Nuclear Fusion with Polarized Fuel

Size: px
Start display at page:

Download "Nuclear Fusion with Polarized Fuel"

Transcription

1 Mitglied der Helmholtz-Gemeinschaft Nuclear Fusion with Polarized Fuel -Some thoughts on the PREFER collaboration - Workshop on Nuclear Fusion with Polarized Fuel Ferrara 2/3 October 2017 Markus Büscher

2 Polarized Fusion Workshop: Warm-up 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 2

3 CO 2 Emissions and Global Warming *) *) for 4 global warming Source: O.Edenhofer(TU Berlin) Erkenntnisseausdem5. Sachstandsberichtdes IPCC KolloquiumFZJ Jülich, Alternative sources of energy (base load) w/o CO 2 emission? 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 3

4 Fusion Energy: What You Find on Google Binds resources that are needed for the fight against climate change The material and technical challenges are extreme The return on renewables has been very much higher. Because renewable technologies are newer, there might still be stones unturned in terms of research Nuclear fusion is 30 years away, and always will be. That's the refrain we've heard, again and again for decades. 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 4

5 Moore s Law 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 5

6 The Lawson Criterion Condition for a fusion reactor: E(Fusion) > E(Heating, ) n"τ $ > 12k )T E, σ, v n: ion density τ $ : confinement time T: ion temperature E, : Energy per fusion σ, : fusion cross section v: ion velocity Density and confinement time large 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 6

7 Magnetic Confinement Fusion Plasma density n= cm 3 ; confinement time τ E = 100 s ITER (>2025) 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 7

8 Inertial Confinement Fusion Plasma density n= cm 3 ; confinement time τ E = s 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 8

9 National Ignition Facility (NIF) 192 Laser (Nd:Glass) 423 TW peak power 1.8 MJ energy Target chamber = 10 m 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 9

10 Laser-induced Production of Fusion-like Plasmas Target Particle beam µm-sized plasma Multi-TW Laser 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 10

11 Fusion Reactions in Laser-induced Plasmas Here: D + D 3 He + n Max-Planck-InstitutfürQuantenoptik(CD 2 foil target) 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 11

12 The Lawson Criterion Revisited n"τ $ > 12k )T E, σ, v n: ion density τ $ : confinement time T: ion temperature E, : Energy per fusion σ, : fusion cross section v: ion velocity External parameters : pressure, temperature, confinement time Intrinsic parameter : fusion cross sectionσ f can this be changed from outside???? 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 12

13 Fusion Reactions è è è D + D 3 He + n + 3,3 MeV D + D T + p + 4, 0 MeV D + T 4 He + n +17, 6 MeV D + 3 He 4 He + p +18,3 MeV 3 He + 3 He 4 He + 2 p +12, 9 MeV è è most promising candidates for fusion reactors no neutrons from a fusion reactor operated with pure 3 He fuel ( 4 He and protons only) 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 13

14 Polarized Fusion: First Ideas See also: The status of polarized fusion, H. Paetz gen. Schieck, Eur. Phys. J. A 44, (2010) 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 14

15 Polarized Fusion: Increased Total Cross Section Helv. Phys. Acta 44, 141 (1971) E I He+d He+p total cross section enhancedby factor kev 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 15

16 Polarized Fusion: Increased Energy Yield Here: inertial fusion Energy yield Enhancement by factor 4 with polarized fuel Relative fusion cross section From: M. Temporal et al.; Priv. comm. 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 16

17 Polarized Fusion: Angular Distributions 1971: D + 3 He 4 He + p Helv. Phys. Acta 44, 141 (1971) Emitted Protons (Neutrons) can be guided (even if only Deuterons are polarized) 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 17

18 The PolFusionProject (2015 / ERC proposal) Measure the polarization dependence of fusion rates in laser-induced relativistic plasmas 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 18

19 2016: Approval of a DFG-RSF project 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 19

20 2017: The PREFER Collaboration Polarization Research for Fusion Experiments and Reactors 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 20

21 PREFER: Work Packages (1) Measurement of ddcross section / PolFusionexperiment (PNPI, Ferrara) Talk by Peter Kravtsov 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 21

22 PREFER: Work Packages (2) Theory / Scattering of two spin-1 particles (PNPI) Talk by Polina Kravchenko 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 22

23 PREFER: Work Packages (3) Polarized molecular beam source (BINP) Talk by DimitriiToporkov 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 23

24 PREFER: Work Packages (4) Construction & test of a Lamb-shift polarimeter (HHUD, FZJ, Ferrara) Talk by Ralf Engels 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 24

25 PREFER: Work Packages (5) Foils of frozen polarized Hydrogen (HHUD, FZJ, BINP) D 2 ice T= 3-10K Cold Head Production of 1 day (>10 21 molecules) is enough to feed a Tokamak for seconds!! 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 25

26 PREFER: Work Packages (6) Theory / Nuclear spins in Laser-induced plasmas (HHUD) Thomas-BMT equation Sokolov-Ternov effect Stern-Gerlacheffect PIC codes 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 26

27 PREFER: Work Packages (7) Nuclear Spins in Laser-induced Plasmas / Experiments (HHUD, FZJ) Multi-TW laser beam Fusion reactions (pol.) Target Does the fusion rate depend on the target polarization? Accelerated Ions µm-sized relativistic plasma Are the accelerated ions polarized? Angular dependence of fusion products? 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 27

28 Generation of Polarized Particle Beams Possible scenarios: Polarization is generated spin flip Stern-Gerlacheffect Polarization is preserved 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 28

