MMD GAN 1 Fisher GAN 2

Size: px
Start display at page:

Download "MMD GAN 1 Fisher GAN 2"

Transcription

1 MMD GAN 1 Fisher GAN 1 Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos (CMU, IBM Research) Youssef Mroueh, and Tom Sercu (IBM Research) Presented by Rui-Yi(Roy) Zhang Decemeber 1, 017

2 Outline 1 Overview MMD GAN 3 Fisher GAN 4 Conclusion

3 Preliminaries: Generative Adversarial Nets (GANs) 1 Real data distribution P X ; Fake data distribution P θ, implemented via a generator as x = G(z), z P (z), where z Z; Objective: min G max D V (D, G) Discriminator D : X [0, 1] L d = E x PX [log D(x)] E x Pθ [log(1 D(x))] (1) D(x): the probability that x from the real data rather than generator. Generator G : Z X L g = E x Pθ [log(1 D(x))] = E z P (z) [log(1 D(G(z)))] ()

4 Maximum Mean Discrepancy (MMD) Given two distributions P and Q, and a kernel κ, the square of MMD distance is defined as: M κ (P, Q) = µ P µ Q H (3) = E P [κ(x, x )] E P,Q [κ(x, y)] + E Q [κ(y, y )] (4) Given a kernel κ, if κ is a characteristic kernel, then M κ (P, Q) = 0 iff P = Q. (one kind of two sample test) In practice we use finite samples from distributions to estimate MMD distance. Given X = {x 1,, x n } P and Y = {y 1,, y n } Q, one estimator of M κ (P, Q) is ˆM κ (X, Y ) = ( 1 n ) κ(x i, x i) ( n ) i i i j κ(x i, y j ) + 1 ( n ) j j κ(y j, y j) (5)

5 MMD with Kernel Learning GMMN [ ] trains g θ with a pre-specified kernel κ. min θ M κ (P X, P θ ), (6) MMD GAN trains g θ taking different possible characteristic kernel (difficult to optimize, K is a possible kernel set.) min max M κ(p X, P θ ), (7) θ κ K f φ is a injective function and κ is characteristic, resulting characteristic kernel κ = κ fφ. Practically MMD GAN chooses Gaussian Kernels. κ(x, x ) = exp( f φ (x) f φ (x ) ) [ ] Li, Yujia, Kevin Swersky, and Rich Zemel. "Generative moment matching networks." ICML 015

6 MMD GAN Assume g θ is locally Lipschitz; the gradient θ (max φ f φ g θ ) has to be bounded: weight clipping for Lipschitz approximations Approximate injective function f φ by an autoencoder. The objective is relaxed to be min max M f κ φe (P(X ), P(g θ (Z))) λe y X g(z) y f φd (f φe (y)). θ φ E1: kernel selection via learning. E: f φe as a feature transformation function; The kernel two-sample test is performed on the code space.

7 MMD GAN Algorithm 1: MMD GAN input : α the learning rate, c the clipping parameter, B the batch size, n c the number of iterations of discriminator per generator update. initialize generator parameter θ and discriminator parameter φ; while θ has not converged do for t = 1,..., n c do Sample a minibatches {x i } B i=1 P(X ) and {z j} B j=1 P(Z) g φ φ M fφe (P(X ), P(g θ (Z))) λe y X g(z) y f φd (f φe (y)) φ φ + α RMSProp(φ, g φ ) φ clip(φ, c, c) Sample a minibatches {x i } B i=1 P(X ) and {z j} B j=1 P(Z) g θ θ M fφe (P(X ), P(g θ (Z))) θ θ α RMSProp(θ, g θ )

8 Overview MMD GAN Fisher GAN MMD GAN Experiments I (a) WGAN MNIST (b) WGAN CelebA (c) WGAN LSUN (d) MMD GAN MNIST (e) MMD GAN CelebA (f) MMD GAN LSUN Conclusion

9 Overview MMD GAN Fisher GAN Conclusion MMD GAN Experiments II Method Real data DFM ALI Improved GANs MMD GAN WGAN GMMN-C GMMN-D Scores ± std ± ± ± ± ±.03 Table: Inception scores (a) MNIST Table: Computation time (b) CelebA (c) LSUN Bedrooms

10 Overview MMD GAN Fisher GAN Gradient penalty & without reconstruction loss (a) Cifar10 (b) CelebA Figure: MMD GAN results using gradient penalty and without auto-encoder reconstruction loss during training. Conclusion

11 Fisher s Linear Discriminant Analysis (LDA) Utilize the label information (fake or real in GAN) in finding informative projections. Two-class Fisher LDA considers maximizing the following objective: J(v) = v S B v v (8) S W v where S B is the between classes scatter matrix and S W is the within classes scatter matrix Optimization: S B = (µ 1 µ )(µ 1 µ ) (9) S W = (x i µ i )(x i µ i ) (10) i {1,} min v 1 v S B v (11) s.t. v S W v = 1 (1)

