Ion acceleration and nuclear physics with 10 PW lasers. Paul McKenna University of Strathclyde

Size: px
Start display at page:

Download "Ion acceleration and nuclear physics with 10 PW lasers. Paul McKenna University of Strathclyde"

Transcription

1 Ion acceleration and nuclear physics with 10 PW lasers Paul McKenna University of Strathclyde

2 Talk summary 1. Nuclear activation applied as a diagnostic of laser-plasmas 2. Laser-driven ion acceleration: present and future prospects 3. Nuclear physics with 10 PW pulses SCAPA project in Scotland

3 Laser-driven nuclear reactions: (p,n) for medical isotope production Courtesy of H. Schwoerer, Jena See for example: Ledingham, McKenna & Singhal, Science (2003)

4 Photo-nuclear activation as a plasma diagnostic The ratio of the numbers of two different nuclear reactions induced can be used to measure the photon temperature N N ( γ, n) ( γ,3n) = σ σ γ, n γ,3n ( E) n γ ( E) n γ ( E)dE ( E)dE Spencer et al NIM 2000 Schwoerer et al Photo-nuclear activation also used to measure angular distribution of gammas (and therefore electrons) e.g. Santala et al PRL 2001

5 Number of protons ( / MeV) Nuclear activation measurements of ion beam properties Protons, ions Vulcan pulse foil Rear Front Protons, ions C sample Proton energy (MeV) Cu stack Number of irradiated nuclei N / N = 0 σ ( E) nγ ( E, T ) de E th Ag activation Dosimetry film 14 MeV 18 MeV McKenna et al., Phys. Rev. Lett., 91, (2003) McKenna et al., Appl. Phys. Lett., 83, 2763 (2003) McKenna et al., Phys. Rev. E, 70, (2004) Yang et al., App. Phys. Lett., 84, 675 (2004) Clarke et al., NIMA 585, 117 (2008)

6 Talk summary 1. Nuclear activation applied as a diagnostic of laser-plasmas 2. Laser-driven ion acceleration: present and future prospects 3. Nuclear physics with 10 PW pulses SCAPA project in Scotland

7 Ion acceleration by TNSA Preplasma Thin H 2 O layers Ponderomotive electron acceleration Target Normal Sheath Acceleration Plasma expansion Electron sheath Ions E~TV/m μm Properties: Maximum energy: protons ~65 MeV; ions ~10 MeV/u; High brightness: >10 12 protons in ps pulse Source size ~100 μm; (virtual source ~10 μm); Emittance ε N ~0.005π mm.mrad Energy conversion efficiency up to 10%

8 Laser-accelerated protons: present and future performance ASTRA GEMINI 2x20 J, 30 fs RAL 10 PW 300J, 30fs (2013) experiments 300fs 1 ps fs fs simulations Nova PW RAL Vulcan RAL RAL Vulcan RAL LULI PW Janusp Osaka CUOS Vulcan LOA 3rd ampli ELI 10 beamlines 1 Tokyo Yokohama MPQ Tokyo ASTRA Tokyo Iλ 2 (W.cm -2.µm ) Courtesy of M. Borghesi: See Borghesi et al, PFCF 49, 416 (2006)

9 Radiation pressure acceleration of ions Stage 1 Laser field sweep away all electrons, forming an electrostatic field To produce 1 GeV protons in τ = 1 laser period we need I ~ W/cm 2. Ions pulled by the charge separation field move together with electrons. Stage 2 Plasma forms a mirror accelerated by the laser field radiation pressure. The difference between the incident and reflected wave energy is taken by the mirror: 2 E EL E L ( γ ) Δ % 2 ( γ ) ΔEion EL EL Because m e <<m i almost all energy transfers to ions: T. Esirkepov, M. Borghesi, S. V. Bulanov, et al., PRL 92, (2004).

10 Light-Sail RPA 2D OSIRIS PIC simulations performed by C. Bellei, Imperial College and A.P.L.Robinson, RAL Cyrogenic H target, density = 40 n cr I L = 1.25x10 23 Wcm -2, t L =25 fs Relativistic ion energies obtained (p up to 2.5 GeV, C 6+ up to 1 GeV/u)

11 Ion beams with 10 PW laser pulses Assuming intensity ~10 23 Wcm -2 (i.e. f/1 focusing) TNSA: MeV/u RPA: >GeV/u, narrow energy band and high flux Ions from underdense plasmas: ~100 MeV/u

12 Vulcan 10 PW project in the U.K. Seed laser mj Level Source Ps, mj Pump Additional Vulcan 2 x 1.2 kj 3 ns 208 beam lines PHASE 1nd-Front End 3ns, 4J shaped pulsed pump, 2 Hz J Level OPCPA Amplifier LBO Seed Long Stretch ~3ns LBO LBO λ ~ 900 nm 527 nm SHG SHG 527 nm Seed E=1J 600 J 600 J Phase 2 KD*P KD*P kj Level OPCPA Amplifier New Interaction Area Interaction Chamber 300 J, fs 30 fs + LP Beam lines Based on a combination of LBO and KD*P 1 shot every ~10 minutes 3 stages of amplification High contrast source Courtesy of Cristina Hernandez-Gomez, RAL - >500 J Compress Interaction Chamber 300 J, 30 fs + 1 PW Beam line Existing TAP Interaction Area EXISTING VULCAN

13 Vulcan 10 PW Facility Existing TAP 1 PW + 10 PW area Existing Target Area Petawatt (TAP) Deliver the new 10 PW into this area Configured with the current PW capability Long focal length option (F 20) ELECTRON DUMP AREA Existing LASER AREA NEW LASER ROOM LA5 NEW PULSED POWER AREA CAPACITOR ROOM TARGET AREA WEST TARGET AREA CONTROL ROOM High Intensity Target Area 10PW High Intensity Area (HIA) Fully Shielded area inc roof Configured with existing (upgradeable) 1.8 kj beamlines

14 Second Floor OPCPA AMPLIFICATION COMPRESSOR AND DIAGNOSTICS AREA OPCPA LONG PULSE AMPLFICATION AREA LASER CONTROL ROOM OPCPA FRONT END ROOM