29 Polarized 3 He Gas Glass vessels surrounded by permanent magnets (Univ. Mainz) / max. pressure 3 bar Talk by IlhanEngin 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 29

30 GSI Darmstadt Petawatt High-Energy Laser for Heavy Ion EXperiments Flashlamp-pumped Nd:glasssystem Repetition rate: 1 shot per 1.5 hours Long pulse Short pulse Pulse duration ns ps Pulse energy J 250 J Max. intensity W/cm W/cm 2 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 30

31 Polarized Protons from Unpolarized Gas Targets SIOM/Shanghai: Planned measurements at a 10 PW laser Polarimeter for 3 He ions I.Engin et al., DOI: / _5 Magnetic field distribution during bubble acceleration B.Shenet al., Phys.Rev. ST AB 12, (2009) 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 31

32 Proton Polarimetry MeV) 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 32

33 PREFER: Work Packages Who else?? 2 Oct 2017 Workshop on Nuclear Fusion with Polarized Fuel Markus Büscher 33

Experiment POLFUSION

Experiment POLFUSION Petersburg Nuclear Physics Institute National Research Center "Kurchatov Institute" Experiment POLFUSION A. Vasilyev for PolFusion collaboration 1 Collaboration Petersburg Nuclear Physics Institute, Russia

More information

Introduction to Polarized Fusion

Introduction to Polarized Fusion Introduction to Polarized Fusion G.Ciullo Physics department and Earth Science University of Ferrara and INFN (National Institute of Nuclear Physis) 44122 Ferrara ITALY In Polarized Fusion 2017 at BINP

More information

First experiments with the polarized internal gas target at ANKE/COSY

First experiments with the polarized internal gas target at ANKE/COSY Mitglied der Helmholtz-Gemeinschaft First experiments with the polarized internal gas target at ANKE/COSY September 9, 2009 Maxim Mikirtychyants for the ANKE collaboration FZ Jülich / JCHP and PNPI (Gatchina)

More information

Laser in Fusion. Department of Electronics of TEI of Crete. Dr Petridis Kostantinos Lecturer Optoelectronics, Laser and Plasma Technologies Group

Laser in Fusion. Department of Electronics of TEI of Crete. Dr Petridis Kostantinos Lecturer Optoelectronics, Laser and Plasma Technologies Group Laser in Fusion Department of Electronics of TEI of Crete Dr Petridis Kostantinos Lecturer Optoelectronics, Laser and Plasma Technologies Group Nuclear Fusion Since we have tried any energy source in our

More information

Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil

Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil Matthew Allen Department of Nuclear Engineering UC Berkeley mallen@nuc.berkeley.edu March 15, 2004 8th Nuclear Energy

More information

Polarized Molecules: A new Option for Internal Storage-Cell Targets?

Polarized Molecules: A new Option for Internal Storage-Cell Targets? : A new Option for Internal Storage-Cell Targets? Institut für Kernphysik, Forschungszentrum Jülich, Wilhelm-Johnen-Str. 1, 548 Jülich, Germany E-mail: r.w.engels@fz-juelich.de In the last decades different

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 20 Modern Physics Nuclear Energy and Elementary Particles Fission, Fusion and Reactors Elementary Particles Fundamental Forces Classification of Particles Conservation

More information

A Virtual Reactor Model for Inertial Fusion Energy. Michel Decroisette Noël Fleurot Marc Novaro Guy Schurtz Jacques Duysens

A Virtual Reactor Model for Inertial Fusion Energy. Michel Decroisette Noël Fleurot Marc Novaro Guy Schurtz Jacques Duysens A Virtual Reactor Model for Inertial Fusion Energy Michel Decroisette Noël Fleurot Marc Novaro Guy Schurtz Jacques Duysens 1 OUTLINE Introduction Fusion vs Fission Inertial Confinement Fusion Principle

More information

Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE

Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE In the beginning In the late fifties, alternative applications of nuclear explosions were being considered the number one suggestion

More information

The PETAL+ project X-ray and particle diagnostics for plasma experiments at LMJ - PETAL

The PETAL+ project X-ray and particle diagnostics for plasma experiments at LMJ - PETAL PETAL+ plasma diagnostics The PETAL+ project X-ray and particle diagnostics for plasma experiments at LMJ - PETAL Jean-Éric Ducret CEA-Saclay/IRFU/Service d Astrophysique & CELIA UMR5107, U. Bordeaux CEA

More information

Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads

Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads Mitglied der Helmholtz-Gemeinschaft Materials for Future Fusion Reactors under Severe Stationary and Transient Thermal Loads J. Linke, J. Du, N. Lemahieu, Th. Loewenhoff, G. Pintsuk, B. Spilker, T. Weber,

More information

Integrated simulations of fast ignition of inertial fusion targets

Integrated simulations of fast ignition of inertial fusion targets Integrated simulations of fast ignition of inertial fusion targets Javier Honrubia School of Aerospace Engineering Technical University of Madrid, Spain 11 th RES Users Meeting, Santiago de Compostela,

More information

Thomas Kuehl. GSI Helmholtz Center Darmstadt Helmholtz Institute Jena JoGu University Mainz. IZEST- Workshop Livermore July

Thomas Kuehl. GSI Helmholtz Center Darmstadt Helmholtz Institute Jena JoGu University Mainz. IZEST- Workshop Livermore July Experiments towards high-efficiency high-power plasma amplification using existing resources and installations 1 Thomas Kuehl GSI Helmholtz Center Darmstadt Helmholtz Institute Jena JoGu University Mainz