12 Fisher IPM Integral probability Metrics (IPM) framework: Given two probability distributions P, Q P(X ), the IPM indexed by a symmetric function space F is defined as follows: d F (P, Q) = sup f F { } E f(x) E f(x). (13) x P x Q The Fisher IPM for a function space F is defined as follows: E [f(x)] E [f(x)] x P x Q d F (P, Q) = sup f F 1 E x Pf (x) + 1. (14) E x Qf (x) The constrained form: d F (P, Q) = sup f F, 1 E x Pf (x)+ 1 E x Qf (x)=1 E(f) := E x P [f(x)] E x Q [f(x)]. (15)

13 Fisher GAN Generator g θ minimize Fisher IPM: min gθ d Fp (P X, P θ ). Given samples {x i, 1... N} from P X and samples {z i, 1... M} from p z we shall solve the following empirical problem: min g θ sup f p F p Ê(f p, g θ ) : = 1 N Subject to ˆΩ(f p, g θ ) = 1 N N f p (x i ) 1 M i=1 N i=1 M f p (g θ (z j )) (16) j=1 f p (x i ) + 1 M M fp (g θ (z j )) = 1 j=1 Fisher GAN with Augmented Lagrangian (ALM): (17) L F (p, θ, λ) = Ê(f p, g θ )+λ(1 ˆΩ(f p, g θ )) ρ (ˆΩ(f p, g θ ) 1) (18) where λ is the Lagrange multiplier and ρ > 0 (hyper-parameter) is the quadratic penalty weight.

14 Fisher GAN

15 Fisher IPM Interpretations A whitened mean matching interpretation. Consider the function space F v,ω : F v,ω = {f(x) = v, Φ ω (x) v R m, Φ ω : X R m }, The mean and covariance feature embedding as in McGan: µ ω (P) = E x P (Φ ω (x)) and Σ ω (P) = E x P ( Φω (x)φ ω (x) ), Fisher IPM on F v,ω can be written as follows: d Fv,ω (P, Q) = max max ω v v, µ ω (P) µ ω (Q) v ( 1 Σ ω(p) + 1 Σ ω(q) + γi m )v, (19) Mean matching with a Mahalanobis distance d Fv,ω (P, Q) = max (µ ω (P) µ ω (Q)) Σ 1 ω (P; Q)(µ ω (P) µ ω (Q)), ω

16 Fisher IPM Interpretations Real P x! v Q!(x) R m Fake Figure: Illustration of Fisher IPM with Neural Networks. Φ ω is a convolutional neural network which defines the embedding space. v is the direction in this embedding space with maximal mean separation v, µ ω (P) µ ω (Q), constrained by the hyperellipsoid v Σ ω (P; Q) v = 1.

17 Fisher GAN Theory Theorem (Chi-squared distance at full capacity) Consider the Fisher IPM for F being the space of all measurable functions endowed by 1 (P + Q), i.e. F := L (X, P+Q ). Define the Chi-squared distance between two distributions: χ (P, Q) = X (P(x) Q(x)) dx (0) P(x)+Q(x) The following holds true for any P, Q, P Q: 1) The Fisher IPM for F = L (X, P+Q ) is equal to the Chi-squared distance defined above: d F (P, Q) = χ (P, Q). ) The optimal critic of the Fisher IPM on L (X, P+Q ) is : f χ (x) = 1 χ (P, Q) P(x) Q(x). P(x)+Q(x)

18 Overview MMD GAN Fisher GAN Conclusion Fisher GAN Experiments I E train λ Ω 3 Ω λ gθ iterations Ω λ E train E val 4 0 Mean difference E (c) CIFAR-10 (b) CelebA E train E val Mean difference E Mean difference E (a) LSUN 4 1 gθ iterations gθ iterations Figure: Samples and plots of the loss E (.), lagrange multiplier λ, and constraint Ω (.) on 3 benchmark datasets. We see that during training as λ grows slowly, the constraint becomes tight.

19 Fisher GAN Experiments II Table: CIFAR-10 inception scores; Layer Normalization (LN) with resnets. Method Score Method Score ALI 5.34 ±.05 BEGAN 5.6 DCGAN 6.16 ±.07 Improved GAN 6.86 ±.06 EGAN-Ent-VI 7.07 ±.10 DFM 7.7 ±.13 WGAN-GP ResNet 7.86 ±.07 Fisher GAN ResNet 7.90 ±.05 Unsupervised SteinGan 6.35 DCGAN (with labels) 6.58 Improved GAN 8.09 ±.07 Fisher GAN ResNet 8.16 ±.1 AC-GAN 8.5 ±.07 SGAN-no-joint 8.37 ±.08 WGAN-GP ResNet 8.4 ±.10 SGAN 8.59 ±.1 Supervised

20 Conclusion Table: Comparison of GANs Stability Unconstrained Efficient Representation capacity Computation power (SSL) Standard GAN WGAN, McGan WGAN-GP? MMD Gan? Fisher Gan

Energy-Based Generative Adversarial Network

Energy-Based Generative Adversarial Network Energy-Based Generative Adversarial Network Energy-Based Generative Adversarial Network J. Zhao, M. Mathieu and Y. LeCun Learning to Draw Samples: With Application to Amoritized MLE for Generalized Adversarial

