simulations of laser interactions with solid targets

PIC simulations of laser interactions with solid targets PIC simulations of laser interactions with solid targets J. Limpouch, O. Klimo Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, Praha 1, Czech Republic

More information

Laser-driven proton acceleration from cryogenic hydrogen jets

Laser-driven proton acceleration from cryogenic hydrogen jets Laser-driven proton acceleration from cryogenic hydrogen jets new prospects in tumor therapy and laboratory astroparticle physics C. Roedel SLAC National Accelerator Laboratory & Friedrich-Schiller-University

More information

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Richard London rlondon@llnl.gov Workshop on Interaction of Free Electron Laser Radiation with Matter Hamburg This work

More information

Laser Ion Acceleration: from present to intensities achievable at ELI-Beamlines

Laser Ion Acceleration: from present to intensities achievable at ELI-Beamlines Laser Ion Acceleration: from present to intensities achievable at ELI-Beamlines J. Limpouch a,b, J. Pšikal a,b, O. Klimo a,b, J. Vyskočil a,b, J. Proška a,f. Novotný a, L.Štolcová a,b, M. Květoň a a Czech

More information

Laser-based proton sources for medical applications

Laser-based proton sources for medical applications Laser-based proton sources for medical applications V. Yu. Bychenkov, A. V. Brantov Lebedev Physics Institute, Moscow Center for Fundamental and Applied Research (CFAR), VNIIA, ROSATOM, Moscow ICAN Scientific

More information

Relativistic Laser Plasma Research performed with PW Lasers

Relativistic Laser Plasma Research performed with PW Lasers APLS 2014.4.21. Relativistic Laser Plasma Research performed with PW Lasers Chang Hee Nam 1,2 1 Center for Relativistic Laser Science (CoReLS), Institute for Basic Science (IBS), Korea; 2 Dept of Physics

More information

Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Lasers

Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Lasers Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Lasers 75 nm 75 75 5 nm 3 copper target Normalized K b /K a 1.2 1.0 0.8 0.6 0.4 Cold material 1 ps 10 ps 0.2 10 3 10 4 Heating 2.1 kj, 10

More information

Laser-driven relativistic optics and particle acceleration in ultrathin foils

Laser-driven relativistic optics and particle acceleration in ultrathin foils Laser-driven relativistic optics and particle acceleration in ultrathin foils Prof. Paul McKenna University of Strathclyde, Glasgow, UK University of Strathclyde, Glasgow Founded in 1796 by John Anderson,

More information

Laser-driven undulator source

Laser-driven undulator source Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G.

More information

Lecture 7. Ion acceleration in clusters. Zoltán Tibai

Lecture 7. Ion acceleration in clusters. Zoltán Tibai Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Ion acceleration in plasmas Lecture 7. Ion acceleration in clusters Dr. Ashutosh Sharma Zoltán

More information

Magnetic fields generated by the Weibel Instability

Magnetic fields generated by the Weibel Instability Magnetic fields generated by the Weibel Instability C. M. Ryu POSTECH, KOREA FFP14 Marseille 14.7.15-7.18 Outline I. Why Weibel instability? II. Simulations III. Conclusion Why Weibel instability? The

More information

Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter

Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter 3rd EMMI Workshop on Plasma Physics with intense Lasers and Heavy Ion Beams Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter Eckhart Förster X-ray Optics Group - IOQ - Friedrich-Schiller-University

More information

Energy dispersive x-ray spectroscopy for nanostructured thin film density evaluation

Energy dispersive x-ray spectroscopy for nanostructured thin film density evaluation Science and Technology of Advanced Materials PAPER OPEN ACCESS Energy dispersive x-ray spectroscopy for nanostructured thin film density evaluation To cite this article: Irene Prencipe et al 2015 Sci.