More information

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics

References and Figures from: - Basdevant, Fundamentals in Nuclear Physics Lecture 22 Fusion Experimental Nuclear Physics PHYS 741 heeger@wisc.edu References and Figures from: - Basdevant, Fundamentals in Nuclear Physics 1 Reading for Next Week Phys. Rev. D 57, 3873-3889 (1998)

More information

Chapter IX: Nuclear fusion

Chapter IX: Nuclear fusion Chapter IX: Nuclear fusion 1 Summary 1. General remarks 2. Basic processes 3. Characteristics of fusion 4. Solar fusion 5. Controlled fusion 2 General remarks (1) Maximum of binding energy per nucleon

More information

Fukuoka, Japan. 23 August National Ignition Facility (NIF) Laboratory for Laser Energetics (OPERA)

Fukuoka, Japan. 23 August National Ignition Facility (NIF) Laboratory for Laser Energetics (OPERA) Fukuoka, Japan 23 August 2012 National Ignition Facility (NIF) LLNL-PRES-562760 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under

More information

Notes on fusion reactions and power balance of a thermonuclear plasma!

Notes on fusion reactions and power balance of a thermonuclear plasma! SA, 3/2017 Chapter 5 Notes on fusion reactions and power balance of a thermonuclear plasma! Stefano Atzeni See S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford University Press (2004,

More information

Status and Prospect of Laser Fusion Research at ILE Osaka University

Status and Prospect of Laser Fusion Research at ILE Osaka University Fusion Power Associates 39th Annual Meeting and Symposium Fusion Energy: Strategies and Expectations through the 2020s Status and Prospect of Laser Fusion Research at ILE Osaka University Introduction

More information

What is. Inertial Confinement Fusion?

What is. Inertial Confinement Fusion? What is Inertial Confinement Fusion? Inertial Confinement Fusion: dense & short-lived plasma Fusing D and T requires temperature to overcome Coulomb repulsion density & confinement time to maximize number

More information

The MIT Accelerator for development of ICF diagnostics at OMEGA / OMEGA-EP and the NIF

The MIT Accelerator for development of ICF diagnostics at OMEGA / OMEGA-EP and the NIF Introduction The MIT Accelerator for development of ICF diagnostics at OMEGA / OMEGA-EP and the NIF SBDs d + or 3 He +(2+) D or 3 He target Present MIT Graduate Students and the MIT Accelerator OLUG 21

More information

PHY492: Nuclear & Particle Physics. Lecture 8 Fusion Nuclear Radiation: β decay

PHY492: Nuclear & Particle Physics. Lecture 8 Fusion Nuclear Radiation: β decay PHY492: Nuclear & Particle Physics Lecture 8 Fusion Nuclear Radiation: β decay Energy released in nuclear fission and fusion Fission Nucleus A=236 fissions into two nuclei with A~118 B Q 236 A B A A=236

More information

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000

Unpressurized steam reactor. Controlled Fission Reactors. The Moderator. Global energy production 2000 From last time Fission of heavy elements produces energy Only works with 235 U, 239 Pu Fission initiated by neutron absorption. Fission products are two lighter nuclei, plus individual neutrons. These

More information

Laser Inertial Confinement Fusion Advanced Ignition Techniques

Laser Inertial Confinement Fusion Advanced Ignition Techniques Laser Inertial Confinement Fusion Advanced Ignition Techniques R. Fedosejevs Department of Electrical and Computer Engineering University of Alberta Presented at the Canadian Workshop on Fusion Energy

More information

Weibel instability and filamentary structures of a relativistic electron beam in plasma

Weibel instability and filamentary structures of a relativistic electron beam in plasma Mitglied der Helmholtz-Gemeinschaft 7 th Direct Drive and Fast Ignition Workshop Prague, 3-6 May, 009 Weibel instability and filamentary structures of a relativistic electron beam in plasma Anupam Karmakar

More information

Energetic neutral and negative ion beams accelerated from spray target irradiated with ultra-short, intense laser pulses

Energetic neutral and negative ion beams accelerated from spray target irradiated with ultra-short, intense laser pulses Energetic neutral and negative ion beams accelerated from spray target irradiated with ultra-short, intense laser pulses Sargis Ter-Avetisyan ELI - Extreme Light Infrastructure Science and Technology with

More information

ULTRA-INTENSE LASER PLASMA INTERACTIONS RELATED TO FAST IGNITOR IN INERTIAL CONFINEMENT FUSION

ULTRA-INTENSE LASER PLASMA INTERACTIONS RELATED TO FAST IGNITOR IN INERTIAL CONFINEMENT FUSION ULTRA-INTENSE LASER PLASMA INTERACTIONS RELATED TO FAST IGNITOR IN INERTIAL CONFINEMENT FUSION R. KODAMA, H. FUJITA, N. IZUMI, T. KANABE, Y. KATO*, Y. KITAGAWA, Y. SENTOKU, S. NAKAI, M. NAKATSUKA, T. NORIMATSU,

More information

Calibration and applications of modern track detectors CR-39/PM-355 in nuclear physics and high temperature plasma experiments

Calibration and applications of modern track detectors CR-39/PM-355 in nuclear physics and high temperature plasma experiments NUKLEONIKA 2008;53(Supplement 2):S15 S19 ORIGINAL PAPER Calibration and applications of modern track detectors CR-39/PM-355 in nuclear physics and high temperature plasma experiments Aneta Malinowska,