More information

arxiv: v7 [cs.lg] 27 Jul 2018

arxiv: v7 [cs.lg] 27 Jul 2018 How Generative Adversarial Networks and Their Variants Work: An Overview of GAN Yongjun Hong, Uiwon Hwang, Jaeyoon Yoo and Sungroh Yoon Department of Electrical & Computer Engineering Seoul National University,

More information

Fisher GAN. Abstract. 1 Introduction

Fisher GAN. Abstract. 1 Introduction Fisher GAN Youssef Mroueh, Tom Sercu mroueh@us.ibm.com, tom.sercu@ibm.com Equal Contribution AI Foundations, IBM Research AI IBM T.J Watson Research Center Abstract Generative Adversarial Networks (GANs)

More information

MMD GAN: Towards Deeper Understanding of Moment Matching Network

MMD GAN: Towards Deeper Understanding of Moment Matching Network MMD GAN: Towards Deeper Understanding of Moment Matching Network Chun-Liang Li 1, Wei-Cheng Chang 1, Yu Cheng 2 Yiming Yang 1 Barnabás Póczos 1 1 Carnegie Mellon University, 2 AI Foundations, IBM Research

More information

Nishant Gurnani. GAN Reading Group. April 14th, / 107

Nishant Gurnani. GAN Reading Group. April 14th, / 107 Nishant Gurnani GAN Reading Group April 14th, 2017 1 / 107 Why are these Papers Important? 2 / 107 Why are these Papers Important? Recently a large number of GAN frameworks have been proposed - BGAN, LSGAN,

More information

MMD GAN: Towards Deeper Understanding of Moment Matching Network

MMD GAN: Towards Deeper Understanding of Moment Matching Network MMD GAN: Towards Deeper Understanding of Moment Matching Network Chun-Liang Li 1, Wei-Cheng Chang 1, Yu Cheng 2 Yiming Yang 1 Barnabás Póczos 1 1 Carnegie Mellon University, 2 AI Foundations, IBM Research

More information

Generative Adversarial Networks

Generative Adversarial Networks Generative Adversarial Networks Stefano Ermon, Aditya Grover Stanford University Lecture 10 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 10 1 / 17 Selected GANs https://github.com/hindupuravinash/the-gan-zoo

More information

Robustness in GANs and in Black-box Optimization

Robustness in GANs and in Black-box Optimization Robustness in GANs and in Black-box Optimization Stefanie Jegelka MIT CSAIL joint work with Zhi Xu, Chengtao Li, Ilija Bogunovic, Jonathan Scarlett and Volkan Cevher Robustness in ML noise Generator Critic

More information

Learning to Sample Using Stein Discrepancy

Learning to Sample Using Stein Discrepancy Learning to Sample Using Stein Discrepancy Dilin Wang Yihao Feng Qiang Liu Department of Computer Science Dartmouth College Hanover, NH 03755 {dilin.wang.gr, yihao.feng.gr, qiang.liu}@dartmouth.edu Abstract

More information

Lecture 14: Deep Generative Learning

Lecture 14: Deep Generative Learning Generative Modeling CSED703R: Deep Learning for Visual Recognition (2017F) Lecture 14: Deep Generative Learning Density estimation Reconstructing probability density function using samples Bohyung Han

More information

arxiv: v2 [cs.lg] 8 Jun 2017

arxiv: v2 [cs.lg] 8 Jun 2017 Youssef Mroueh * 1 2 Tom Sercu * 1 2 Vaibhava Goel 2 arxiv:1702.08398v2 [cs.lg] 8 Jun 2017 Abstract We introduce new families of Integral Probability Metrics (IPM) for training Generative Adversarial Networks

More information

arxiv: v1 [stat.ml] 19 Jan 2018

arxiv: v1 [stat.ml] 19 Jan 2018 Composite Functional Gradient Learning of Generative Adversarial Models arxiv:80.06309v [stat.ml] 9 Jan 208 Rie Johnson RJ Research Consulting Tarrytown, NY, USA riejohnson@gmail.com Abstract Tong Zhang

More information

Wasserstein GAN. Juho Lee. Jan 23, 2017

Wasserstein GAN. Juho Lee. Jan 23, 2017 Wasserstein GAN Juho Lee Jan 23, 2017 Wasserstein GAN (WGAN) Arxiv submission Martin Arjovsky, Soumith Chintala, and Léon Bottou A new GAN model minimizing the Earth-Mover s distance (Wasserstein-1 distance)

More information

Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes Auto-Encoding Variational Bayes Diederik P Kingma, Max Welling June 18, 2018 Diederik P Kingma, Max Welling Auto-Encoding Variational Bayes June 18, 2018 1 / 39 Outline 1 Introduction 2 Variational Lower

More information

Internal Covariate Shift Batch Normalization Implementation Experiments. Batch Normalization. Devin Willmott. University of Kentucky.