More information

NGN PhD Studentship Proposal

NGN PhD Studentship Proposal NGN PhD Studentship Proposal Note that proposals will be assessed against both the quality of the scientific content and of the proposed training experience. Proposed supervisors (lead first) Dr Laura

More information

Laser-driven intense X-rays : Studies at RRCAT

Laser-driven intense X-rays : Studies at RRCAT Laser-driven intense X-rays : Studies at RRCAT B. S. Rao Laser Plasma Division Team Effort Principal contributors : Experiment: P. D. Gupta, P. A. Naik, J. A. Chakera, A. Moorti, V. Arora, H. Singhal,

More information

SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ

SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ SLAC-PUB-14159 SHIELDING CALCULATIONS FOR THE HARD X-RAY GENERATED BY LCLS MEC LASER SYSTEM R. QIU, J. C. LIU, S. H. ROKNI AND A. A. PRINZ SLAC National Accelerator Laboratory: 2575 Sand Hill Road, Menlo

More information

ION ACCELERATION FROM ULTRA THIN FOILS

ION ACCELERATION FROM ULTRA THIN FOILS ION ACCELERATION FROM ULTRA THIN FOILS ON THE ASTRA GEMINI FACILITY Clare Scullion Queen s University of Belfast cscullion57@qub.ac.uk Supervisor: Prof. Marco Borghesi THANKS TO ALL OUR COLLABORATORS D.

More information

Laser ion acceleration with low density targets: a new path towards high intensity, high energy ion beams

Laser ion acceleration with low density targets: a new path towards high intensity, high energy ion beams Laser ion acceleration with low density targets: a new path towards high intensity, high energy ion beams P. Antici 1,2,3, J.Boeker 4, F. Cardelli 1,S. Chen 2,J.L. Feugeas 5, F. Filippi 1, M. Glesser 2,3,

More information

Integrated simulations of fast ignition of inertial fusion targets

Integrated simulations of fast ignition of inertial fusion targets Integrated simulations of fast ignition of inertial fusion targets Javier Honrubia School of Aerospace Engineering Technical University of Madrid, Spain 11 th RES Users Meeting, Santiago de Compostela,

More information

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets in LCLS MEC Instrument

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets in LCLS MEC Instrument Measurements of Radiation Doses Induced by High Intensity Laser between 10 16 and 10 21 W/cm 2 onto Solid Targets in LCLS MEC Instrument SLAC RP: Johannes Bauer, Maranda Cimeno, James Liu, Sayed Rokni,

More information

Part XI. Optimising Femtosecond K α Sources

Part XI. Optimising Femtosecond K α Sources Part XI Optimising K α Sources 333 / 353 K α sources Goals: maximize # photons < 100 fs pulse length minimize spot size (magnification) maximize throughput (ave. power) 334 / 353 Applications of femtosecond

More information

NUMERICAL MODELING OF LASER-DRIVEN ION ACCELERATION FROM NEAR-CRITICAL GAS TARGETS

NUMERICAL MODELING OF LASER-DRIVEN ION ACCELERATION FROM NEAR-CRITICAL GAS TARGETS NUMERICAL MODELING OF LASER-DRIVEN ION ACCELERATION FROM NEAR-CRITICAL GAS TARGETS Dragos Tatomirescu 1,2, Daniel Vizman 1 and Emmanuel d'humières 2 E-mail: emilian.tatomirescu@e-uvt.ro 1 Faculty of Physics,

More information

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source

Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source Set-up for ultrafast time-resolved x-ray diffraction using a femtosecond laser-plasma kev x-ray-source C. Blome, K. Sokolowski-Tinten *, C. Dietrich, A. Tarasevitch, D. von der Linde Inst. for Laser- and

More information

Lecture 9. Radiation pressure acceleration in. Dr. Ashutosh Sharma Zoltán Tibai

Lecture 9. Radiation pressure acceleration in. Dr. Ashutosh Sharma Zoltán Tibai Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Ion acceleration in plasmas Lecture 9. Radiation pressure acceleration in plasmas (contd.) Dr.