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX)

Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX) 1 Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX) K. Mima 1), H. Azechi 1), H. Fujita 1), Y. Izawa 1), T. Jitsuno 1), T. Johzaki 1), Y. Kitagawa

More information

Ion Polarization in RHIC/eRHIC

Ion Polarization in RHIC/eRHIC Ion Polarization in RHIC/eRHIC M. Bai, W. MacKay, V. Ptitsyn, T. Roser, A. Zelenski Polarized Ion Sources (reporting for Anatoly Zelenski) Polarized proton beams in RHIC/eRHIC Polarized He3 for erhic (reporting

More information

Prospects for a Storage Ring EDM-Facility at COSY

Prospects for a Storage Ring EDM-Facility at COSY Mitglied der Helmholtz-Gemeinschaft Lepton Moments 2010 Prospects for a Storage Ring EDM-Facility at COSY July 2010 Hans Ströher EDM at COSY Motivation Why another EDM search: - New approach: polarized

More information

D-D FUSION NEUTRONS FROM A STRONG SPHERICAL SHOCK WAVE FOCUSED ON A DEUTERIUM BUBBLE IN WATER. Dr. Michel Laberge General Fusion Inc.

D-D FUSION NEUTRONS FROM A STRONG SPHERICAL SHOCK WAVE FOCUSED ON A DEUTERIUM BUBBLE IN WATER. Dr. Michel Laberge General Fusion Inc. D-D FUSION NEUTRONS FROM A STRONG SPHERICAL SHOCK WAVE FOCUSED ON A DEUTERIUM BUBBLE IN WATER Dr. Michel Laberge General Fusion Inc. SONOFUSION Sonofusion is making some noise A bit short in energy, ~mj

More information

Update on Fast Ignition Fusion Energy

Update on Fast Ignition Fusion Energy Update on Fast Ignition Fusion Energy R. Fedosejevs Department of Electrical and Computer Engineering University of Alberta Presented at the Canadian Workshop on Fusion Energy Science and Technology Ottawa,

More information

Charged-Particle Spectra Using Particle Tracking on a Two-Dimensional Grid. P. B. Radha, J. A. Delettrez, R. Epstein, S. Skupsky, and J. M.

Charged-Particle Spectra Using Particle Tracking on a Two-Dimensional Grid. P. B. Radha, J. A. Delettrez, R. Epstein, S. Skupsky, and J. M. Charged-Particle Spectra Using Particle Tracking on a Two-Dimensional Grid P. B. Radha, J. A. Delettrez, R. Epstein, S. Skupsky, and J. M. Soures Laboratory for Laser Energetics, U. of Rochester S. Cremer

More information

THE DOUBLE-POLARIZED DD-FUSION EXPERIMENT + DETECTOR SYSTEM

THE DOUBLE-POLARIZED DD-FUSION EXPERIMENT + DETECTOR SYSTEM Petersburg Nuclear Physics Institute THE DOUBLE-POLARIZED DD-FUSION EXPERIMENT + DETECTOR SYSTEM P. Kravtsov for the PolFusion collaboration 1 The experiment goal Investigation of 4-nucleons reaction with

More information

Multi-GeV electron acceleration using the Texas Petawatt laser

Multi-GeV electron acceleration using the Texas Petawatt laser Multi-GeV electron acceleration using the Texas Petawatt laser X. Wang, D. Du, S. Reed, R. Zgadzaj, P.Dong, N. Fazel, R. Korzekwa, Y.Y. Chang, W. Henderson M. Downer S.A. Yi, S. Kalmykov, E. D'Avignon

More information

Monoenergetic Proton Beams from Laser Driven Shocks

Monoenergetic Proton Beams from Laser Driven Shocks Monoenergetic Proton Beams from Laser Driven Shocks Dan Haberberger, Department of Electrical Engineering, UCLA In collaboration with: Sergei Tochitsky, Chao Gong, Warren Mori, Chan Joshi, Department of

More information

ICF ignition and the Lawson criterion

ICF ignition and the Lawson criterion ICF ignition and the Lawson criterion Riccardo Betti Fusion Science Center Laboratory for Laser Energetics, University of Rochester Seminar Massachusetts Institute of Technology, January 0, 010, Cambridge

More information

SIMULATION OF LASER INDUCED NUCLEAR REACTIONS

SIMULATION OF LASER INDUCED NUCLEAR REACTIONS NUCLEAR PHYSICS SIMULATION OF LASER INDUCED NUCLEAR REACTIONS K. SPOHR 1, R. CHAPMAN 1, K. LEDINGHAM 2,3, P. MCKENNA 2,3 1 The Institute of Physical Research, University of Paisley, Paisley PA1 2BE, UK

More information

Modeling Nonlinear Optics Of Plasmas (Relevant To IFE)

Modeling Nonlinear Optics Of Plasmas (Relevant To IFE) Modeling Nonlinear Optics Of Plasmas (Relevant To IFE) F.S.Tsung and the UCLA Simulation Group University of California, Los Angeles (UCLA) 1 F. S. Tsung/OSIRIS Workshop 2017 Summary/Conclusion Introduction

More information

Development of a table top TW laser accelerator for medical imaging isotope production

Development of a table top TW laser accelerator for medical imaging isotope production Development of a table top TW laser accelerator for medical imaging isotope production R U I Z, A L E X A N D R O 1 ; L E R A, R O B E R T O 1 ; T O R R E S - P E I R Ó, S A LVA D O R 1 ; B E L L I D O,

