Gradient descent GAN optimization is locally stable

Size: px
Start display at page:

Download "Gradient descent GAN optimization is locally stable"

Transcription

1 Gradient descent GAN optimization is locally stable Advances in Neural Information Processing Systems, 2017 Vaishnavh Nagarajan J. Zico Kolter Carnegie Mellon University 05 January 2018 Presented by: Kevin Liang

2 Generative Adversarial Networks (GANs) Learn a generative model as a game between a generator (G) and a discriminator (D), with the former trying to fool the latter into thinking the generated images are real: V (θ G, θ D ) = E x preal [log(d(x))] + E z platent [log(1 D(G(z)))] (1) Karras et. al 2017: Progressive Growing of GANs for Improved Quality, Stability, and Variation

3 GAN Optimization Typically treated as a min-max optimization problem: min max V (θ G, θ D ) (2) θ G θ D While GANs have become extremely popular, many of their convergence properties are not well-explored, and indeed GANs are typically hard to train (mode collapse, vanishing gradients, etc.).

4 GAN Optimization Instability? Assuming good equilibria exist, are GANs locally stable?

5 GAN Optimization Difficulties Min-max objective: V (θ G, θ D ) = E x preal [log(d(x))] + E z platent [log(1 D(G(z)))]

6 Non-linear Systems GAN updates: θ D = θd V (θ G, θ D ), θg = θg V (θ G, θ D ) (3) Linearization Theorem: If the Jacobian of a dynamical system J = θ θ θ=θ evaluated at the equilibrium point θ is Hurwitz (eigenvalues real parts are all strictly negative), then the ODE will converge to θ for some non-empty region around θ at an exponential rate. (4)

7 Generalized set-up Consider a slightly more generalized form: V (θ G, θ D ) = E x preal [f(d(x))] + E z platent [f( D(G(z)))] (5) where f : R R is a concave function. Specific cases: Traditional GAN: f(x) = log(1 + exp( x)) Wasserstein GAN: f(x) = x

8 Assumptions Assumption I. p θ G = p data and D θ D (x) = 0, x supp(p data ) Assumption I. (Non-realizable) The discriminator is linear in it parameters θ D, and furthermore, for any equilibrium point (θ D, θ G ), D θ (x) = 0, x supp(p data) supp(p θ G ) Defines good equilibria for the context of the proof. Also implicitly implies that the discriminator and generator are both powerful enough that there are no bad equilibria near such good ones.

9 Assumptions (cont.) Assumption II. The function f satisfies f (0) < 0, and f (0) 0 Loss function must be strictly concave.

10 Assumptions (cont.) Property I. g : Θ R satisfies Property I at θ Θ if for any θ Null( 2 θ g(θ) θ ) the function is locally constant along θ at θ ; i.e. ɛ > 0 such that for all ɛ ( ɛ, ɛ), g(θ ) = g(θ + ɛ θ) Assumption III. At an equilibrium (θd, θ G ), the functions E pdata [Dθ 2 D (x)] and E pdata [ θd D θd (x)] E pθg [ θd D θd (x)] 2 θd must satisfy =θd Property I in the discriminator and generator space respectively. Allows for small perturbations of (θ D, θ G ) in certain directions to still yield equilibrium discriminators and generators, as defined in Assumption I.

11 Assumptions (cont.) Assumption IV. ɛ G > 0 such that θ G B ɛg (θ G ), supp(p θg ) = supp(p data ). Assumption IV (Relaxed). ɛ G > 0 such that x θg B ɛg (θ G ) supp(p θg ), D θ D (x) = 0. All generators within a sufficiently small neighborhood of the equilibrium have the same support as the true distribution; or (weaker), the union of the supports of such generators is small enough that the equilibrium discriminator is still zero.

12 Main Result [ ] JDD J J = DG = J T DG J GG [ JDD ] J DG JDG T 0 Contribution: Under suitable conditions on the representational powers of the discriminator and the generator, the resulting GAN dynamical system is locally exponentially stable In other words, any initialization sufficiently close to the equilibrium will converge to the equilibrium.