Internal Covariate Shift Batch Normalization Implementation Experiments. Batch Normalization. Devin Willmott. University of Kentucky. Batch Normalization Devin Willmott University of Kentucky October 23, 2017 Overview 1 Internal Covariate Shift 2 Batch Normalization 3 Implementation 4 Experiments Covariate Shift Suppose we have two distributions,

More information

Generative adversarial networks

Generative adversarial networks 14-1: Generative adversarial networks Prof. J.C. Kao, UCLA Generative adversarial networks Why GANs? GAN intuition GAN equilibrium GAN implementation Practical considerations Much of these notes are based

More information

arxiv: v3 [cs.lg] 2 Nov 2018

arxiv: v3 [cs.lg] 2 Nov 2018 PacGAN: The power of two samples in generative adversarial networks Zinan Lin, Ashish Khetan, Giulia Fanti, Sewoong Oh Carnegie Mellon University, University of Illinois at Urbana-Champaign arxiv:72.486v3

More information

Understanding GANs: Back to the basics

Understanding GANs: Back to the basics Understanding GANs: Back to the basics David Tse Stanford University Princeton University May 15, 2018 Joint work with Soheil Feizi, Farzan Farnia, Tony Ginart, Changho Suh and Fei Xia. GANs at NIPS 2017

More information

GENERATIVE ADVERSARIAL LEARNING

GENERATIVE ADVERSARIAL LEARNING GENERATIVE ADVERSARIAL LEARNING OF MARKOV CHAINS Jiaming Song, Shengjia Zhao & Stefano Ermon Computer Science Department Stanford University {tsong,zhaosj12,ermon}@cs.stanford.edu ABSTRACT We investigate

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

arxiv: v4 [cs.cv] 5 Sep 2018

arxiv: v4 [cs.cv] 5 Sep 2018 Wasserstein Divergence for GANs Jiqing Wu 1, Zhiwu Huang 1, Janine Thoma 1, Dinesh Acharya 1, and Luc Van Gool 1,2 arxiv:1712.01026v4 [cs.cv] 5 Sep 2018 1 Computer Vision Lab, ETH Zurich, Switzerland {jwu,zhiwu.huang,jthoma,vangool}@vision.ee.ethz.ch,

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Brown University CSCI 1950-F, Spring 2012 Prof. Erik Sudderth Lecture 20: Expectation Maximization Algorithm EM for Mixture Models Many figures courtesy Kevin Murphy s

More information

Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks Emily Denton 1, Soumith Chintala 2, Arthur Szlam 2, Rob Fergus 2 1 New York University 2 Facebook AI Research Denotes equal

More information

A QUANTITATIVE MEASURE OF GENERATIVE ADVERSARIAL NETWORK DISTRIBUTIONS

A QUANTITATIVE MEASURE OF GENERATIVE ADVERSARIAL NETWORK DISTRIBUTIONS A QUANTITATIVE MEASURE OF GENERATIVE ADVERSARIAL NETWORK DISTRIBUTIONS Dan Hendrycks University of Chicago dan@ttic.edu Steven Basart University of Chicago xksteven@uchicago.edu ABSTRACT We introduce a

More information

Composite Functional Gradient Learning of Generative Adversarial Models. Appendix

Composite Functional Gradient Learning of Generative Adversarial Models. Appendix A. Main theorem and its proof Appendix Theorem A.1 below, our main theorem, analyzes the extended KL-divergence for some β (0.5, 1] defined as follows: L β (p) := (βp (x) + (1 β)p(x)) ln βp (x) + (1 β)p(x)

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab,

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab, Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab, 2016-08-31 Generative Modeling Density estimation Sample generation

More information

Probabilistic Reasoning in Deep Learning

Probabilistic Reasoning in Deep Learning Probabilistic Reasoning in Deep Learning Dr Konstantina Palla, PhD palla@stats.ox.ac.uk September 2017 Deep Learning Indaba, Johannesburgh Konstantina Palla 1 / 39 OVERVIEW OF THE TALK Basics of Bayesian

More information

arxiv: v3 [stat.ml] 20 Feb 2018

arxiv: v3 [stat.ml] 20 Feb 2018 MANY PATHS TO EQUILIBRIUM: GANS DO NOT NEED TO DECREASE A DIVERGENCE AT EVERY STEP William Fedus 1, Mihaela Rosca 2, Balaji Lakshminarayanan 2, Andrew M. Dai 1, Shakir Mohamed 2 and Ian Goodfellow 1 1

More information

Training Generative Adversarial Networks Via Turing Test

Training Generative Adversarial Networks Via Turing Test raining enerative Adversarial Networks Via uring est Jianlin Su School of Mathematics Sun Yat-sen University uangdong, China bojone@spaces.ac.cn Abstract In this article, we introduce a new mode for training

More information

Learning Interpretable Features to Compare Distributions

Learning Interpretable Features to Compare Distributions Learning Interpretable Features to Compare Distributions Arthur Gretton Gatsby Computational Neuroscience Unit, University College London Theory of Big Data, 2017 1/41 Goal of this talk Given: Two collections

More information

B PROOF OF LEMMA 1. Published as a conference paper at ICLR 2018

B PROOF OF LEMMA 1. Published as a conference paper at ICLR 2018 A ADVERSARIAL DOMAIN ADAPTATION (ADA ADA aims to transfer prediction nowledge learned from a source domain with labeled data to a target domain without labels, by learning domain-invariant features. Let