More information

EUV lithography and Source Technology

EUV lithography and Source Technology EUV lithography and Source Technology History and Present Akira Endo Hilase Project 22. September 2017 EXTATIC, Prague Optical wavelength and EUV (Extreme Ultraviolet) VIS 13.5nm 92eV Characteristics of

More information

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25) 1 TMT4320 Nanomaterials November 10 th, 2015 Thin films by physical/chemical methods (From chapter 24 and 25) 2 Thin films by physical/chemical methods Vapor-phase growth (compared to liquid-phase growth)

More information

Proton Beam Generated by Multi-Lasers Interaction with Rear-Holed Target

Proton Beam Generated by Multi-Lasers Interaction with Rear-Holed Target Commun. Theor. Phys. 67 (2017) 322 326 Vol. 67, No. 3, March 1, 2017 Proton Beam Generated by Multi-Lasers Interaction with Rear-Holed Target Peng Yang ( 杨鹏 ), Da-Peng Fan ( 范大鹏 ), and Yu-Xiao Li ( 李玉晓

More information

Monoenergetic Proton Beams from Laser Driven Shocks

Monoenergetic Proton Beams from Laser Driven Shocks Monoenergetic Proton Beams from Laser Driven Shocks Dan Haberberger, Department of Electrical Engineering, UCLA In collaboration with: Sergei Tochitsky, Chao Gong, Warren Mori, Chan Joshi, Department of

More information

Pulsed Laser Deposition; laser ablation. Final apresentation for TPPM Diogo Canavarro, MEFT

Pulsed Laser Deposition; laser ablation. Final apresentation for TPPM Diogo Canavarro, MEFT Pulsed Laser Deposition; laser ablation Final apresentation for TPPM Diogo Canavarro, 56112 MEFT Summary What is PLD? What is the purpose of PLD? How PLD works? Experimental Setup Processes in PLD The

More information

D-D NUCLEAR FUSION PROCESSES INDUCED IN POLYEHTYLENE BY TW LASER-GENERATED PLASMA

D-D NUCLEAR FUSION PROCESSES INDUCED IN POLYEHTYLENE BY TW LASER-GENERATED PLASMA D-D NUCLEAR FUSION PROCESSES INDUCED IN POLYEHTYLENE BY TW LASER-GENERATED PLASMA L. Torrisi 1, M. Cutroneo, S. Cavallaro 1 and J. Ullschmied 3 1 Physics Department, Messina University, V.le S. D Alcontres

More information

Monte Carlo Characterization of a Pulsed Laser-Wakefield Driven Monochromatic X-Ray Source

Monte Carlo Characterization of a Pulsed Laser-Wakefield Driven Monochromatic X-Ray Source 2009 IEEE Nuclear Science Symposium Conference Record N30-3 Monte Carlo Characterization of a Pulsed Laser-Wakefield Driven Monochromatic X-Ray Source S. D. Clarke, S. A. Pozzi, IEEE Member, N. Cunningham,

More information

Initiation of nuclear reactions under laser irradiation of Au nanoparticles in the aqueous solution of Uranium salt. A.V. Simakin and G.A.

Initiation of nuclear reactions under laser irradiation of Au nanoparticles in the aqueous solution of Uranium salt. A.V. Simakin and G.A. Initiation of nuclear reactions under laser irradiation of Au nanoparticles in the aqueous solution of Uranium salt A.V. Simakin and G.A. Shafeev Wave Research Center of A.M. Prokhorov General Physics

More information

Ion acceleration and nuclear physics with 10 PW lasers. Paul McKenna University of Strathclyde

Ion acceleration and nuclear physics with 10 PW lasers. Paul McKenna University of Strathclyde Ion acceleration and nuclear physics with 10 PW lasers Paul McKenna University of Strathclyde Talk summary 1. Nuclear activation applied as a diagnostic of laser-plasmas 2. Laser-driven ion acceleration:

More information

MeV Argon ion beam generation with narrow energy spread

MeV Argon ion beam generation with narrow energy spread MeV Argon ion beam generation with narrow energy spread Jiancai Xu 1, Tongjun Xu 1, Baifei Shen 1,2,*, Hui Zhang 1, Shun Li 1, Yong Yu 1, Jinfeng Li 1, Xiaoming Lu 1, Cheng Wang 1, Xinliang Wang 1, Xiaoyan

More information

Nuclear Fusion with Polarized Fuel

Nuclear Fusion with Polarized Fuel Mitglied der Helmholtz-Gemeinschaft Nuclear Fusion with Polarized Fuel -Some thoughts on the PREFER collaboration - Workshop on Nuclear Fusion with Polarized Fuel Ferrara 2/3 October 2017 Markus Büscher

More information

Development of a table top TW laser accelerator for medical imaging isotope production

Development of a table top TW laser accelerator for medical imaging isotope production Development of a table top TW laser accelerator for medical imaging isotope production R U I Z, A L E X A N D R O 1 ; L E R A, R O B E R T O 1 ; T O R R E S - P E I R Ó, S A LVA D O R 1 ; B E L L I D O,

More information

X ray and XUV phase contrast diagnostics for ELI NP

X ray and XUV phase contrast diagnostics for ELI NP X ray and XUV phase contrast diagnostics for ELI NP D. Stutman 1,2, F. Negoita 1 and D. Ursescu 1 1 ELI NP, Bucharest Magurele, Romania 2 Johns Hopkins University, Baltimore, USA CARPATHIAN SUMMER SCHOOL

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam EMITTANCE X X X X X X X X Introduction to SPARC_LAB 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current can be

More information

Review of recent advances in laser driven ion acceleration and applications. Markus Roth Technische Universität Darmstadt

Review of recent advances in laser driven ion acceleration and applications. Markus Roth Technische Universität Darmstadt Review of recent advances in laser driven ion acceleration and applications Markus Roth Technische Universität Darmstadt Requirements for ion acceleration The requirements strongly depend on the application:

More information

Flux and neutron spectrum measurements in fast neutron irradiation experiments

Flux and neutron spectrum measurements in fast neutron irradiation experiments Flux and neutron spectrum measurements in fast neutron irradiation experiments G.Gorini WORKSHOP A neutron irradiation facility for space applications Rome, 8th June 2015 OUTLINE ChipIr and SEE: New Istrument

More information

Medical Applications of Compact Laser-Compton Light Source

Medical Applications of Compact Laser-Compton Light Source Medical Applications of Compact Laser-Compton Light Source Y. Hwang 1, D. J. Gibson 2, R. A. Marsh 2, G. G. Anderson 2, T. Tajima 1, C. P. J. Barty 2 1 University of California, Irvine 2 Lawrence Livermore

More information

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

Scientific Case for Ultra-intense Laser-Matter Interaction Physics in Solid-density Plasma

Scientific Case for Ultra-intense Laser-Matter Interaction Physics in Solid-density Plasma Scientific Case for Ultra-intense Laser-Matter Interaction Physics in Solid-density Plasma Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft Helmholtz

More information

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg, FLASH overview Nikola Stojanovic PIDID collaboration meeting, Hamburg, 16.12.2011 Outline Overview of the FLASH facility Examples of research at FLASH Nikola Stojanovic PIDID: FLASH overview Hamburg, December

More information

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped gold substrate. (a) Spin coating of hydrogen silsesquioxane (HSQ) resist onto the silicon substrate with a thickness

More information

Generation of surface electrons in femtosecond laser-solid interactions

Generation of surface electrons in femtosecond laser-solid interactions Science in China: Series G Physics, Mechanics & Astronomy 2006 Vol.49 No.3 335 340 335 DOI: 10.1007/s11433-006-0335-5 Generation of surface electrons in femtosecond laser-solid interactions XU Miaohua