15 Talk summary 1. Nuclear activation applied as a diagnostic of laser-plasmas 2. Laser-driven ion acceleration: present and future prospects 3. Nuclear physics with 10 PW pulses SCAPA project in Scotland

16 Ideas for ELI ( photo- ) nuclear physics 10 PW Intensity ~10 23 W/cm 2 E-field ~10 16 V/m + γ-ray Electron Recovery Linac (Compton scatt.)? Nuclear activation as a diagnostic / particle source GeV electrons and gammas GeV protons/ions (fission, spallation etc) secondary neutrons, pions, muons, neutrinos.. Laser assisted nuclear physics field-induced phenomena eg 100 ev shifts in nuclear levels change the decay schemes; effects of electron screening etc NEEC: Nuclear excitation by electronic capture Photo-nuclear physics Monoenergetic, brilliant, pulsed gamma rays e.g. Compton backscattering nuclear resonance fluorescence photo-hadron reactions

17 Proton induced activation diagnostic development High energy threshold reactions: Fission; Spallation; Pion production (and by decay, muons and neutrinos Pair production Relativistic electrons can produce electron-positron pairs via the Bethe- Heitler and trident processes when interacting with high-z ions.

18 Neutron production with GeV ions Assuming ~ GeV protons >10 12 neutrons in s by spallation Use of brilliant γ beams what neutron flux can be expected by (γ,n) reactions? How does the neutron flux compare? Aside: Fast Ignition shot would produce 30 MJ of energy 22 MJ of 14 MeV neutrons (10 19 in sec) Isotropic distribution

19 Production of neutron-rich nuclei Investigations of neutron-rich nuclei enabled e.g. by acceleration of radioactive ions? - investigation of branching points, exotic nuclei near drip line..?

20 Compton gamma-rays driven by RPA? RPA to produce a flying high density electron bunch (>10 22 cm -3 ) Scattered photons are up shifted by 4γ 2 (need γ>1000 for MeV) Coherent narrow band gammas in attosecond pulses?? incident pulse reflected pulse Requires: Ultrahigh laser pulse contrast; High intensity >10 23 Wcm -2 ; Ultrathin targets (few nanometer). Issues: Can a good quality relativistic mirror be maintained? Is a simple narrow-band upconversion likely?

21 Summary GeV ions may be possible using 10 PW laser pulses using radiation pressure drive (few 100 MeV by TNSA) Requires ultrahigh contrast! Unique points regarding laser as a nuclear physics driver: Acceleration at high densities Ultrashort pulses possible Synchronised pulses from same driver: pump-probe ELI (photo-)nuclear pillar could combine: 3x10 PW laser (ions, secondary particles, high fields, activation etc) with γ-ray ERL (coherent, tunable monoenergetic γ beam, resonance fluorescence, nuclear probe)

22 Talk summary 1. Nuclear activation applied as a diagnostic of laser-plasmas 2. Laser-driven ion acceleration present and future prospects 3. Nuclear physics with 10 PW pulses SCAPA project in Scotland

23 Nuclear & Plasma Physics The Scottish Centre for the Application of Plasma based Accelerators SCAPA Prof Dino Jaroszynski University of Strathclyde, UK 23

24 Nuclear & Plasma Physics Creation of a Scottish Centre of Excellence for laser-plasma based radiation sources producing Ultra-short duration X-ray pulses Coherent EM radiation Gamma rays Protons & light ions and their applications in Electron and X-ray diffraction Particle detector development Radiation damage in nuclear fusion reactors (ITER, HiPER) Nuclear physics and QED (ELI, HiPER) Condensed matter physics New concepts in energy generation (fission and fusion) Molecular biology and medicine 24

25 ALPHA-X started in 2002: Advanced Laser Plasma High-energy Accelerators towards X-rays Compact femtosecond duration synchrotron, free-electron laser and gamma ray source λ = 2.8 nm 1 μm (<1GeV beam) electron bunch duration: several fs electron beam spectrum No. electrons / MeV [a.u.] (b) σ γ γ < 0.7% Electron energy [MeV] (a) beam emittance: several π mm mrad Brilliant particle source: 10 MeV GeV, ka peak current, fs duration FEL

26 TOPS laser: 1 10 Hz λ = 800 nm LASER IN 30 fs Existing ALPHA-X beam line PLASMA ACCELERATOR ELECTRON ENERGY SPECTROMETER UNDULATOR BENDING MAGNET RADIATION SPECTROMETER m

27 SCAPA Scottish Centre for the Application of Plasma-based Accelerators Challenges Replace light source ALPHA-X: Ti:sapphire laser 10 Hz, 800 nm SCAPA: 1 J 5-10 J, 30 fs, 30 TW TW Increase Electron energy (> 1 GeV) Photon energy (> 1 kev) Peak brilliance and coherence (FEL) Decrease Electron pulse length 10 fs < 1 fs Setup accelerator lab for Electrons Photons Ions Coherent radiation Setup applications programme 27

28 28 New lab layout

29 SUPA: Nuclear & Plasma Physics SCAPA participants Plasma physics Dundee, Glasgow, Heriot-Watt, West of Scotland, Strathclyde Univ. Nuclear physics Edinburgh, Glasgow, West of Scotland, Strathclyde Collaborations SUPA Condensed matter physics, particle physics, PALS Scotland SULSA, ScotChem, Engineering UK CLF, RAL, DL/Cockcroft Inst., Universities Internationally ITER, HiPER, FAIR, ELI EU FP6 & FP7 (HadronPhysics, Laserlab-Europe) National Labs in Europe and North America Universities in Europe, USA, Asia 29

30

31 Importance of ultrahigh contrast P. McKenna et al, LPB (2008) D.C. Carroll et al, CRP (2009) 40 7 Maximum proton energy (MeV) I abl Δt Energy conversion efficiency (%) I abl Δt Scale length, L O (μm) Scale length, L O (μm) Proton measurements show that controlled preplasma expansion leads to enhanced energy coupling to fast electrons