More information

Laser Ion Acceleration: Status and Perspectives for Fusion

Laser Ion Acceleration: Status and Perspectives for Fusion Laser Ion Acceleration: Status and Perspectives for Fusion Peter G. Thirolf, LMU Munich Outline: laser-particle acceleration fission-fusion mechanism: with ultra-dense ion beams towards r-process path

More information

Neutronic design of the ESS targetmoderatorreflector. Luca Zanini For the ESS target division and in-kind collaborators

Neutronic design of the ESS targetmoderatorreflector. Luca Zanini For the ESS target division and in-kind collaborators Neutronic design of the ESS targetmoderatorreflector system Luca Zanini For the ESS target division and in-kind collaborators Nordic-Gen4 seminar, Risoe, 29-31 October 2012 ESS timeline On schedule for

More information

Fast ion physics in the C-2U advanced, beam-driven FRC

Fast ion physics in the C-2U advanced, beam-driven FRC Fast ion physics in the C-2U advanced, beam-driven FRC Richard Magee for the TAE Team 216 US-Japan Workshop on the Compact Torus August 23, 216! High β FRC embedded in magnetic mirror is a unique fast

More information

The PAX experiment. Paolo Lenisa Università di Ferrara and INFN - Italy. Tbilisi, July 10 th PAX - Polarized Antiprotons

The PAX experiment. Paolo Lenisa Università di Ferrara and INFN - Italy. Tbilisi, July 10 th PAX - Polarized Antiprotons The PAX experiment 1 Paolo Lenisa Università di Ferrara and INFN - Italy Tbilisi, July 10 th 2014 Motivation The PAX collaboration proposed to investigate Drell Yan processes in scattering of polarized

More information

Integrated Modeling of Fast Ignition Experiments

Integrated Modeling of Fast Ignition Experiments Integrated Modeling of Fast Ignition Experiments Presented to: 9th International Fast Ignition Workshop Cambridge, MA November 3-5, 2006 R. P. J. Town AX-Division Lawrence Livermore National Laboratory

More information

Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University

Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Neutron Sources Fall, 2017 Kyoung-Jae Chung Department of Nuclear Engineering Seoul National University Neutrons: discovery In 1920, Rutherford postulated that there were neutral, massive particles in

More information

Plasma Wall Interactions in Tokamak

Plasma Wall Interactions in Tokamak Plasma Wall Interactions in Tokamak Dr. C Grisolia, Association Euratom/CEA sur la fusion, CEA/Cadarache Outline 1. Conditions for Fusion in Tokamaks 2. Consequences of plasma operation on in vessel materials:

More information

How to Prepare an Experiment using the Gamma Beam System at ELI-NP

How to Prepare an Experiment using the Gamma Beam System at ELI-NP EUROPEAN UNION GOVERNMENT OF ROMANIA Structural Instruments 2007-2013 Project co-financed by the European Regional Development Fund How to Prepare an Experiment using the Gamma Beam System at ELI-NP Catalin

More information

An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA

An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA 4 compression beams MIFEDS coils B z ~ 1 T Preheat beam from P9 1 mm Ring 3 Rings 4 Ring 3 Target support Fill-tube pressure transducer

More information

Generation and application of ultra-short high-intensity laser pulses

Generation and application of ultra-short high-intensity laser pulses Generation and application of ultra-short high-intensity laser pulses J. Limpouch Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Physical Electronics

More information

The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF) PSFC/JA-16-32 The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF) J.A. Frenje 1 T.J. Hilsabeck 2, C. Wink1, P. Bell 3,

More information

Towards 100 MeV proton generation using ultrathin targets irradiated with petawatt laser pulses

Towards 100 MeV proton generation using ultrathin targets irradiated with petawatt laser pulses IZEST_Tokyo 2013.11.18 Towards 100 MeV proton generation using ultrathin targets irradiated with petawatt laser pulses Chang Hee Nam 1,2, I J. Kim 1,3, H. T. Kim 1,3, I. W. Choi 1,3, K. H. Pae 1,3, C.

More information

Relevant spatial and time scale in tokamaks. F. Bombarda ENEA-Frascati, FSN-FUSPHY-SAD

Relevant spatial and time scale in tokamaks. F. Bombarda ENEA-Frascati, FSN-FUSPHY-SAD Relevant spatial and time scale in tokamaks F. Bombarda ENEA-Frascati, FSN-FUSPHY-SAD PolFusion - one day discussion Meeting, 23rd of July 2015 Ferrara Ignitor News MoU of April 2010 concerned the construction

More information

TWO FUSION TYPES NEUTRONIC ANEUTRONIC

TWO FUSION TYPES NEUTRONIC ANEUTRONIC October 2016 October 2016 WHAT IS FUSION? TWO FUSION TYPES NEUTRONIC ANEUTRONIC TWO FUSION TYPES NEUTRONIC ANEUTRONIC TWO FUSION TYPES NEUTRONIC ANEUTRONIC produces neutrons produces NO neutrons NEUTRONIC

More information

Ignition Regime and Burn Dynamics of D T-Seeded D 3 He Fuel for Fast Ignition Inertial Confinement Fusion

Ignition Regime and Burn Dynamics of D T-Seeded D 3 He Fuel for Fast Ignition Inertial Confinement Fusion Ignition Regime and Burn Dynamics of D T-Seeded D 3 He Fuel for Fast Ignition Inertial Confinement Fusion Y. Nakao, K. Tsukida, K. Shinkoda, Y. Saito Department of Applied Quantum Physics and Nuclear Engineering,