13 Stabilizing optimization via gradient-based regularization GAN updates with an added regularizer: θ D := θ D + α θd V (θ G, θ D ) θ G := θ G α θg (V (θ G, θ D ) + η θd V (θ G, θ D ) 2 ) Transforms the Jacobian to the following: [ ] J J = DD J DG JDG T (I + 2ηJ DD) 2ηJDG T J DG

14 Experimental Results

15 Experimental Results

arxiv: v3 [cs.lg] 13 Jan 2018

arxiv: v3 [cs.lg] 13 Jan 2018 radient descent AN optimization is locally stable arxiv:1706.04156v3 cs.l] 13 Jan 2018 Vaishnavh Nagarajan Computer Science epartment Carnegie-Mellon University Pittsburgh, PA 15213 vaishnavh@cs.cmu.edu

More information

GANs. Machine Learning: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM GRAHAM NEUBIG

GANs. Machine Learning: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM GRAHAM NEUBIG GANs Machine Learning: Jordan Boyd-Graber University of Maryland SLIDES ADAPTED FROM GRAHAM NEUBIG Machine Learning: Jordan Boyd-Graber UMD GANs 1 / 7 Problems with Generation Generative Models Ain t Perfect

More information

Wasserstein GAN. Juho Lee. Jan 23, 2017

Wasserstein GAN. Juho Lee. Jan 23, 2017 Wasserstein GAN Juho Lee Jan 23, 2017 Wasserstein GAN (WGAN) Arxiv submission Martin Arjovsky, Soumith Chintala, and Léon Bottou A new GAN model minimizing the Earth-Mover s distance (Wasserstein-1 distance)

More information

Generative Adversarial Networks. Presented by Yi Zhang

Generative Adversarial Networks. Presented by Yi Zhang Generative Adversarial Networks Presented by Yi Zhang Deep Generative Models N(O, I) Variational Auto-Encoders GANs Unreasonable Effectiveness of GANs GANs Discriminator tries to distinguish genuine data

More information

Nishant Gurnani. GAN Reading Group. April 14th, / 107

Nishant Gurnani. GAN Reading Group. April 14th, / 107 Nishant Gurnani GAN Reading Group April 14th, 2017 1 / 107 Why are these Papers Important? 2 / 107 Why are these Papers Important? Recently a large number of GAN frameworks have been proposed - BGAN, LSGAN,

More information

Which Training Methods for GANs do actually Converge? Supplementary material

Which Training Methods for GANs do actually Converge? Supplementary material Supplementary material A. Preliminaries In this section we first summarize some results from the theory of discrete dynamical systems. We also prove a discrete version of a basic convergence theorem for

More information

Ian Goodfellow, Staff Research Scientist, Google Brain. Seminar at CERN Geneva,

Ian Goodfellow, Staff Research Scientist, Google Brain. Seminar at CERN Geneva, MedGAN ID-CGAN CoGAN LR-GAN CGAN IcGAN b-gan LS-GAN AffGAN LAPGAN DiscoGANMPM-GAN AdaGAN LSGAN InfoGAN CatGAN AMGAN igan IAN Open Challenges for Improving GANs McGAN Ian Goodfellow, Staff Research Scientist,

More information

Negative Momentum for Improved Game Dynamics

Negative Momentum for Improved Game Dynamics Negative Momentum for Improved Game Dynamics Gauthier Gidel Reyhane Askari Hemmat Mohammad Pezeshki Gabriel Huang Rémi Lepriol Simon Lacoste-Julien Ioannis Mitliagkas Mila & DIRO, Université de Montréal

More information

Chapter 20. Deep Generative Models

Chapter 20. Deep Generative Models Peng et al.: Deep Learning and Practice 1 Chapter 20 Deep Generative Models Peng et al.: Deep Learning and Practice 2 Generative Models Models that are able to Provide an estimate of the probability distribution

More information

Which Training Methods for GANs do actually Converge?

Which Training Methods for GANs do actually Converge? Lars Mescheder 1 Andreas Geiger 1 2 Sebastian Nowozin 3 Abstract Recent work has shown local convergence of GAN training for absolutely continuous data and generator distributions. In this paper, we show

More information

Generative adversarial networks

Generative adversarial networks 14-1: Generative adversarial networks Prof. J.C. Kao, UCLA Generative adversarial networks Why GANs? GAN intuition GAN equilibrium GAN implementation Practical considerations Much of these notes are based

More information

arxiv: v3 [cs.lg] 11 Jun 2018

arxiv: v3 [cs.lg] 11 Jun 2018 Lars Mescheder 1 Andreas Geiger 1 2 Sebastian Nowozin 3 arxiv:1801.04406v3 [cs.lg] 11 Jun 2018 Abstract Recent work has shown local convergence of GAN training for absolutely continuous data and generator