More information

Greedy Layer-Wise Training of Deep Networks

Greedy Layer-Wise Training of Deep Networks Greedy Layer-Wise Training of Deep Networks Yoshua Bengio, Pascal Lamblin, Dan Popovici, Hugo Larochelle NIPS 2007 Presented by Ahmed Hefny Story so far Deep neural nets are more expressive: Can learn

More information

Learning features to compare distributions

Learning features to compare distributions Learning features to compare distributions Arthur Gretton Gatsby Computational Neuroscience Unit, University College London NIPS 2016 Workshop on Adversarial Learning, Barcelona Spain 1/28 Goal of this

More information

Negative Momentum for Improved Game Dynamics

Negative Momentum for Improved Game Dynamics Negative Momentum for Improved Game Dynamics Gauthier Gidel Reyhane Askari Hemmat Mohammad Pezeshki Gabriel Huang Rémi Lepriol Simon Lacoste-Julien Ioannis Mitliagkas Mila & DIRO, Université de Montréal

More information

Variational Autoencoder

Variational Autoencoder Variational Autoencoder Göker Erdo gan August 8, 2017 The variational autoencoder (VA) [1] is a nonlinear latent variable model with an efficient gradient-based training procedure based on variational

More information

The role of dimensionality reduction in classification

The role of dimensionality reduction in classification The role of dimensionality reduction in classification Weiran Wang and Miguel Á. Carreira-Perpiñán Electrical Engineering and Computer Science University of California, Merced http://eecs.ucmerced.edu

More information

Importance Reweighting Using Adversarial-Collaborative Training

Importance Reweighting Using Adversarial-Collaborative Training Importance Reweighting Using Adversarial-Collaborative Training Yifan Wu yw4@andrew.cmu.edu Tianshu Ren tren@andrew.cmu.edu Lidan Mu lmu@andrew.cmu.edu Abstract We consider the problem of reweighting a

More information

Multiplicative Noise Channel in Generative Adversarial Networks

Multiplicative Noise Channel in Generative Adversarial Networks Multiplicative Noise Channel in Generative Adversarial Networks Xinhan Di Deepearthgo Deepearthgo@gmail.com Pengqian Yu National University of Singapore yupengqian@u.nus.edu Abstract Additive Gaussian

More information

arxiv: v3 [stat.ml] 15 Oct 2017

arxiv: v3 [stat.ml] 15 Oct 2017 Non-parametric estimation of Jensen-Shannon Divergence in Generative Adversarial Network training arxiv:1705.09199v3 [stat.ml] 15 Oct 2017 Mathieu Sinn IBM Research Ireland Mulhuddart, Dublin 15, Ireland

More information

f-gan: Training Generative Neural Samplers using Variational Divergence Minimization

f-gan: Training Generative Neural Samplers using Variational Divergence Minimization f-gan: Training Generative Neural Samplers using Variational Divergence Minimization Sebastian Nowozin, Botond Cseke, Ryota Tomioka Machine Intelligence and Perception Group Microsoft Research {Sebastian.Nowozin,

More information

CAUSAL GAN: LEARNING CAUSAL IMPLICIT GENERATIVE MODELS WITH ADVERSARIAL TRAINING

CAUSAL GAN: LEARNING CAUSAL IMPLICIT GENERATIVE MODELS WITH ADVERSARIAL TRAINING CAUSAL GAN: LEARNING CAUSAL IMPLICIT GENERATIVE MODELS WITH ADVERSARIAL TRAINING (Murat Kocaoglu, Christopher Snyder, Alexandros G. Dimakis & Sriram Vishwanath, 2017) Summer Term 2018 Created for the Seminar

More information

CMU-Q Lecture 24:

CMU-Q Lecture 24: CMU-Q 15-381 Lecture 24: Supervised Learning 2 Teacher: Gianni A. Di Caro SUPERVISED LEARNING Hypotheses space Hypothesis function Labeled Given Errors Performance criteria Given a collection of input

More information

Lecture 35: December The fundamental statistical distances

Lecture 35: December The fundamental statistical distances 36-705: Intermediate Statistics Fall 207 Lecturer: Siva Balakrishnan Lecture 35: December 4 Today we will discuss distances and metrics between distributions that are useful in statistics. I will be lose

More information

Summary of A Few Recent Papers about Discrete Generative models

Summary of A Few Recent Papers about Discrete Generative models Summary of A Few Recent Papers about Discrete Generative models Presenter: Ji Gao Department of Computer Science, University of Virginia https://qdata.github.io/deep2read/ Outline SeqGAN BGAN: Boundary

More information

arxiv: v1 [cs.lg] 20 Apr 2017

arxiv: v1 [cs.lg] 20 Apr 2017 Softmax GAN Min Lin Qihoo 360 Technology co. ltd Beijing, China, 0087 mavenlin@gmail.com arxiv:704.069v [cs.lg] 0 Apr 07 Abstract Softmax GAN is a novel variant of Generative Adversarial Network (GAN).