More information

W. Udo Schröder Departments of Chemistry & of Physics and Astronomy

W. Udo Schröder Departments of Chemistry & of Physics and Astronomy W. Udo Schröder Departments of Chemistry & of Physics and Astronomy ANSEL Faculty Instructors ACS NuSci Acad Infrastructure 2 Prof. Frank Wolfs Prof. Udo Schrőder Research: Large Underground Xenon (LUX)

More information

Laser-induced ablation: physics and diagnostics of ion emission

Laser-induced ablation: physics and diagnostics of ion emission NUKLEONIKA 2011;56(2):113 117 ORIGINAL PAPER Laser-induced ablation: physics and diagnostics of ion emission Lorenzo Torrisi Abstract. Pulsed lasers generating beams of different intensities may be used

More information

Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas

Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas Particle-in-cell simulations of high energy electron production by intense laser pulses in underdense plasmas Susumu Kato, Eisuke Miura, Mitsumori Tanimoto, Masahiro Adachi, Kazuyoshi Koyama To cite this

More information

6.5 Optical-Coating-Deposition Technologies

6.5 Optical-Coating-Deposition Technologies 92 Chapter 6 6.5 Optical-Coating-Deposition Technologies The coating process takes place in an evaporation chamber with a fully controlled system for the specified requirements. Typical systems are depicted

More information

SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025

SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 SLAC-PUB-16402 RADIATION DOSE MEASUREMENTS FOR HIGH-INTENSITY LASER INTERACTIONS WITH SOLID TARGETS AT SLAC T. Liang 1,2, J. Bauer 1, M. Cimeno 1, A. Ferrari 3, E. Galtier 1, E. Granados 1, H. J. Lee 1,

More information

CILEX-APOLLON. Centre Interdisciplinaire de Lumiere EXtreme Interdisciplinary Center for Extreme Light

CILEX-APOLLON. Centre Interdisciplinaire de Lumiere EXtreme Interdisciplinary Center for Extreme Light CILEX-APOLLON Centre Interdisciplinaire de Lumiere EXtreme Interdisciplinary Center for Extreme Light Ph. Martin, Commissariat à l Energie Atomique, Saclay CILEX-APOLLON Scientific Director French ELI

More information

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016

Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 Nonlinear Optics (WiSe 2015/16) Lecture 12: January 15, 2016 12 High Harmonic Generation 12.1 Atomic units 12.2 The three step model 12.2.1 Ionization 12.2.2 Propagation 12.2.3 Recombination 12.3 Attosecond

More information

INTERACTION OF HIGH INTENSITY LASER WITH STRUCTURED SNOW TARGETS

INTERACTION OF HIGH INTENSITY LASER WITH STRUCTURED SNOW TARGETS INTERACTION OF HIGH INTENSITY LASER WITH STRUCTURED SNOW TARGETS A.Zigler Hebrew University of Jerusalem Israel 2 nd EAAC Workshop 2015 Elba, Italy Collaborators : M. Bo.on, Z.Henis, S. Eisenman, E.Nahum,

More information

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015 The Lund Attosecond Science Centre in the MEDEA network PER JOHNSSON @ THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015 Lund University Founded in 1666 47 700 students (individuals) 7 500 employees - 840

More information

Heavy ion fusion energy program in Russia

Heavy ion fusion energy program in Russia Nuclear Instruments and Methods in Physics Research A 464 (2001) 1 5 Heavy ion fusion energy program in Russia B.Yu. Sharkov*, N.N. Alexeev, M.D. Churazov, A.A. Golubev, D.G. Koshkarev, P.R. Zenkevich

More information

Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo)

Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo) Measurement of wakefields in hollow plasma channels Carl A. Lindstrøm (University of Oslo) in collaboration with Spencer Gessner (CERN) presented by Erik Adli (University of Oslo) FACET-II Science Workshop

More information

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE Copyright(C)JCPDS-International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Vol.46 74 ISSN 1097-0002 LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE K. Chouffani 1, D. Wells