More information

Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks

Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks Panos Stinis (joint work with T. Hagge, A.M. Tartakovsky and E. Yeung) Pacific Northwest National Laboratory

More information

Generative v. Discriminative classifiers Intuition

Generative v. Discriminative classifiers Intuition Logistic Regression Machine Learning 070/578 Carlos Guestrin Carnegie Mellon University September 24 th, 2007 Generative v. Discriminative classifiers Intuition Want to Learn: h:x a Y X features Y target

More information

Energy-Based Generative Adversarial Network

Energy-Based Generative Adversarial Network Energy-Based Generative Adversarial Network Energy-Based Generative Adversarial Network J. Zhao, M. Mathieu and Y. LeCun Learning to Draw Samples: With Application to Amoritized MLE for Generalized Adversarial

More information

CS60010: Deep Learning

CS60010: Deep Learning CS60010: Deep Learning Sudeshna Sarkar Spring 2018 16 Jan 2018 FFN Goal: Approximate some unknown ideal function f : X! Y Ideal classifier: y = f*(x) with x and category y Feedforward Network: Define parametric

More information

Non Convex-Concave Saddle Point Optimization

Non Convex-Concave Saddle Point Optimization Non Convex-Concave Saddle Point Optimization Master Thesis Leonard Adolphs April 09, 2018 Advisors: Prof. Dr. Thomas Hofmann, M.Sc. Hadi Daneshmand Department of Computer Science, ETH Zürich Abstract

More information

Lecture 10: Singular Perturbations and Averaging 1

Lecture 10: Singular Perturbations and Averaging 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 10: Singular Perturbations and

More information

Some theoretical properties of GANs. Gérard Biau Toulouse, September 2018

Some theoretical properties of GANs. Gérard Biau Toulouse, September 2018 Some theoretical properties of GANs Gérard Biau Toulouse, September 2018 Coauthors Benoît Cadre (ENS Rennes) Maxime Sangnier (Sorbonne University) Ugo Tanielian (Sorbonne University & Criteo) 1 video Source:

More information

Interaction Matters: A Note on Non-asymptotic Local Convergence of Generative Adversarial Networks

Interaction Matters: A Note on Non-asymptotic Local Convergence of Generative Adversarial Networks Interaction Matters: A Note on Non-asymptotic Local onvergence of Generative Adversarial Networks engyuan Liang University of hicago arxiv:submit/166633 statml 16 Feb 18 James Stokes University of Pennsylvania

More information

MMD GAN 1 Fisher GAN 2

MMD GAN 1 Fisher GAN 2 MMD GAN 1 Fisher GAN 1 Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos (CMU, IBM Research) Youssef Mroueh, and Tom Sercu (IBM Research) Presented by Rui-Yi(Roy) Zhang Decemeber

More information

arxiv: v1 [math.oc] 7 Dec 2018

arxiv: v1 [math.oc] 7 Dec 2018 arxiv:1812.02878v1 [math.oc] 7 Dec 2018 Solving Non-Convex Non-Concave Min-Max Games Under Polyak- Lojasiewicz Condition Maziar Sanjabi, Meisam Razaviyayn, Jason D. Lee University of Southern California

More information

arxiv: v1 [stat.ml] 19 Jan 2018

arxiv: v1 [stat.ml] 19 Jan 2018 Composite Functional Gradient Learning of Generative Adversarial Models arxiv:80.06309v [stat.ml] 9 Jan 208 Rie Johnson RJ Research Consulting Tarrytown, NY, USA riejohnson@gmail.com Abstract Tong Zhang

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab,

Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab, Generative Adversarial Networks (GANs) Ian Goodfellow, OpenAI Research Scientist Presentation at Berkeley Artificial Intelligence Lab, 2016-08-31 Generative Modeling Density estimation Sample generation

More information

Reliability Monitoring Using Log Gaussian Process Regression

Reliability Monitoring Using Log Gaussian Process Regression COPYRIGHT 013, M. Modarres Reliability Monitoring Using Log Gaussian Process Regression Martin Wayne Mohammad Modarres PSA 013 Center for Risk and Reliability University of Maryland Department of Mechanical