32 Synergy with nuclear diagnostics of fusion plasmas ELI will drive nuclear diagnostic capability to higher energy and density systems; Higher nuclear yields expected; observation of lower cross section and higher threshold energy reactions; Development of detectors to withstand harsh plasma environment Innovative nuclear diagnostics required for fusion plasmas Examples: fusion reaction history measurements (D + T γ+ 5 He); charged particle detection to measure yield of neutron-less reactions (e.g. D + 3 He p (15 MeV) + 4 He); Techniques for combining imaging and spectral measurements of fast neutrons;

Laser-driven relativistic optics and particle acceleration in ultrathin foils

Laser-driven relativistic optics and particle acceleration in ultrathin foils Laser-driven relativistic optics and particle acceleration in ultrathin foils Prof. Paul McKenna University of Strathclyde, Glasgow, UK University of Strathclyde, Glasgow Founded in 1796 by John Anderson,

More information

Nuclear Science with High Intensity Lasers

Nuclear Science with High Intensity Lasers Nuclear Science with High Intensity Lasers Dr. Tomaž Žagar GEN energija, d.o.o. Krško, Slovenija Jožef Stefan Institute, Reactor Physics Department, Ljubljana, Slovenija European Commission, Joint Research

More information

Extreme Light Infrastructure - Nuclear Physics ELI - NP

Extreme Light Infrastructure - Nuclear Physics ELI - NP Extreme Light Infrastructure - Nuclear Physics ELI - NP Nicolae-Victor Zamfir National Institute for Physics and Nuclear Engineering (IFIN-HH) Bucharest-Magurele, Romania www.eli-np.ro Bucharest-Magurele

More information

ION ACCELERATION FROM ULTRA THIN FOILS

ION ACCELERATION FROM ULTRA THIN FOILS ION ACCELERATION FROM ULTRA THIN FOILS ON THE ASTRA GEMINI FACILITY Clare Scullion Queen s University of Belfast cscullion57@qub.ac.uk Supervisor: Prof. Marco Borghesi THANKS TO ALL OUR COLLABORATORS D.

More information

Lecture 1. Introduction

Lecture 1. Introduction Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Ion acceleration in plasmas Lecture 1. Introduction Dr. Ashutosh Sharma Zoltán Tibai 1 Contents

More information

Towards 100 MeV proton generation using ultrathin targets irradiated with petawatt laser pulses

Towards 100 MeV proton generation using ultrathin targets irradiated with petawatt laser pulses IZEST_Tokyo 2013.11.18 Towards 100 MeV proton generation using ultrathin targets irradiated with petawatt laser pulses Chang Hee Nam 1,2, I J. Kim 1,3, H. T. Kim 1,3, I. W. Choi 1,3, K. H. Pae 1,3, C.

More information

Laser Ion Acceleration: Status and Perspectives for Fusion

Laser Ion Acceleration: Status and Perspectives for Fusion Laser Ion Acceleration: Status and Perspectives for Fusion Peter G. Thirolf, LMU Munich Outline: laser-particle acceleration fission-fusion mechanism: with ultra-dense ion beams towards r-process path

More information

Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil

Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil Ion Acceleration from the Interaction of Ultra-Intense Laser Pulse with a Thin Foil Matthew Allen Department of Nuclear Engineering UC Berkeley mallen@nuc.berkeley.edu March 15, 2004 8th Nuclear Energy

More information

Generation and application of ultra-short high-intensity laser pulses

Generation and application of ultra-short high-intensity laser pulses Generation and application of ultra-short high-intensity laser pulses J. Limpouch Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Physical Electronics

More information

X ray and XUV phase contrast diagnostics for ELI NP

X ray and XUV phase contrast diagnostics for ELI NP X ray and XUV phase contrast diagnostics for ELI NP D. Stutman 1,2, F. Negoita 1 and D. Ursescu 1 1 ELI NP, Bucharest Magurele, Romania 2 Johns Hopkins University, Baltimore, USA CARPATHIAN SUMMER SCHOOL

More information

The Production of High Quality Electron Beams in the. Laser Wakefield Accelerator. Mark Wiggins

The Production of High Quality Electron Beams in the. Laser Wakefield Accelerator. Mark Wiggins The Production of High Quality Electron Beams in the Laser Wakefield Accelerator Mark Wiggins Contents ALPHA-X project Motivation: quality electron beams and light sources The ALPHA-X beam line: experimental

More information

SIMULATION OF LASER INDUCED NUCLEAR REACTIONS

SIMULATION OF LASER INDUCED NUCLEAR REACTIONS NUCLEAR PHYSICS SIMULATION OF LASER INDUCED NUCLEAR REACTIONS K. SPOHR 1, R. CHAPMAN 1, K. LEDINGHAM 2,3, P. MCKENNA 2,3 1 The Institute of Physical Research, University of Paisley, Paisley PA1 2BE, UK

More information

Fast electron generation and transport in solid targets. Paul McKenna University of Strathclyde

Fast electron generation and transport in solid targets. Paul McKenna University of Strathclyde Fast electron generation and transport in solid targets Paul McKenna University of Strathclyde Talk summary 1. Fast electron generation and transport in ultraintense laser-solid interactions 2. Transverse

More information

KE opportunity: Compact radiation source based on a laser-plasma wakefield accelerator

KE opportunity: Compact radiation source based on a laser-plasma wakefield accelerator KE opportunity: Compact radiation source based on a laser-plasma wakefield accelerator Dino Jaroszynski University of Strathclyde dino@phys.strath.ac.uk Outline of talk Large and small accelerators + high

More information

Monoenergetic Proton Beams from Laser Driven Shocks

Monoenergetic Proton Beams from Laser Driven Shocks Monoenergetic Proton Beams from Laser Driven Shocks Dan Haberberger, Department of Electrical Engineering, UCLA In collaboration with: Sergei Tochitsky, Chao Gong, Warren Mori, Chan Joshi, Department of

More information

Emittance and energy spread measurements of relativistic electrons from laser-driven accelerator