More information

Damage to Molecular Solids Irradiated by X-ray Laser Beam

Damage to Molecular Solids Irradiated by X-ray Laser Beam WDS'11 Proceedings of Contributed Papers, Part II, 247 251, 2011. ISBN 978-80-7378-185-9 MATFYZPRESS Damage to Molecular Solids Irradiated by X-ray Laser Beam T. Burian, V. Hájková, J. Chalupský, L. Juha,

More information

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma THE HARRIS SCIENCE REVIEW OF DOSHISHA UNIVERSITY, VOL. 56, No. 1 April 2015 Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

More information

HiPER: a laser fusion facility for Europe

HiPER: a laser fusion facility for Europe HiPER: a laser fusion facility for Europe Prof Mike Dunne Director, Central Laser Facility, Rutherford Appleton Laboratory, UK m.dunne@rl.ac.uk www.hiper-laser.eu We are entering a new era Demonstration

More information

The PETAL+ project X-ray and particle diagnostics for plasma experiments at LMJ - PETAL

The PETAL+ project X-ray and particle diagnostics for plasma experiments at LMJ - PETAL PETAL+ plasma diagnostics The PETAL+ project X-ray and particle diagnostics for plasma experiments at LMJ - PETAL Jean-Éric Ducret CEA-Saclay/IRFU/Service d Astrophysique & CELIA UMR5107, U. Bordeaux CEA

More information

Transport beamline solutions for laseraccelerated. at ELI-Beamlines

Transport beamline solutions for laseraccelerated. at ELI-Beamlines Transport beamline solutions for laseraccelerated proton beams at ELI-Beamlines Antonella Tramontana on behalf of the ELIMED collaboration Medical and multidisciplinary applications at ELI-Beamlines 100

More information

High Energy electron and proton acceleration by circularly polarized laser pulse from near critical density hydrogen gas target

High Energy electron and proton acceleration by circularly polarized laser pulse from near critical density hydrogen gas target High Energy electron and proton acceleration by circularly polarized laser pulse from near critical density hydrogen gas target ASHUTOSH SHARMA* ELI-ALPS, Szeged, Hungary. ABSTRACT We demonstrate in this

More information

Pushing the limits of laser synchrotron light sources

Pushing the limits of laser synchrotron light sources Pushing the limits of laser synchrotron light sources Igor Pogorelsky National Synchrotron Light Source 2 Synchrotron light source With λ w ~ several centimeters, attaining XUV region requires electron

More information

Development of a compact laserfree accelerator-driven X-ray source based on channeling radiation

Development of a compact laserfree accelerator-driven X-ray source based on channeling radiation Northern Illinois Center for Accelerator and Detector Development Development of a compact laserfree accelerator-driven X-ray source based on channeling radiation Philippe Piot, Department of Physics and

More information

The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy

The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy R. Krause-Rehberg and many colleagues of Univ. Halle and HZDR Martin-Luther University

More information

Calculations of Neutron Yield and Gamma Rays Intensity by GEANT4

Calculations of Neutron Yield and Gamma Rays Intensity by GEANT4 Armenian Journal of Physics, 2016, vol. 9, issue 4, pp. 315-323 Calculations of Neutron Yield and Gamma Rays Intensity by GEANT4 R. Avagyan, R. Avetisyan, V. Ivanyan*, I. Kerobyan A.I. Alikhanyan National

More information

New Ionizing Sources From Lasers to Particles and Applications

New Ionizing Sources From Lasers to Particles and Applications New Ionizing Sources From Lasers to Particles and Applications Philippe Martin CEA/DSM/ IRAMIS- Saclay What is Physics at High Intensity? P= 4x10 26 W 10 m 2 J 20 fs I= 10 20 W/cm 2 I = coupling between

More information

The MIT Accelerator for development of ICF diagnostics at OMEGA / OMEGA-EP and the NIF