More information

Lyapunov stability ORDINARY DIFFERENTIAL EQUATIONS

Lyapunov stability ORDINARY DIFFERENTIAL EQUATIONS Lyapunov stability ORDINARY DIFFERENTIAL EQUATIONS An ordinary differential equation is a mathematical model of a continuous state continuous time system: X = < n state space f: < n! < n vector field (assigns

More information

15-388/688 - Practical Data Science: Decision trees and interpretable models. J. Zico Kolter Carnegie Mellon University Spring 2018

15-388/688 - Practical Data Science: Decision trees and interpretable models. J. Zico Kolter Carnegie Mellon University Spring 2018 15-388/688 - Practical Data Science: Decision trees and interpretable models J. Zico Kolter Carnegie Mellon University Spring 2018 1 Outline Decision trees Training (classification) decision trees Interpreting

More information

Neural Networks. Advanced data-mining. Yongdai Kim. Department of Statistics, Seoul National University, South Korea

Neural Networks. Advanced data-mining. Yongdai Kim. Department of Statistics, Seoul National University, South Korea Neural Networks Advanced data-mining Yongdai Kim Department of Statistics, Seoul National University, South Korea What is Neural Networks? One of supervised learning method using one or more hidden layer.

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Intelligent Control. Module I- Neural Networks Lecture 7 Adaptive Learning Rate. Laxmidhar Behera

Intelligent Control. Module I- Neural Networks Lecture 7 Adaptive Learning Rate. Laxmidhar Behera Intelligent Control Module I- Neural Networks Lecture 7 Adaptive Learning Rate Laxmidhar Behera Department of Electrical Engineering Indian Institute of Technology, Kanpur Recurrent Networks p.1/40 Subjects

More information

Generative v. Discriminative classifiers Intuition

Generative v. Discriminative classifiers Intuition Logistic Regression Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University September 24 th, 2007 1 Generative v. Discriminative classifiers Intuition Want to Learn: h:x a Y X features

More information

arxiv: v1 [cs.lg] 5 Oct 2018

arxiv: v1 [cs.lg] 5 Oct 2018 Local Stability and Performance of Simple Gradient Penalty µ-wasserstein GAN arxiv:1810.02528v1 [cs.lg] 5 Oct 2018 Cheolhyeong Kim, Seungtae Park, Hyung Ju Hwang POSTECH Pohang, 37673, Republic of Korea

More information

Introduction to gradient descent

Introduction to gradient descent 6-1: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction to gradient descent Derivation and intuitions Hessian 6-2: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction Our

More information

Neural networks III: The delta learning rule with semilinear activation function

Neural networks III: The delta learning rule with semilinear activation function Neural networks III: The delta learning rule with semilinear activation function The standard delta rule essentially implements gradient descent in sum-squared error for linear activation functions. We

More information

Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. September 20, 2012

Machine Learning Tom M. Mitchell Machine Learning Department Carnegie Mellon University. September 20, 2012 Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University September 20, 2012 Today: Logistic regression Generative/Discriminative classifiers Readings: (see class website)

More information

Name: Student number:

Name: Student number: UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2018 EXAMINATIONS CSC321H1S Duration 3 hours No Aids Allowed Name: Student number: This is a closed-book test. It is marked out of 35 marks. Please

More information

Feedforward Neural Networks. Michael Collins, Columbia University

Feedforward Neural Networks. Michael Collins, Columbia University Feedforward Neural Networks Michael Collins, Columbia University Recap: Log-linear Models A log-linear model takes the following form: p(y x; v) = exp (v f(x, y)) y Y exp (v f(x, y )) f(x, y) is the representation

More information

ON THE LIMITATIONS OF FIRST-ORDER APPROXIMATION IN GAN DYNAMICS

ON THE LIMITATIONS OF FIRST-ORDER APPROXIMATION IN GAN DYNAMICS ON THE LIMITATIONS OF FIRST-ORDER APPROXIMATION IN GAN DYNAMICS Anonymous authors Paper under double-blind review ABSTRACT Generative Adversarial Networks (GANs) have been proposed as an approach to learning

More information

Section 8: Asymptotic Properties of the MLE

Section 8: Asymptotic Properties of the MLE 2 Section 8: Asymptotic Properties of the MLE In this part of the course, we will consider the asymptotic properties of the maximum likelihood estimator. In particular, we will study issues of consistency,