Emittance and energy spread measurements of relativistic electrons from laser-driven accelerator Emittance and energy spread measurements of relativistic electrons from laser-driven accelerator OUTLINE ALPHA-X Project Introduction on laser wakefield accelerator (LWFA) LWFA as a light source Electron

More information

Relativistic Laser Plasma Research performed with PW Lasers

Relativistic Laser Plasma Research performed with PW Lasers APLS 2014.4.21. Relativistic Laser Plasma Research performed with PW Lasers Chang Hee Nam 1,2 1 Center for Relativistic Laser Science (CoReLS), Institute for Basic Science (IBS), Korea; 2 Dept of Physics

More information

Current Status of ELI-Beamlines

Current Status of ELI-Beamlines Current Status of ELI-Beamlines Daniele Margarone RP3 Leader, ELI-Beamlines Institute of Physics of the ASCR Prague, Czech Republic Laser Leptonics with High-intensity Facilities, FNSPE-CTU Prague, 7-8

More information

Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Lasers

Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Lasers Scaling Hot-Electron Generation to High-Power, Kilojoule-Class Lasers 75 nm 75 75 5 nm 3 copper target Normalized K b /K a 1.2 1.0 0.8 0.6 0.4 Cold material 1 ps 10 ps 0.2 10 3 10 4 Heating 2.1 kj, 10

More information

New Ionizing Sources From Lasers to Particles and Applications

New Ionizing Sources From Lasers to Particles and Applications New Ionizing Sources From Lasers to Particles and Applications Philippe Martin CEA/DSM/ IRAMIS- Saclay What is Physics at High Intensity? P= 4x10 26 W 10 m 2 J 20 fs I= 10 20 W/cm 2 I = coupling between

More information

Energetic neutral and negative ion beams accelerated from spray target irradiated with ultra-short, intense laser pulses

Energetic neutral and negative ion beams accelerated from spray target irradiated with ultra-short, intense laser pulses Energetic neutral and negative ion beams accelerated from spray target irradiated with ultra-short, intense laser pulses Sargis Ter-Avetisyan ELI - Extreme Light Infrastructure Science and Technology with

More information

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE

LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE Copyright(C)JCPDS-International Centre for Diffraction Data 2003, Advances in X-ray Analysis, Vol.46 74 ISSN 1097-0002 LASER-COMPTON SCATTERING AS A POTENTIAL BRIGHT X-RAY SOURCE K. Chouffani 1, D. Wells

More information

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab.

VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab. VELA/CLARA as Advanced Accelerator Studies Test-bed at Daresbury Lab. Yuri Saveliev on behalf of VELA and CLARA teams STFC, ASTeC, Cockcroft Institute Daresbury Lab., UK Outline VELA (Versatile Electron

More information

Compton Scattering Effect and Physics of Compton Photon Beams. Compton Photon Sources around the World, Present and Future

Compton Scattering Effect and Physics of Compton Photon Beams. Compton Photon Sources around the World, Present and Future !!! #! ! # Compton Scattering Effect and Physics of Compton Photon Beams Compton Photon Sources around the World, Present and Future Compton X-ray Sources: Facilities, Projects and Experiments Compton

More information

High-energy collision processes involving intense laser fields

High-energy collision processes involving intense laser fields High-energy collision processes involving intense laser fields Carsten Müller Max Planck Institute for Nuclear Physics, Theory Division (Christoph H. Keitel), Heidelberg, Germany EMMI Workshop: Particle

More information

Robust energy enhancement of ultra-short pulse laser accelerated protons from reduced mass targets

Robust energy enhancement of ultra-short pulse laser accelerated protons from reduced mass targets Robust energy enhancement of ultra-short pulse laser accelerated protons from reduced mass targets K. Zeil, J. Metzkes, T. Kluge, M. Bussmann, T. E. Cowan, S. D. Kraft, R. Sauerbrey, B. Schmidt, M. Zier,

More information

Street, London, WC1E 6BT, UK ABSTRACT

Street, London, WC1E 6BT, UK ABSTRACT Laser-wakefield accelerators for medical phase contrast imaging: Monte Carlo simulations and experimental studies S. Cipiccia *a, D. Reboredo a, F. A. Vittoria b, G. H. Welsh a, P. Grant a, D. W. Grant

More information

Greenfield FELs. John Galayda, SLAC Kwang-Je Kim, ANL (Presenter) James Murphy, BNL

Greenfield FELs. John Galayda, SLAC Kwang-Je Kim, ANL (Presenter) James Murphy, BNL Greenfield FELs John Galayda, SLAC Kwang-Je Kim, ANL (Presenter) James Murphy, BNL BESAC Subcommittee on BES 20-year Facility Road Map February 22-24, 2003 What is a Greenfield FEL? High-gain FELs are

More information

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013

Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers. Zhirong Huang SLAC, Stanford University May 13, 2013 Brightness and Coherence of Synchrotron Radiation and Free Electron Lasers Zhirong Huang SLAC, Stanford University May 13, 2013 Introduction GE synchrotron (1946) opened a new era of accelerator-based

More information

M o n o e n e r g e t i c A c c e l e r a t i o n o f E l e c t r o n s b y L a s e r - D r i v e n P l a s m a W a v e

M o n o e n e r g e t i c A c c e l e r a t i o n o f E l e c t r o n s b y L a s e r - D r i v e n P l a s m a W a v e USj-WS on HIF & HEDP at Utsunomiya 29 Sep,. 2005 M o n o e n e r g e t i c A c c e l e r a t i o n o f E l e c t r o n s b y L a s e r - D r i v e n P l a s m a W a v e Kazuyoshi KOYAMA, Takayuki WATANABE

More information

Developments for the FEL user facility

Developments for the FEL user facility Developments for the FEL user facility J. Feldhaus HASYLAB at DESY, Hamburg, Germany Design and construction has started for the FEL user facility including the radiation transport to the experimental

More information

BIG A Gamma Ray Source at FACET-II

BIG A Gamma Ray Source at FACET-II BIG A Gamma Ray Source at FACET-II Laser-Driven Radiation Sources for Nuclear Applications, GWU, December 13-15, 2015 Carsten Hast SLAC Outline FACET-II in a Nutshell BIG: Beams of Intense Gamma-Rays at