The MIT Accelerator for development of ICF diagnostics at OMEGA / OMEGA-EP and the NIF Introduction The MIT Accelerator for development of ICF diagnostics at OMEGA / OMEGA-EP and the NIF SBDs d + or 3 He +(2+) D or 3 He target Present MIT Graduate Students and the MIT Accelerator OLUG 21

More information

New irradiation zones at the CERN-PS

New irradiation zones at the CERN-PS Nuclear Instruments and Methods in Physics Research A 426 (1999) 72 77 New irradiation zones at the CERN-PS M. Glaser, L. Durieu, F. Lemeilleur *, M. Tavlet, C. Leroy, P. Roy ROSE/RD48 Collaboration CERN,

More information

Neutron Generators For Calibration

Neutron Generators For Calibration Neutron Generators For Calibration Roger Wendell 20140108 4 th Hyper-K Open Meeting Introduction - Neutrons are handy Detector calibration with neutrons is useful Low energy calibration point Neutron tagging

More information

The MID instrument.

The MID instrument. The MID instrument International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL Grenoble, Oct 28/29, 2009 Thomas Tschentscher thomas.tschentscher@xfel.eu Outline 2 History

More information

The MIT Nuclear Products Generator for development of ICF diagnostics at Omega / Omega EP and the NIF

The MIT Nuclear Products Generator for development of ICF diagnostics at Omega / Omega EP and the NIF Introduction The MIT Nuclear Products Generator for development of ICF diagnostics at Omega / Omega EP and the NIF SBDs d + or 3 He +(2+) D or 3 He target Present MIT Graduate Students and the MIT Nuclear

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2018/225 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 27 September 2018 (v2, 19 November

More information

Emittance and energy spread measurements of relativistic electrons from laser-driven accelerator

Emittance and energy spread measurements of relativistic electrons from laser-driven accelerator Emittance and energy spread measurements of relativistic electrons from laser-driven accelerator OUTLINE ALPHA-X Project Introduction on laser wakefield accelerator (LWFA) LWFA as a light source Electron

More information

The European XFEL in Hamburg: Status and beamlines design

The European XFEL in Hamburg: Status and beamlines design UVX 2010 (2011) 63 67 DOI: 10.1051/uvx/2011009 C Owned by the authors, published by EDP Sciences, 2011 The European XFEL in Hamburg: Status and beamlines design J. Gaudin, H. Sinn and Th. Tschentscher

More information

Hands on LUNA: Detector Simulations with Geant4

Hands on LUNA: Detector Simulations with Geant4 : Detector Simulations with Geant4 Gran Sasso Science Institute E-mail: axel.boeltzig@gssi.infn.it Andreas Best Laboratori Nazionali del Gran Sasso E-mail: andreas.best@lngs.infn.it For the evaluation

More information

Present and Future of Fission at n_tof

Present and Future of Fission at n_tof 16th ASRC International Workshop " Nuclear Fission and Structure of Exotic Nuclei " Present and Future of Fission at n_tof Christina Weiss, CERN, Geneva/Switzerland 20.03.2014 Present and Future of Fission

More information

Fast electron generation and transport in solid targets. Paul McKenna University of Strathclyde

Fast electron generation and transport in solid targets. Paul McKenna University of Strathclyde Fast electron generation and transport in solid targets Paul McKenna University of Strathclyde Talk summary 1. Fast electron generation and transport in ultraintense laser-solid interactions 2. Transverse

More information

Introduction to intense laser-matter interaction

Introduction to intense laser-matter interaction Pohang, 22 Aug. 2013 Introduction to intense laser-matter interaction Chul Min Kim Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST) & Center for Relativistic

More information

Progress Report on Chamber Dynamics and Clearing

Progress Report on Chamber Dynamics and Clearing Progress Report on Chamber Dynamics and Clearing Farrokh Najmabadi, Rene Raffray, Mark S. Tillack, John Pulsifer, Zoran Dragovlovic (UCSD) Ahmed Hassanein (ANL) Laser-IFE Program Workshop May31-June 1,

More information