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University February 2, 2015 Today: Logistic regression Generative/Discriminative classifiers Readings: (see class website)

More information

Sample questions for Fundamentals of Machine Learning 2018

Sample questions for Fundamentals of Machine Learning 2018 Sample questions for Fundamentals of Machine Learning 2018 Teacher: Mohammad Emtiyaz Khan A few important informations: In the final exam, no electronic devices are allowed except a calculator. Make sure

More information

Lecture 6 Optimization for Deep Neural Networks

Lecture 6 Optimization for Deep Neural Networks Lecture 6 Optimization for Deep Neural Networks CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago April 12, 2017 Things we will look at today Stochastic Gradient Descent Things

More information

Multilayer Neural Networks

Multilayer Neural Networks Multilayer Neural Networks Multilayer Neural Networks Discriminant function flexibility NON-Linear But with sets of linear parameters at each layer Provably general function approximators for sufficient

More information

Natural Evolution Strategies for Direct Search

Natural Evolution Strategies for Direct Search Tobias Glasmachers Natural Evolution Strategies for Direct Search 1 Natural Evolution Strategies for Direct Search PGMO-COPI 2014 Recent Advances on Continuous Randomized black-box optimization Thursday

More information

Robustness in GANs and in Black-box Optimization

Robustness in GANs and in Black-box Optimization Robustness in GANs and in Black-box Optimization Stefanie Jegelka MIT CSAIL joint work with Zhi Xu, Chengtao Li, Ilija Bogunovic, Jonathan Scarlett and Volkan Cevher Robustness in ML noise Generator Critic

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Overview. Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation

Overview. Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation Overview Probabilistic Interpretation of Linear Regression Maximum Likelihood Estimation Bayesian Estimation MAP Estimation Probabilistic Interpretation: Linear Regression Assume output y is generated

More information

A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation

A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation 1 Introduction A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation J Wesley Hines Nuclear Engineering Department The University of Tennessee Knoxville, Tennessee,

More information

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang

Machine Learning Basics Lecture 2: Linear Classification. Princeton University COS 495 Instructor: Yingyu Liang Machine Learning Basics Lecture 2: Linear Classification Princeton University COS 495 Instructor: Yingyu Liang Review: machine learning basics Math formulation Given training data x i, y i : 1 i n i.i.d.

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

Gradient Descent. Sargur Srihari

Gradient Descent. Sargur Srihari Gradient Descent Sargur srihari@cedar.buffalo.edu 1 Topics Simple Gradient Descent/Ascent Difficulties with Simple Gradient Descent Line Search Brent s Method Conjugate Gradient Descent Weight vectors

More information

Feedforward Neural Networks

Feedforward Neural Networks Feedforward Neural Networks Michael Collins 1 Introduction In the previous notes, we introduced an important class of models, log-linear models. In this note, we describe feedforward neural networks, which

More information

Neural Networks: Backpropagation

Neural Networks: Backpropagation Neural Networks: Backpropagation Seung-Hoon Na 1 1 Department of Computer Science Chonbuk National University 2018.10.25 eung-hoon Na (Chonbuk National University) Neural Networks: Backpropagation 2018.10.25

More information

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight)

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight) CSCE 636 Neural Networks Instructor: Yoonsuck Choe Deep Learning What Is Deep Learning? Learning higher level abstractions/representations from data. Motivation: how the brain represents sensory information

More information

The Numerics of GANs

The Numerics of GANs The Numerics of GANs Lars Mescheder 1, Sebastian Nowozin 2, Andreas Geiger 1 1 Autonomous Vision Group, MPI Tübingen 2 Machine Intelligence and Perception Group, Microsoft Research Presented by: Dinghan

More information

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms

Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms Exponential Moving Average Based Multiagent Reinforcement Learning Algorithms Mostafa D. Awheda Department of Systems and Computer Engineering Carleton University Ottawa, Canada KS 5B6 Email: mawheda@sce.carleton.ca

More information

Machine Learning 4771

Machine Learning 4771 Machine Learning 4771 Instructor: Tony Jebara Topic 3 Additive Models and Linear Regression Sinusoids and Radial Basis Functions Classification Logistic Regression Gradient Descent Polynomial Basis Functions