More information

Kernel Methods. Lecture 4: Maximum Mean Discrepancy Thanks to Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, Jiayuan Huang, Arthur Gretton

Kernel Methods. Lecture 4: Maximum Mean Discrepancy Thanks to Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, Jiayuan Huang, Arthur Gretton Kernel Methods Lecture 4: Maximum Mean Discrepancy Thanks to Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, Jiayuan Huang, Arthur Gretton Alexander J. Smola Statistical Machine Learning Program Canberra,

More information

arxiv: v3 [cs.lg] 30 Jan 2018

arxiv: v3 [cs.lg] 30 Jan 2018 COULOMB GANS: PROVABLY OPTIMAL NASH EQUI- LIBRIA VIA POTENTIAL FIELDS Thomas Unterthiner 1 Bernhard Nessler 1 Calvin Seward 1, Günter Klambauer 1 Martin Heusel 1 Hubert Ramsauer 1 Sepp Hochreiter 1 arxiv:1708.08819v3

More information

IN the context of deep neural networks, the distribution

IN the context of deep neural networks, the distribution Training Faster by Separating Modes of Variation in Batch-normalized Models Mahdi M. Kalayeh, Member, IEEE, and Mubarak Shah, Fellow, IEEE 1 arxiv:1806.02892v1 [cs.cv] 7 Jun 2018 Abstract Batch Normalization

More information

topics about f-divergence

topics about f-divergence topics about f-divergence Presented by Liqun Chen Mar 16th, 2018 1 Outline 1 f-gan: Training Generative Neural Samplers using Variational Experiments 2 f-gans in an Information Geometric Nutshell Experiments

More information

Do you like to be successful? Able to see the big picture

Do you like to be successful? Able to see the big picture Do you like to be successful? Able to see the big picture 1 Are you able to recognise a scientific GEM 2 How to recognise good work? suggestions please item#1 1st of its kind item#2 solve problem item#3

More information

The Numerics of GANs

The Numerics of GANs The Numerics of GANs Lars Mescheder 1, Sebastian Nowozin 2, Andreas Geiger 1 1 Autonomous Vision Group, MPI Tübingen 2 Machine Intelligence and Perception Group, Microsoft Research Presented by: Dinghan

More information

A Unified View of Deep Generative Models

A Unified View of Deep Generative Models SAILING LAB Laboratory for Statistical Artificial InteLigence & INtegreative Genomics A Unified View of Deep Generative Models Zhiting Hu and Eric Xing Petuum Inc. Carnegie Mellon University 1 Deep generative

More information

SOBOLEV GAN ABSTRACT 1 INTRODUCTION. Published as a conference paper at ICLR 2018

SOBOLEV GAN ABSTRACT 1 INTRODUCTION. Published as a conference paper at ICLR 2018 Published as a conference paper at ICLR 8 SOBOLEV GAN Youssef Mroueh, Chun-Liang Li,?, Tom Sercu,?, Anant Raj,? & Yu Cheng IBM Research AI Carnegie Mellon University Max Planck Institute for Intelligent

More information

Machine Learning Support Vector Machines. Prof. Matteo Matteucci

Machine Learning Support Vector Machines. Prof. Matteo Matteucci Machine Learning Support Vector Machines Prof. Matteo Matteucci Discriminative vs. Generative Approaches 2 o Generative approach: we derived the classifier from some generative hypothesis about the way

More information

Is Robustness the Cost of Accuracy? A Comprehensive Study on the Robustness of 18 Deep Image Classification Models

Is Robustness the Cost of Accuracy? A Comprehensive Study on the Robustness of 18 Deep Image Classification Models Is Robustness the Cost of Accuracy? A Comprehensive Study on the Robustness of 18 Deep Image Classification Models Dong Su 1*, Huan Zhang 2*, Hongge Chen 3, Jinfeng Yi 4, Pin-Yu Chen 1, and Yupeng Gao

More information

Deep Generative Models. (Unsupervised Learning)

Deep Generative Models. (Unsupervised Learning) Deep Generative Models (Unsupervised Learning) CEng 783 Deep Learning Fall 2017 Emre Akbaş Reminders Next week: project progress demos in class Describe your problem/goal What you have done so far What

More information

Variational Inference via Stochastic Backpropagation

Variational Inference via Stochastic Backpropagation Variational Inference via Stochastic Backpropagation Kai Fan February 27, 2016 Preliminaries Stochastic Backpropagation Variational Auto-Encoding Related Work Summary Outline Preliminaries Stochastic Backpropagation

More information

Improved Training of Wasserstein GANs

Improved Training of Wasserstein GANs Improved Training of Wasserstein GANs Ishaan Gulrajani 1, Faruk Ahmed 1, Martin Arjovsky 2, Vincent Dumoulin 1, Aaron Courville 1,3 1 Montreal Institute for Learning Algorithms 2 Courant Institute of Mathematical

More information

Learning Deep Architectures for AI. Part II - Vijay Chakilam

Learning Deep Architectures for AI. Part II - Vijay Chakilam Learning Deep Architectures for AI - Yoshua Bengio Part II - Vijay Chakilam Limitations of Perceptron x1 W, b 0,1 1,1 y x2 weight plane output =1 output =0 There is no value for W and b such that the model