More information

Romanian Reports in Physics, Vol. 68, Supplement, P. S5 S10, 2016 INTRODUCTION

Romanian Reports in Physics, Vol. 68, Supplement, P. S5 S10, 2016 INTRODUCTION Romanian Reports in Physics, Vol. 68, Supplement, P. S5 S10, 2016 INTRODUCTION Ultra-intense laser fields, reaching up to 10 22 W/cm 2, are now able to produce typical radiation formerly used in nuclear

More information

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008 Richard London rlondon@llnl.gov Workshop on Interaction of Free Electron Laser Radiation with Matter Hamburg This work

More information

Development of a table top TW laser accelerator for medical imaging isotope production

Development of a table top TW laser accelerator for medical imaging isotope production Development of a table top TW laser accelerator for medical imaging isotope production R U I Z, A L E X A N D R O 1 ; L E R A, R O B E R T O 1 ; T O R R E S - P E I R Ó, S A LVA D O R 1 ; B E L L I D O,

More information

3rd International Conference on Frontiers of Plasma Physics and Technology. Summary by David Neely

3rd International Conference on Frontiers of Plasma Physics and Technology. Summary by David Neely 3rd International Conference on Frontiers of Plasma Physics and Technology Summary by David Neely Laser Plasma interactions (a very brief overview) Reaching new areas of study Astrophysics, EOS, Jets,

More information

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design

MaRIE. MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design Operated by Los Alamos National Security, LLC, for the U.S. Department of Energy MaRIE (Matter-Radiation Interactions in Extremes) MaRIE X-Ray Free-Electron Laser Pre-Conceptual Design B. Carlsten, C.

More information

Letter of Intent: Nuclear Fusion Reactions from laser-accelerated fissile ion beams

Letter of Intent: Nuclear Fusion Reactions from laser-accelerated fissile ion beams Letter of Intent: Nuclear Fusion Reactions from laser-accelerated fissile ion beams Peter G. Thirolf, LMU Munich D. Habs, H. Ruhl, J. Schreiber, LMU Munich, MPQ Garching T. Dickel, H. Geissel, W. Plass,

More information

Laser-based acceleration for nuclear physics experiments at ELI-NP

Laser-based acceleration for nuclear physics experiments at ELI-NP EPJ Web of Conferences 117, (2016) Laser-based acceleration for nuclear physics experiments at ELI-NP O. Tesileanu, Th. Asavei, I. Dancus, S. Gales, F. Negoita, I.C.E. Turcu, D. Ursescu and N.V. Zamfir

More information

Laser-driven proton acceleration from cryogenic hydrogen jets

Laser-driven proton acceleration from cryogenic hydrogen jets Laser-driven proton acceleration from cryogenic hydrogen jets new prospects in tumor therapy and laboratory astroparticle physics C. Roedel SLAC National Accelerator Laboratory & Friedrich-Schiller-University

More information

Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter

Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter 3rd EMMI Workshop on Plasma Physics with intense Lasers and Heavy Ion Beams Innovative XUV- und X-ray-Spectroscopy to explore Warm Dense Matter Eckhart Förster X-ray Optics Group - IOQ - Friedrich-Schiller-University

More information

HiPER: a laser fusion facility for Europe

HiPER: a laser fusion facility for Europe HiPER: a laser fusion facility for Europe Prof Mike Dunne Director, Central Laser Facility, Rutherford Appleton Laboratory, UK m.dunne@rl.ac.uk www.hiper-laser.eu We are entering a new era Demonstration

More information

Laser-driven ion acceleration: Review of mechanisms, state of the art and applications

Laser-driven ion acceleration: Review of mechanisms, state of the art and applications Laser-driven ion acceleration: Review of mechanisms, state of the art and applications M.Borghesi Centre for Plasma Physics, School of Mathematics and Physics The Queen s University of Belfast Institute

More information

Novel laser-driven nuclear reaction scheme for the synthesis of extremely neutron-rich isotopes

Novel laser-driven nuclear reaction scheme for the synthesis of extremely neutron-rich isotopes Novel laser-driven nuclear reaction scheme for the synthesis of extremely neutron-rich isotopes Outline: Peter G. Thirolf, LMU Munich Exploit the unique properties of dense laser-driven ion beams for nuclear

More information

The Gamma Factory proposal for CERN

The Gamma Factory proposal for CERN The Gamma Factory proposal for CERN Photon-2017 Conference, May 2017 Mieczyslaw Witold Krasny LPNHE, CNRS and University Paris Sorbonne 1 The Gamma Factory in a nutshell Accelerate and store high energy

More information

Proton acceleration in thin foils with micro-structured surface

Proton acceleration in thin foils with micro-structured surface Proton acceleration in thin foils with micro-structured surface J. Pšikal*, O. Klimo*, J. Limpouch*, J. Proška, F. Novotný, J. Vyskočil Czech Technical University in Prague, Faculty of Nuclear Sciences

More information

Synchrotron Methods in Nanomaterials Research

Synchrotron Methods in Nanomaterials Research Synchrotron Methods in Nanomaterials Research Marcel MiGLiERiNi Slovak University of Technology in Bratislava and Centre for Nanomaterials Research, Olomouc marcel.miglierini@stuba.sk www.nuc.elf.stuba.sk/bruno

More information

Exawatt Center for Extreme Light Studies Project (XCELS)

Exawatt Center for Extreme Light Studies Project (XCELS) Exawatt Center for Extreme Light Studies Project (XCELS) A.G. Litvak, E.A. Khazanov, A.M. Sergeev Institute of Applied Physics of the Russian Academy of Sciences Nizhny Novgorod, Russia XCELS- EXawatt

More information

Laser-driven intense X-rays : Studies at RRCAT

Laser-driven intense X-rays : Studies at RRCAT Laser-driven intense X-rays : Studies at RRCAT B. S. Rao Laser Plasma Division Team Effort Principal contributors : Experiment: P. D. Gupta, P. A. Naik, J. A. Chakera, A. Moorti, V. Arora, H. Singhal,