More information

Generative Adversarial Networks

Generative Adversarial Networks Generative Adversarial Networks SIBGRAPI 2017 Tutorial Everything you wanted to know about Deep Learning for Computer Vision but were afraid to ask Presentation content inspired by Ian Goodfellow s tutorial

More information

NN V: The generalized delta learning rule

NN V: The generalized delta learning rule NN V: The generalized delta learning rule We now focus on generalizing the delta learning rule for feedforward layered neural networks. The architecture of the two-layer network considered below is shown

More information

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning

Lecture 10. Neural networks and optimization. Machine Learning and Data Mining November Nando de Freitas UBC. Nonlinear Supervised Learning Lecture 0 Neural networks and optimization Machine Learning and Data Mining November 2009 UBC Gradient Searching for a good solution can be interpreted as looking for a minimum of some error (loss) function

More information

Sparse Gaussian conditional random fields

Sparse Gaussian conditional random fields Sparse Gaussian conditional random fields Matt Wytock, J. ico Kolter School of Computer Science Carnegie Mellon University Pittsburgh, PA 53 {mwytock, zkolter}@cs.cmu.edu Abstract We propose sparse Gaussian

More information

Matrix differential calculus Optimization Geoff Gordon Ryan Tibshirani

Matrix differential calculus Optimization Geoff Gordon Ryan Tibshirani Matrix differential calculus 10-725 Optimization Geoff Gordon Ryan Tibshirani Review Matrix differentials: sol n to matrix calculus pain compact way of writing Taylor expansions, or definition: df = a(x;

More information

AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Introduction to Automatic Control & Linear systems (time domain)

AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Introduction to Automatic Control & Linear systems (time domain) 1 AUTOMATIC CONTROL Andrea M. Zanchettin, PhD Spring Semester, 2018 Introduction to Automatic Control & Linear systems (time domain) 2 What is automatic control? From Wikipedia Control theory is an interdisciplinary

More information

Qualifying Exam in Machine Learning

Qualifying Exam in Machine Learning Qualifying Exam in Machine Learning October 20, 2009 Instructions: Answer two out of the three questions in Part 1. In addition, answer two out of three questions in two additional parts (choose two parts

More information

Learning MN Parameters with Alternative Objective Functions. Sargur Srihari

Learning MN Parameters with Alternative Objective Functions. Sargur Srihari Learning MN Parameters with Alternative Objective Functions Sargur srihari@cedar.buffalo.edu 1 Topics Max Likelihood & Contrastive Objectives Contrastive Objective Learning Methods Pseudo-likelihood Gradient

More information

Information geometry of mirror descent

Information geometry of mirror descent Information geometry of mirror descent Geometric Science of Information Anthea Monod Department of Statistical Science Duke University Information Initiative at Duke G. Raskutti (UW Madison) and S. Mukherjee

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

Introduction to Machine Learning (67577) Lecture 3

Introduction to Machine Learning (67577) Lecture 3 Introduction to Machine Learning (67577) Lecture 3 Shai Shalev-Shwartz School of CS and Engineering, The Hebrew University of Jerusalem General Learning Model and Bias-Complexity tradeoff Shai Shalev-Shwartz

More information

Non-Convex Optimization in Machine Learning. Jan Mrkos AIC

Non-Convex Optimization in Machine Learning. Jan Mrkos AIC Non-Convex Optimization in Machine Learning Jan Mrkos AIC The Plan 1. Introduction 2. Non convexity 3. (Some) optimization approaches 4. Speed and stuff? Neural net universal approximation Theorem (1989):

More information

Towards stability and optimality in stochastic gradient descent

Towards stability and optimality in stochastic gradient descent Towards stability and optimality in stochastic gradient descent Panos Toulis, Dustin Tran and Edoardo M. Airoldi August 26, 2016 Discussion by Ikenna Odinaka Duke University Outline Introduction 1 Introduction

More information

Bias-Variance Tradeoff

Bias-Variance Tradeoff What s learning, revisited Overfitting Generative versus Discriminative Logistic Regression Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University September 19 th, 2007 Bias-Variance Tradeoff

More information

Machine Learning 2: Nonlinear Regression

Machine Learning 2: Nonlinear Regression 15-884 Machine Learning : Nonlinear Regression J. Zico Kolter September 17, 01 1 Non-linear regression Peak Hourly Demand (GW).5 0 0 40 60 80 100 High temperature / peak demand observations for all days