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

Gradient descent GAN optimization is locally stable

Gradient descent GAN optimization is locally stable Gradient descent GAN optimization is locally stable Advances in Neural Information Processing Systems, 2017 Vaishnavh Nagarajan J. Zico Kolter Carnegie Mellon University 05 January 2018 Presented by: Kevin

More information

arxiv: v3 [cs.lg] 25 Dec 2017

arxiv: v3 [cs.lg] 25 Dec 2017 Improved Training of Wasserstein GANs arxiv:1704.00028v3 [cs.lg] 25 Dec 2017 Ishaan Gulrajani 1, Faruk Ahmed 1, Martin Arjovsky 2, Vincent Dumoulin 1, Aaron Courville 1,3 1 Montreal Institute for Learning

More information

Deep Residual. Variations

Deep Residual. Variations Deep Residual Network and Its Variations Diyu Yang (Originally prepared by Kaiming He from Microsoft Research) Advantages of Depth Degradation Problem Possible Causes? Vanishing/Exploding Gradients. Overfitting

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: June 9, 2018, 09.00 14.00 RESPONSIBLE TEACHER: Andreas Svensson NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

arxiv: v2 [cs.lg] 14 Sep 2017

arxiv: v2 [cs.lg] 14 Sep 2017 CausalGAN: Learning Causal Implicit Generative Models with Adversarial Training Murat Kocaoglu 1,a, Christopher Snyder 1,b, Alexandros G. Dimakis 1,c and Sriram Vishwanath 1,d arxiv:1709.02023v2 [cs.lg]

More information

Computing with Distributed Distributional Codes Convergent Inference in Brains and Machines?

Computing with Distributed Distributional Codes Convergent Inference in Brains and Machines? Computing with Distributed Distributional Codes Convergent Inference in Brains and Machines? Maneesh Sahani Professor of Theoretical Neuroscience and Machine Learning Gatsby Computational Neuroscience

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

The Success of Deep Generative Models

The Success of Deep Generative Models The Success of Deep Generative Models Jakub Tomczak AMLAB, University of Amsterdam CERN, 2018 What is AI about? What is AI about? Decision making: What is AI about? Decision making: new data High probability

More information

Supplementary Materials for: f-gan: Training Generative Neural Samplers using Variational Divergence Minimization

Supplementary Materials for: f-gan: Training Generative Neural Samplers using Variational Divergence Minimization Supplementary Materials for: f-gan: Training Generative Neural Samplers using Variational Divergence Minimization Sebastian Nowozin, Botond Cseke, Ryota Tomioka Machine Intelligence and Perception Group

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

Deep Generative Models

Deep Generative Models Deep Generative Models Durk Kingma Max Welling Deep Probabilistic Models Worksop Wednesday, 1st of Oct, 2014 D.P. Kingma Deep generative models Transformations between Bayes nets and Neural nets Transformation

More information

Generative Adversarial Networks, and Applications

Generative Adversarial Networks, and Applications Generative Adversarial Networks, and Applications Ali Mirzaei Nimish Srivastava Kwonjoon Lee Songting Xu CSE 252C 4/12/17 2/44 Outline: Generative Models vs Discriminative Models (Background) Generative

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Nov 2, 2016 Outline SGD-typed algorithms for Deep Learning Parallel SGD for deep learning Perceptron Prediction value for a training data: prediction

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

STA 414/2104: Lecture 8

STA 414/2104: Lecture 8 STA 414/2104: Lecture 8 6-7 March 2017: Continuous Latent Variable Models, Neural networks With thanks to Russ Salakhutdinov, Jimmy Ba and others Outline Continuous latent variable models Background PCA

More information

Generative Adversarial Networks

Generative Adversarial Networks Generative Adversarial Networks SIBGRAPI 2017 Tutorial Everything you wanted to know about Deep Learning for Computer Vision but were afraid to ask Presentation content inspired by Ian Goodfellow s tutorial

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Learning features to compare distributions

Learning features to compare distributions Learning features to compare distributions Arthur Gretton Gatsby Computational Neuroscience Unit, University College London NIPS 2016 Workshop on Adversarial Learning, Barcelona Spain 1/28 Goal of this

More information

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression

Computer Vision Group Prof. Daniel Cremers. 4. Gaussian Processes - Regression Group Prof. Daniel Cremers 4. Gaussian Processes - Regression Definition (Rep.) Definition: A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian distribution.