More information

Engines of Discovery

Engines of Discovery http://www.enginesofdiscovery.com/ Synchrotron Light Sources Spring 8, a synchrotron light source located in Japan. This intricate structure of a complex protein molecule structure has been determined

More information

CILEX-APOLLON. Centre Interdisciplinaire de Lumiere EXtreme Interdisciplinary Center for Extreme Light

CILEX-APOLLON. Centre Interdisciplinaire de Lumiere EXtreme Interdisciplinary Center for Extreme Light CILEX-APOLLON Centre Interdisciplinaire de Lumiere EXtreme Interdisciplinary Center for Extreme Light Ph. Martin, Commissariat à l Energie Atomique, Saclay CILEX-APOLLON Scientific Director French ELI

More information

ELI-NP Extreme Landscape of Subatomic Physics with High Power Lasers and Gamma beams

ELI-NP Extreme Landscape of Subatomic Physics with High Power Lasers and Gamma beams ELI-NP Extreme Landscape of Subatomic Physics with High Power Lasers and Gamma beams 1 In the 20 th century Fundamental Research has been carried out and dominated by the Particle-based Paradigm: namely

More information

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam

SPARCLAB. Source For Plasma Accelerators and Radiation Compton with Laser And Beam SPARCLAB Source For Plasma Accelerators and Radiation Compton with Laser And Beam EMITTANCE X X X X X X X X Introduction to SPARC_LAB 2 BRIGHTNESS (electrons) B n 2I nx ny A m 2 rad 2 The current can be

More information

Introduction to intense laser-matter interaction

Introduction to intense laser-matter interaction Pohang, 22 Aug. 2013 Introduction to intense laser-matter interaction Chul Min Kim Advanced Photonics Research Institute (APRI), Gwangju Institute of Science and Technology (GIST) & Center for Relativistic

More information

Laser trigged proton acceleration from ultrathin foil

Laser trigged proton acceleration from ultrathin foil Laser trigged proton acceleration from ultrathin foil A.V. Brantov 1, V. Yu. Bychenkov 1, D. V. Romanov 2, A. Maksimchuk 3 1 P. N. Lebedev Physics Institute RAS, Moscow 119991, Russia 2 All-Russia Research

More information

Laser heating of noble gas droplet sprays: EUV source efficiency considerations

Laser heating of noble gas droplet sprays: EUV source efficiency considerations Laser heating of noble gas droplet sprays: EUV source efficiency considerations S.J. McNaught, J. Fan, E. Parra and H.M. Milchberg Institute for Physical Science and Technology University of Maryland College

More information

Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas

Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas Fast proton bunch generation in the interaction of ultraintense laser pulses with high-density plasmas T.Okada, Y.Mikado and A.Abudurexiti Tokyo University of Agriculture and Technology, Tokyo -5, Japan

More information

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center

Linac Based Photon Sources: XFELS. Coherence Properties. J. B. Hastings. Stanford Linear Accelerator Center Linac Based Photon Sources: XFELS Coherence Properties J. B. Hastings Stanford Linear Accelerator Center Coherent Synchrotron Radiation Coherent Synchrotron Radiation coherent power N 6 10 9 incoherent

More information

X-ray Free-electron Lasers

X-ray Free-electron Lasers X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/ 2009 Claudio Pellegrini UCLA Department of Physics and Astronomy Outline 1. Present status of X-ray free-electron

More information

Generation of surface electrons in femtosecond laser-solid interactions

Generation of surface electrons in femtosecond laser-solid interactions Science in China: Series G Physics, Mechanics & Astronomy 2006 Vol.49 No.3 335 340 335 DOI: 10.1007/s11433-006-0335-5 Generation of surface electrons in femtosecond laser-solid interactions XU Miaohua

More information

Beam manipulation with high energy laser in accelerator-based light sources

Beam manipulation with high energy laser in accelerator-based light sources Beam manipulation with high energy laser in accelerator-based light sources Ming-Chang Chou High Brightness Injector Group FEL winter school, Jan. 29 ~ Feb. 2, 2018 Outline I. Laser basic II. III. IV.

More information

4 FEL Physics. Technical Synopsis

4 FEL Physics. Technical Synopsis 4 FEL Physics Technical Synopsis This chapter presents an introduction to the Free Electron Laser (FEL) physics and the general requirements on the electron beam parameters in order to support FEL lasing

More information

The MEC endstation at LCLS New opportunities for high energy density science

The MEC endstation at LCLS New opportunities for high energy density science The MEC endstation at LCLS New opportunities for high energy density science Singapore, fttp-5, April 20th, 2011 Bob Nagler BNagler@slac.stanford.edu SLAC national accelerator laboratory 1 Overview Motivation

More information

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging

Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging G. Golovin 1, S. Banerjee 1, C. Liu 1, S. Chen 1, J. Zhang 1, B. Zhao 1, P. Zhang 1, M. Veale 2, M. Wilson

More information

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg,

FLASH overview. Nikola Stojanovic. PIDID collaboration meeting, Hamburg, FLASH overview Nikola Stojanovic PIDID collaboration meeting, Hamburg, 16.12.2011 Outline Overview of the FLASH facility Examples of research at FLASH Nikola Stojanovic PIDID: FLASH overview Hamburg, December

More information

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s

SLAC Summer School on Electron and Photon Beams. Tor Raubenheimer Lecture #2: Inverse Compton and FEL s SLAC Summer School on Electron and Photon Beams Tor Raubenheimer Lecture #: Inverse Compton and FEL s Outline Synchrotron radiation Bending magnets Wigglers and undulators Inverse Compton scattering Free

More information

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics

Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Construction of a 100-TW laser and its applications in EUV laser, wakefield accelerator, and nonlinear optics Jyhpyng Wang ( ) Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National

More information

Laser-driven undulator source

Laser-driven undulator source Laser-driven undulator source Matthias Fuchs, R. Weingartner, A.Maier, B. Zeitler, S. Becker, D. Habs and F. Grüner Ludwig-Maximilians-Universität München A.Popp, Zs. Major, J. Osterhoff, R. Hörlein, G.