More information

Inertial Confinement Fusion

Inertial Confinement Fusion Inertial Confinement Fusion Prof. Dr. Mathias Groth Aalto University School of Science, Department of Applied Physics Outline Principles of inertial confinement fusion Implosion/compression physics Direct

More information

First Results from Cryogenic-Target Implosions on OMEGA

First Results from Cryogenic-Target Implosions on OMEGA First Results from Cryogenic-Target Implosions on OMEGA MIT 1 mm 1 mm 100 µm C. Stoeckl University of Rochester Laboratory for Laser Energetics 43rd Annual Meeting of the American Physical Society Division

More information

PIC simulations of laser interactions with solid targets

PIC simulations of laser interactions with solid targets PIC simulations of laser interactions with solid targets J. Limpouch, O. Klimo Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, Praha 1, Czech Republic

More information

X ray and XUV phase contrast diagnostics for ELI NP

X ray and XUV phase contrast diagnostics for ELI NP X ray and XUV phase contrast diagnostics for ELI NP D. Stutman 1,2, F. Negoita 1 and D. Ursescu 1 1 ELI NP, Bucharest Magurele, Romania 2 Johns Hopkins University, Baltimore, USA CARPATHIAN SUMMER SCHOOL

More information

Progress in Vlasov-Fokker- Planck simulations of laserplasma

Progress in Vlasov-Fokker- Planck simulations of laserplasma Progress in Vlasov-Fokker- Planck simulations of laserplasma interactions C. P. Ridgers, M. W. Sherlock, R. J. Kingham, A.Thomas, R. Evans Imperial College London Outline Part 1 simulations of long-pulse

More information

High Energy Density Physics related to Inertial Fusion with Intense Ion and Laser Beams at GSI and FAIR in Darmstadt

High Energy Density Physics related to Inertial Fusion with Intense Ion and Laser Beams at GSI and FAIR in Darmstadt High Energy Density Physics related to Inertial Fusion with Intense Ion and Laser Beams at GSI and FAIR in Darmstadt Dieter H.H. Hoffmann Radiation- and Nuclear Physics Technical University Darmstadt HEDgeHOB

More information

Status and Perspectives of Hadron Physics in Europe. Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

Status and Perspectives of Hadron Physics in Europe. Forschungszentrum Jülich in der Helmholtz-Gemeinschaft Hans Ströher Status and Perspectives of Hadron Physics in Europe Forschungszentrum Jülich in der Helmholtz-Gemeinschaft Europe We are here: Tbilisi (Georgia) Area (EU 15): ~ π x 10 6 km 2 (EU 25): 1.25

More information

HiPER: a laser fusion facility for Europe

HiPER: a laser fusion facility for Europe HiPER: a laser fusion facility for Europe Prof Mike Dunne Director, Central Laser Facility, Rutherford Appleton Laboratory, UK m.dunne@rl.ac.uk www.hiper-laser.eu We are entering a new era Demonstration

More information

Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Lasers

Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Lasers Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Lasers 75 nm 75 75 5 nm 3 copper target Normalized K b /K a 1.2 1.0 0.8 0.6 0.4 Cold material 1 ps 10 ps 0.2 10 3 10 4 Heating 2.1 kj, 10

More information

Aspects of Advanced Fuel FRC Fusion Reactors

Aspects of Advanced Fuel FRC Fusion Reactors Aspects of Advanced Fuel FRC Fusion Reactors John F Santarius and Gerald L Kulcinski Fusion Technology Institute Engineering Physics Department CT2016 Irvine, California August 22-24, 2016 santarius@engr.wisc.edu;

More information

Inertial Fusion Energy Technolgy

Inertial Fusion Energy Technolgy Inertial Fusion Energy Technolgy Robert Fedosejevs Department of Electrical and Computer Engineering University of Alberta And Alberta/Canada Fusion Technology Alliance Presented at the Canadian Nuclear

More information

Storage Ring Based EDM Search Achievements and Goals

Storage Ring Based EDM Search Achievements and Goals Mitglied der Helmholtz-Gemeinschaft Storage Ring Based EDM Search Achievements and Goals October 20, 2014 Andreas Lehrach RWTH Aachen University & Forschungszentrum Jülich on behalf of the JEDI collaboration

More information

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets in LCLS MEC Instrument

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets in LCLS MEC Instrument Measurements of Radiation Doses Induced by High Intensity Laser between 10 16 and 10 21 W/cm 2 onto Solid Targets in LCLS MEC Instrument SLAC RP: Johannes Bauer, Maranda Cimeno, James Liu, Sayed Rokni,

More information

D-D NUCLEAR FUSION PROCESSES INDUCED IN POLYEHTYLENE BY TW LASER-GENERATED PLASMA

D-D NUCLEAR FUSION PROCESSES INDUCED IN POLYEHTYLENE BY TW LASER-GENERATED PLASMA D-D NUCLEAR FUSION PROCESSES INDUCED IN POLYEHTYLENE BY TW LASER-GENERATED PLASMA L. Torrisi 1, M. Cutroneo, S. Cavallaro 1 and J. Ullschmied 3 1 Physics Department, Messina University, V.le S. D Alcontres

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

University of Alberta And. Edmonton, November 4, 2017

University of Alberta And. Edmonton, November 4, 2017 Laser Fusion in Canada Robert Fedosejevs Department of Electrical and Computer Engineering University of Alberta And Alberta/Canada Fusion Technology Alliance Presented at the Fusion Forum Edmonton, November