More information

OPTIMIZATION METHODS IN DEEP LEARNING

OPTIMIZATION METHODS IN DEEP LEARNING Tutorial outline OPTIMIZATION METHODS IN DEEP LEARNING Based on Deep Learning, chapter 8 by Ian Goodfellow, Yoshua Bengio and Aaron Courville Presented By Nadav Bhonker Optimization vs Learning Surrogate

More information

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING UNSUPERVISED LEARNING Topics Layer-wise (unsupervised) pre-training Restricted Boltzmann Machines Auto-encoders LAYER-WISE (UNSUPERVISED) PRE-TRAINING Breakthrough in 2006 Layer-wise (unsupervised) pre-training

More information

arxiv: v1 [cs.it] 26 Oct 2018

arxiv: v1 [cs.it] 26 Oct 2018 Outlier Detection using Generative Models with Theoretical Performance Guarantees arxiv:1810.11335v1 [cs.it] 6 Oct 018 Jirong Yi Anh Duc Le Tianming Wang Xiaodong Wu Weiyu Xu October 9, 018 Abstract This

More information

AdaGAN: Boosting Generative Models

AdaGAN: Boosting Generative Models AdaGAN: Boosting Generative Models Ilya Tolstikhin ilya@tuebingen.mpg.de joint work with Gelly 2, Bousquet 2, Simon-Gabriel 1, Schölkopf 1 1 MPI for Intelligent Systems 2 Google Brain Radford et al., 2015)

More information

Distribution-Free Distribution Regression

Distribution-Free Distribution Regression Distribution-Free Distribution Regression Barnabás Póczos, Alessandro Rinaldo, Aarti Singh and Larry Wasserman AISTATS 2013 Presented by Esther Salazar Duke University February 28, 2014 E. Salazar (Reading

More information

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization

Convex Optimization. Ofer Meshi. Lecture 6: Lower Bounds Constrained Optimization Convex Optimization Ofer Meshi Lecture 6: Lower Bounds Constrained Optimization Lower Bounds Some upper bounds: #iter μ 2 M #iter 2 M #iter L L μ 2 Oracle/ops GD κ log 1/ε M x # ε L # x # L # ε # με f

More information

CONTINUOUS-TIME FLOWS FOR EFFICIENT INFER-

CONTINUOUS-TIME FLOWS FOR EFFICIENT INFER- CONTINUOUS-TIME FLOWS FOR EFFICIENT INFER- ENCE AND DENSITY ESTIMATION Anonymous authors Paper under double-blind review ABSTRACT Two fundamental problems in unsupervised learning are efficient inference

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 Outlines Overview Introduction Linear Algebra Probability Linear Regression

More information

CS229T/STATS231: Statistical Learning Theory. Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018

CS229T/STATS231: Statistical Learning Theory. Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018 CS229T/STATS231: Statistical Learning Theory Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018 1 Overview This lecture mainly covers Recall the statistical theory of GANs

More information

Ian Goodfellow, Staff Research Scientist, Google Brain. Seminar at CERN Geneva,

Ian Goodfellow, Staff Research Scientist, Google Brain. Seminar at CERN Geneva, MedGAN ID-CGAN CoGAN LR-GAN CGAN IcGAN b-gan LS-GAN AffGAN LAPGAN DiscoGANMPM-GAN AdaGAN LSGAN InfoGAN CatGAN AMGAN igan IAN Open Challenges for Improving GANs McGAN Ian Goodfellow, Staff Research Scientist,

More information

First Order Generative Adversarial Networks

First Order Generative Adversarial Networks Calvin Seward 1 2 Thomas Unterthiner 2 Urs Bergmann 1 Nikolay Jetchev 1 Sepp Hochreiter 2 Abstract GANs excel at learning high dimensional distributions, but they can update generator parameters in directions

More information

Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks

Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks Panos Stinis (joint work with T. Hagge, A.M. Tartakovsky and E. Yeung) Pacific Northwest National Laboratory

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

Primal-dual Subgradient Method for Convex Problems with Functional Constraints

Primal-dual Subgradient Method for Convex Problems with Functional Constraints Primal-dual Subgradient Method for Convex Problems with Functional Constraints Yurii Nesterov, CORE/INMA (UCL) Workshop on embedded optimization EMBOPT2014 September 9, 2014 (Lucca) Yu. Nesterov Primal-dual

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Online Manifold Regularization: A New Learning Setting and Empirical Study

Online Manifold Regularization: A New Learning Setting and Empirical Study Online Manifold Regularization: A New Learning Setting and Empirical Study Andrew B. Goldberg 1, Ming Li 2, Xiaojin Zhu 1 1 Computer Sciences, University of Wisconsin Madison, USA. {goldberg,jerryzhu}@cs.wisc.edu

More information

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints

Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints Stochastic Variational Inference for Gaussian Process Latent Variable Models using Back Constraints Thang D. Bui Richard E. Turner tdb40@cam.ac.uk ret26@cam.ac.uk Computational and Biological Learning

More information

SUPPORT VECTOR MACHINE

SUPPORT VECTOR MACHINE SUPPORT VECTOR MACHINE Mainly based on https://nlp.stanford.edu/ir-book/pdf/15svm.pdf 1 Overview SVM is a huge topic Integration of MMDS, IIR, and Andrew Moore s slides here Our foci: Geometric intuition

More information

Linear & nonlinear classifiers

Linear & nonlinear classifiers Linear & nonlinear classifiers Machine Learning Hamid Beigy Sharif University of Technology Fall 1396 Hamid Beigy (Sharif University of Technology) Linear & nonlinear classifiers Fall 1396 1 / 44 Table

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: August 30, 2018, 14.00 19.00 RESPONSIBLE TEACHER: Niklas Wahlström NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information