More information

Integrated simulations of fast ignition of inertial fusion targets

Integrated simulations of fast ignition of inertial fusion targets Integrated simulations of fast ignition of inertial fusion targets Javier Honrubia School of Aerospace Engineering Technical University of Madrid, Spain 11 th RES Users Meeting, Santiago de Compostela,

More information

ELISS

ELISS ELISS 2016 22. 8. 2016 Study nature in smaller spatial and shorter time scales Spatial resolution d = 0.61 λ NA Motivation Phys. Today 65, 9, 44 (2012) Temporal resolution ~pulse duration in pump-probe

More information

French-Ukrainian workshop Kevin Dupraz 1 ELI-NP-GBS. Extreme Light Infrastructure Nuclear Physics Gamma Beam Source

French-Ukrainian workshop Kevin Dupraz 1 ELI-NP-GBS. Extreme Light Infrastructure Nuclear Physics Gamma Beam Source 1 ELI-NP-GBS Extreme Light Infrastructure Nuclear Physics Gamma Beam Source The 3 ELI s pillars 2 ELI-Beamlines In Czech Republic: Ultra-short and intense beams for interdisciplinary applications. ELI-NP

More information

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team

Short Pulse, Low charge Operation of the LCLS. Josef Frisch for the LCLS Commissioning Team Short Pulse, Low charge Operation of the LCLS Josef Frisch for the LCLS Commissioning Team 1 Normal LCLS Parameters First Lasing in April 10, 2009 Beam to AMO experiment August 18 2009. Expect first user

More information

Positron program at the Idaho Accelerator Center. Giulio Stancari Idaho State University and Jefferson Lab

Positron program at the Idaho Accelerator Center. Giulio Stancari Idaho State University and Jefferson Lab Positron program at the Idaho Accelerator Center Giulio Stancari Idaho State University and Jefferson Lab International Workshop on Positrons at Jefferson Lab Newport News, Virginia (USA), 26 March 2009

More information

Toward a high quality MeV electron source from a wakefield accelerator for ultrafast electron diffraction

Toward a high quality MeV electron source from a wakefield accelerator for ultrafast electron diffraction Toward a high quality MeV electron source from a wakefield accelerator for ultrafast electron diffraction Jérôme FAURE Laboratoire d Optique Appliquée Ecole Polytechnique Palaiseau, France UMR 7639 FemtoElec

More information

Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX)

Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX) 1 Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX) K. Mima 1), H. Azechi 1), H. Fujita 1), Y. Izawa 1), T. Jitsuno 1), T. Johzaki 1), Y. Kitagawa

More information

China high-intensity accelerator technology developments for Neutron Sources & ADS

China high-intensity accelerator technology developments for Neutron Sources & ADS AT/INT-04 China high-intensity accelerator technology developments for Neutron Sources & ADS J. Wei, Tsinghua University, China S.N. Fu, IHEP, CAS, China International Topical Meeting on Nuclear Research

More information

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory

High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory High Energy Gain Helical Inverse Free Electron Laser Accelerator at Brookhaven National Laboratory J. Duris 1, L. Ho 1, R. Li 1, P. Musumeci 1, Y. Sakai 1, E. Threlkeld 1, O. Williams 1, M. Babzien 2,

More information

An Overview of the Activities of ICS Sources in China

An Overview of the Activities of ICS Sources in China An Overview of the Activities of ICS Sources in China Chuanxiang Tang *, Yingchao Du, Wenhui Huang * tang.xuh@tsinghua.edu.cn Department of Engineering physics, Tsinghua University, Beijing 100084, China

More information

Extreme Light Infrastructure Romania, ELI-RO

Extreme Light Infrastructure Romania, ELI-RO Extreme Light Infrastructure Romania, ELI-RO Silviu Olariu National Institute for Physics and Nuclear Engineering, Magurele, Romania 22 March 2010 European Strategy Forum on Research Infrastructures (ESFRI)

More information

Extreme Light Infrastructure ELI. Recommended to be on the ESFRI Road Map

Extreme Light Infrastructure ELI. Recommended to be on the ESFRI Road Map Extreme Light Infrastructure ELI Recommended to be on the ESFRI Road Map ELI Centered around an Exawatt class Laser Few kj.~10fs, >1sh/mn) Modular: 1) front end at 100Hz-kHz, 5fs-5J, PW level, 2) Last

More information

ERL FACILITY AT CERN FOR APPLICATIONS

ERL FACILITY AT CERN FOR APPLICATIONS ERL FACILITY AT CERN FOR APPLICATIONS Erk Jensen (CERN) Big thanks to contributors: A. Bogacz (JLAB), O. Brüning, R. Calaga, V. Chetvertkova, E. Cormier (CELIA), R. Jones, M. Klein, A. Valloni, D. Pellegrini,

More information

Experiments with combined laser and gamma beams at ELI-NP

Experiments with combined laser and gamma beams at ELI-NP EUROPEAN UNION GOVERNMENT OF ROMANIA Sectoral Operational Programme Increase of Economic Competitiveness Investments for Your Future Structural Instruments 2007-2013 Extreme Light Infrastructure Nuclear

More information

Status and Prospect of Laser Fusion Research at ILE Osaka University

Status and Prospect of Laser Fusion Research at ILE Osaka University Fusion Power Associates 39th Annual Meeting and Symposium Fusion Energy: Strategies and Expectations through the 2020s Status and Prospect of Laser Fusion Research at ILE Osaka University Introduction

More information

Transport beamline solutions for laseraccelerated. at ELI-Beamlines

Transport beamline solutions for laseraccelerated. at ELI-Beamlines Transport beamline solutions for laseraccelerated proton beams at ELI-Beamlines Antonella Tramontana on behalf of the ELIMED collaboration Medical and multidisciplinary applications at ELI-Beamlines 100

More information

NUMERICAL MODELING OF LASER-DRIVEN ION ACCELERATION FROM NEAR-CRITICAL GAS TARGETS

NUMERICAL MODELING OF LASER-DRIVEN ION ACCELERATION FROM NEAR-CRITICAL GAS TARGETS NUMERICAL MODELING OF LASER-DRIVEN ION ACCELERATION FROM NEAR-CRITICAL GAS TARGETS Dragos Tatomirescu 1,2, Daniel Vizman 1 and Emmanuel d'humières 2 E-mail: emilian.tatomirescu@e-uvt.ro 1 Faculty of Physics,