More information

Determination of Hot-Electron Conversion Efficiencies and Isochoric Heating of Low-Mass Targets Irradiated by the Multi-Terawatt Laser

Determination of Hot-Electron Conversion Efficiencies and Isochoric Heating of Low-Mass Targets Irradiated by the Multi-Terawatt Laser Determination of Hot-Electron Conversion Efficiencies and Isochoric Heating of Low-Mass Targets Irradiated by the Multi-Terawatt Laser 1.2 Total energy K a /laser energy 1 3 1 4 Refluxing No refluxing

More information

Heavy ion fusion energy program in Russia

Heavy ion fusion energy program in Russia Nuclear Instruments and Methods in Physics Research A 464 (2001) 1 5 Heavy ion fusion energy program in Russia B.Yu. Sharkov*, N.N. Alexeev, M.D. Churazov, A.A. Golubev, D.G. Koshkarev, P.R. Zenkevich

More information

Numerical Modeling of Radiative Kinetic Plasmas

Numerical Modeling of Radiative Kinetic Plasmas 2014 US-Japan JIFT Workshop on Progress in kinetic plasma simulations Oct.31-Nov.1, 2014, Salon F, New Orleans Marriott, New Orleans, LA, U.S.A Numerical Modeling of Radiative Kinetic Plasmas T. Johzaki

More information

Application of Proton Radiography to High Energy Density Research

Application of Proton Radiography to High Energy Density Research Application of Proton Radiography to High Energy Density Research S.A. Kolesnikov*, S.V. Dudin, V.B. Mintsev, A.V. Shutov, A.V. Utkin, V.E. Fortov IPCP RAS, Chernogolovka, Russia A.A. Golubev, V.S. Demidov,

More information

The MIT Nuclear Products Generator for development of ICF diagnostics at Omega / Omega EP and the NIF

The MIT Nuclear Products Generator for development of ICF diagnostics at Omega / Omega EP and the NIF Introduction The MIT Nuclear Products Generator for development of ICF diagnostics at Omega / Omega EP and the NIF SBDs d + or 3 He +(2+) D or 3 He target Present MIT Graduate Students and the MIT Nuclear

More information

Non-cryogenic ICF-target

Non-cryogenic ICF-target Non-cryogenic ICF-target 1, V.E. Sherman, 3 N.V. Zmitrenko 1 P.N.Lebedev Physical Institute of Russian Academy of Sciences, Moscow, RF St.-Petersburg Polytechnic State Iniversity, RF M.V. Keldish Instititute

More information

The MEC endstation at LCLS New opportunities for high energy density science

The MEC endstation at LCLS New opportunities for high energy density science The MEC endstation at LCLS New opportunities for high energy density science Singapore, fttp-5, April 20th, 2011 Bob Nagler BNagler@slac.stanford.edu SLAC national accelerator laboratory 1 Overview Motivation

More information

High-Performance Inertial Confinement Fusion Target Implosions on OMEGA

High-Performance Inertial Confinement Fusion Target Implosions on OMEGA High-Performance Inertial Confinement Fusion Target Implosions on OMEGA D.D. Meyerhofer 1), R.L. McCrory 1), R. Betti 1), T.R. Boehly 1), D.T. Casey, 2), T.J.B. Collins 1), R.S. Craxton 1), J.A. Delettrez

More information

Relativistic Laser self-focusing

Relativistic Laser self-focusing Relativistic Laser self-focusing Kazuo A. Tanaka Graduate School of Engineering, Osaka University Suita, Osaka 565-0871 Japan GRE OLUG Workshop on HEDS Rochester, N.Y., U.S.A. Apr. 27, 2010 Ne/Nc Concept

More information

Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor. Katherine Manfred

Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor. Katherine Manfred Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor Katherine Manfred Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor Katherine M. Manfred Fairport High

More information

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic

Nuclear Reactions A Z. Radioactivity, Spontaneous Decay: Nuclear Reaction, Induced Process: x + X Y + y + Q Q > 0. Exothermic Endothermic Radioactivity, Spontaneous Decay: Nuclear Reactions A Z 4 P D+ He + Q A 4 Z 2 Q > 0 Nuclear Reaction, Induced Process: x + X Y + y + Q Q = ( m + m m m ) c 2 x X Y y Q > 0 Q < 0 Exothermic Endothermic 2

More information

Robust energy enhancement of ultra-short pulse laser accelerated protons from reduced mass targets

Robust energy enhancement of ultra-short pulse laser accelerated protons from reduced mass targets Robust energy enhancement of ultra-short pulse laser accelerated protons from reduced mass targets K. Zeil, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey, B. Schmidt, M. Zier,

More information

Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan

Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan The Sun Magnetic Confinement Fusion and Tokamaks Chijin Xiao Department of Physics and Engineering Physics University of Saskatchewan 2017 CNS Conference Niagara Falls, June 4-7, 2017 Tokamak Outline Fusion

More information

Magnetized High-Energy-Density Plasma

Magnetized High-Energy-Density Plasma LLNL PRES 446057 Magnetized High-Energy-Density Plasma D.D. Ryutov Lawrence Livermore National Laboratory, Livermore, CA 94551, USA Presented at the 2010 Science with High-Power Lasers and Pulsed Power