More information

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015

The Lund Attosecond Science Centre in the MEDEA network PER THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015 The Lund Attosecond Science Centre in the MEDEA network PER JOHNSSON @ THE MEDEA KICK-OFF MEETING, BERLIN, JANUARY 2015 Lund University Founded in 1666 47 700 students (individuals) 7 500 employees - 840

More information

Slides by: Prof. Abeer Alharbi

Slides by: Prof. Abeer Alharbi Slides by: Prof. Abeer Alharbi electromagnetic radiation of high energy. They are produced by sub-atomic particle interactions, such as electron-positron annihilation, neutral pion decay, radioactive decay,

More information

IZEST Pair Plasma Physics and Application to Astrophysics

IZEST Pair Plasma Physics and Application to Astrophysics IZEST Pair Plasma Physics and Application to Astrophysics H. Takabe (Aki) ILE and GS of Science, Osaka University Collaborators: L. Baiotti, T. Moritaka, L. An, W. Li TN Kato, A. Hosaka, and A. Titov 1

More information

Acceleration at the hundred GV/m scale using laser wakefields

Acceleration at the hundred GV/m scale using laser wakefields Acceleration at the hundred GV/m scale using laser wakefields C.G.R. Geddes LOASIS Program at LBNL cgrgeddes @ lbl.gov E. Esarey, A.J. Gonsalves, W. Isaacs, V.Leurant, B. Nagler, K. Nakamura, D. Panasenko,

More information

The MID instrument.

The MID instrument. The MID instrument International Workshop on the Materials Imaging and Dynamics Instrument at the European XFEL Grenoble, Oct 28/29, 2009 Thomas Tschentscher thomas.tschentscher@xfel.eu Outline 2 History

More information

Extreme Light Infrastructure Nuclear Physics (ELI NP): Present status and perspectives

Extreme Light Infrastructure Nuclear Physics (ELI NP): Present status and perspectives EPJ Web of Conferences 117, 10001 10001 Extreme Light Infrastructure Nuclear Physics (ELI NP): Present status and perspectives N.V. Zamfir ELI NP, Horia Hulubei National Institute for Physics and Nuclear

More information

Lecture 9. Radiation pressure acceleration in. Dr. Ashutosh Sharma Zoltán Tibai

Lecture 9. Radiation pressure acceleration in. Dr. Ashutosh Sharma Zoltán Tibai Preparation of the concerned sectors for educational and R&D activities related to the Hungarian ELI project Ion acceleration in plasmas Lecture 9. Radiation pressure acceleration in plasmas (contd.) Dr.

More information

Laser Plasma Wakefield Acceleration : Concepts, Tests and Premises

Laser Plasma Wakefield Acceleration : Concepts, Tests and Premises Laser Plasma Wakefield Acceleration : Concepts, Tests and Premises J. Faure, Y. Glinec, A. Lifschitz, A. Norlin, C. Réchatin, V.Malka Laboratoire d Optique Appliquée ENSTA-Ecole Polytechnique, CNRS 91761

More information

Extreme Light Road Map

Extreme Light Road Map Gérard MOUROU IZEST Ecole Polytechnique IZEST ENABLING TECHNOLOGY Extreme Light Road Map LMJ/NIF, 2MJ, 3B Vacuum Polarization E p =m p c 2 MJ XCELS kj IZEST C 3 TeV GeV ELI, kj.3 B E e =m 0 c 2 J MeV mj

More information

Nuclear Activation Experiments Using Short-Pulse, High-Energy Laser Systems.

Nuclear Activation Experiments Using Short-Pulse, High-Energy Laser Systems. Nuclear Activation Experiments Using Short-Pulse, High-Energy Laser Systems. M. Gardner 1, A. Simons 1, C. Allwork 1,2, P. Thompson 1, R. Clarke 3, R. Edwards 1, J. Andrew 1. IoP Nuclear 2009, University

More information

How to Prepare an Experiment using the Gamma Beam System at ELI-NP

How to Prepare an Experiment using the Gamma Beam System at ELI-NP EUROPEAN UNION GOVERNMENT OF ROMANIA Structural Instruments 2007-2013 Project co-financed by the European Regional Development Fund How to Prepare an Experiment using the Gamma Beam System at ELI-NP Catalin

More information

Electron acceleration regime envisioned at ELI-Beamlines in the Czech Republic and test experiments.

Electron acceleration regime envisioned at ELI-Beamlines in the Czech Republic and test experiments. Electron acceleration regime envisioned at ELI-Beamlines in the Czech Republic and test experiments. Tadzio Levato tadzio.levato@eli-beams.eu SIF 23-09-2014 Content Introduction to the project and the

More information

EO single-shot temporal measurements of electron bunches

EO single-shot temporal measurements of electron bunches EO single-shot temporal measurements of electron bunches and of terahertz CSR and FEL pulses. Steven Jamison, Giel Berden, Allan MacLeod Allan Gillespie, Dino Jaroszynski, Britta Redlich, Lex van der Meer

More information

New theoretical insights on the physics of compound nuclei from laser-nucleus reactions

New theoretical insights on the physics of compound nuclei from laser-nucleus reactions New theoretical insights on the physics of compound nuclei from laser-nucleus reactions Adriana Pálffy Max Planck Institute for Nuclear Physics, Heidelberg, Germany Laser-Driven Radiation Sources for Nuclear

More information

Scintillator-based ion beam profiler for diagnosing laser-accelerated ion beams

Scintillator-based ion beam profiler for diagnosing laser-accelerated ion beams Scintillator-based ion beam profiler for diagnosing laser-accelerated ion beams J. S. Green* a, M. Borghesi b, C. M. Brenner a,c, D. C. Carroll c, N. P. Dover d, P. S. Foster a,b, P. Gallegos a,c, S. Green

More information