More information

Magnetic Confinement Fusion-Status and Challenges

Magnetic Confinement Fusion-Status and Challenges Chalmers energy conference 2012 Magnetic Confinement Fusion-Status and Challenges F. Wagner Max-Planck-Institute for Plasma Physics, Greifswald Germany, EURATOM Association RLPAT St. Petersburg Polytechnic

More information

Axion dark matter search using the storage ring EDM method

Axion dark matter search using the storage ring EDM method Axion dark matter search using the storage ring EDM method Seung Pyo Chang, a,b Selcuk Haciomeroglu, a On Kim, a,b Soohyung Lee, a Seongtae Park, a Yannis K. Semertzidis a,b a Center for Axion and Precision

More information

Pellet Injector for Inertial Fusion

Pellet Injector for Inertial Fusion Abstract Pellet Injector for Inertial Fusion J. P. PERIN (*),(*), E BOULEAU (*), B. RUS (**) (*) CEA/INAC/SBT, 17 Rue des Martyrs 38054 GRENOBLE cedex 9 FRANCE (**) Institute of Physics of the ASCR, v.v.i.18221

More information

POLARIZED DEUTERONS AT THE NUCLOTRON 1

POLARIZED DEUTERONS AT THE NUCLOTRON 1 POLARIZED DEUTERONS AT THE NUCLOTRON 1 Yu.K.Pilipenko, S.V.Afanasiev, L.S.Azhgirey, A.Yu.Isupov, V.P.Ershov, V.V.Fimushkin, L.V.Kutuzova, V.F.Peresedov, V.P.Vadeev, V.N.Zhmyrov, L.S.Zolin Joint Institute

More information

PONDEROMOTIVE ION ACCELERATION AND FAST ION IGNITION WITH ULTRAINTENSE LASER PULSES

PONDEROMOTIVE ION ACCELERATION AND FAST ION IGNITION WITH ULTRAINTENSE LASER PULSES PONDEROMOTIVE ION ACCELERATION AND FAST ION IGNITION WITH ULTRAINTENSE LASER PULSES V.Tikhonchuk Centre Lasers Intenses et Applications Université Bordeaux 1, France Senigallia, June 15, 2009 COULOMB 09

More information

Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser

Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser Allen Mills, Jr., University of California Riverside in collaboration with David Cassidy and Harry Tom (UCR) Rod Greaves

More information

PolFusion: Polarized Fuel for Fusion Reactors

PolFusion: Polarized Fuel for Fusion Reactors PolFusion: Polarized Fuel for Fusion Reactors From the point of view of the nuclear physics, the use of polarized fuel seems the viable way in order to fulfill nuclear fusion for energy production thanks

More information

Laser trigged proton acceleration from ultrathin foil

Laser trigged proton acceleration from ultrathin foil Laser trigged proton acceleration from ultrathin foil A.V. Brantov 1, V. Yu. Bychenkov 1, D. V. Romanov 2, A. Maksimchuk 3 1 P. N. Lebedev Physics Institute RAS, Moscow 119991, Russia 2 All-Russia Research

More information

Proton acceleration in thin foils with micro-structured surface

Proton acceleration in thin foils with micro-structured surface Proton acceleration in thin foils with micro-structured surface J. Pšikal*, O. Klimo*, J. Limpouch*, J. Proška, F. Novotný, J. Vyskočil Czech Technical University in Prague, Faculty of Nuclear Sciences

More information

Progress in Direct-Drive Inertial Confinement Fusion Research

Progress in Direct-Drive Inertial Confinement Fusion Research Progress in Direct-Drive Inertial Confinement Fusion Research Ignition and Gain Total GtRH n (g/cm 2 ) 2 1.5.2.1 IAEA 21 DT, 22 kj IAEA 28 DT, 16 kj NIF.5 MJ NIF point design 1.5 MJ 1-D marginal ignition

More information

Laser-based proton sources for medical applications

Laser-based proton sources for medical applications Laser-based proton sources for medical applications V. Yu. Bychenkov, A. V. Brantov Lebedev Physics Institute, Moscow Center for Fundamental and Applied Research (CFAR), VNIIA, ROSATOM, Moscow ICAN Scientific

More information

Measurement of the plasma astrophysical S factor for the 3 He(D, p) 4 He reaction in exploding molecular clusters

Measurement of the plasma astrophysical S factor for the 3 He(D, p) 4 He reaction in exploding molecular clusters Measurement of the plasma astrophysical S factor for the 3 He(D, p) 4 He reaction in exploding molecular clusters M. Barbui 1, a), W. Bang 2, b), A. Bonasera 3,1, K. Hagel 1, K. Schmidt 1, J. B. Natowitz

More information

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets at LCLS MEC Instrument

Measurements of Radiation Doses Induced by High Intensity Laser between and W/cm 2 onto Solid Targets at LCLS MEC Instrument Measurements of Radiation Doses Induced by High Intensity Laser between 10 16 and 10 21 W/cm 2 onto Solid Targets at LCLS MEC Instrument T. Liang 1,2, J. Bauer 1, M. Cimeno 1, A. Ferrari 3, E. Galtier

More information

Scientific Case for Ultra-intense Laser-Matter Interaction Physics in Solid-density Plasma

Scientific Case for Ultra-intense Laser-Matter Interaction Physics in Solid-density Plasma Scientific Case for Ultra-intense Laser-Matter Interaction Physics in Solid-density Plasma Text optional: Institutsname Prof. Dr. Hans Mustermann www.fzd.de Mitglied der Leibniz-Gemeinschaft Helmholtz

More information