More information

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Learning from Experts. 2.1 Defining a meaningful benchmark. AM 221: Advanced Optimization Spring 2016 AM 1: Advanced Optimization Spring 016 Prof. Yaron Singer Lecture 11 March 3rd 1 Overview In this lecture we will introduce the notion of online convex optimization. This is an extremely useful framework

More information

Understanding GANs: Back to the basics

Understanding GANs: Back to the basics Understanding GANs: Back to the basics David Tse Stanford University Princeton University May 15, 2018 Joint work with Soheil Feizi, Farzan Farnia, Tony Ginart, Changho Suh and Fei Xia. GANs at NIPS 2017

More information

Least Mean Squares Regression. Machine Learning Fall 2018

Least Mean Squares Regression. Machine Learning Fall 2018 Least Mean Squares Regression Machine Learning Fall 2018 1 Where are we? Least Squares Method for regression Examples The LMS objective Gradient descent Incremental/stochastic gradient descent Exercises

More information

Radial-Basis Function Networks

Radial-Basis Function Networks Radial-Basis Function etworks A function is radial basis () if its output depends on (is a non-increasing function of) the distance of the input from a given stored vector. s represent local receptors,

More information

Q-Learning in Continuous State Action Spaces

Q-Learning in Continuous State Action Spaces Q-Learning in Continuous State Action Spaces Alex Irpan alexirpan@berkeley.edu December 5, 2015 Contents 1 Introduction 1 2 Background 1 3 Q-Learning 2 4 Q-Learning In Continuous Spaces 4 5 Experimental

More information

Energy Based Models. Stefano Ermon, Aditya Grover. Stanford University. Lecture 13

Energy Based Models. Stefano Ermon, Aditya Grover. Stanford University. Lecture 13 Energy Based Models Stefano Ermon, Aditya Grover Stanford University Lecture 13 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 1 / 21 Summary Story so far Representation: Latent

More information

topics about f-divergence

topics about f-divergence topics about f-divergence Presented by Liqun Chen Mar 16th, 2018 1 Outline 1 f-gan: Training Generative Neural Samplers using Variational Experiments 2 f-gans in an Information Geometric Nutshell Experiments

More information

Least Mean Squares Regression

Least Mean Squares Regression Least Mean Squares Regression Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Lecture Overview Linear classifiers What functions do linear classifiers express? Least Squares Method

More information

Learning Tetris. 1 Tetris. February 3, 2009

Learning Tetris. 1 Tetris. February 3, 2009 Learning Tetris Matt Zucker Andrew Maas February 3, 2009 1 Tetris The Tetris game has been used as a benchmark for Machine Learning tasks because its large state space (over 2 200 cell configurations are

More information

Stochastic Gradient Descent

Stochastic Gradient Descent Stochastic Gradient Descent Machine Learning CSE546 Carlos Guestrin University of Washington October 9, 2013 1 Logistic Regression Logistic function (or Sigmoid): Learn P(Y X) directly Assume a particular

More information

4. Opponent Forecasting in Repeated Games

4. Opponent Forecasting in Repeated Games 4. Opponent Forecasting in Repeated Games Julian and Mohamed / 2 Learning in Games Literature examines limiting behavior of interacting players. One approach is to have players compute forecasts for opponents

More information

arxiv: v3 [cs.lg] 2 Nov 2018

arxiv: v3 [cs.lg] 2 Nov 2018 PacGAN: The power of two samples in generative adversarial networks Zinan Lin, Ashish Khetan, Giulia Fanti, Sewoong Oh Carnegie Mellon University, University of Illinois at Urbana-Champaign arxiv:72.486v3

More information

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 5: Single Layer Perceptrons & Estimating Linear Classifiers

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 5: Single Layer Perceptrons & Estimating Linear Classifiers Engineering Part IIB: Module 4F0 Statistical Pattern Processing Lecture 5: Single Layer Perceptrons & Estimating Linear Classifiers Phil Woodland: pcw@eng.cam.ac.uk Michaelmas 202 Engineering Part IIB:

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Neural Networks Varun Chandola x x 5 Input Outline Contents February 2, 207 Extending Perceptrons 2 Multi Layered Perceptrons 2 2. Generalizing to Multiple Labels.................

More information

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight)

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight) CSCE 636 Neural Networks Instructor: Yoonsuck Choe Deep Learning What Is Deep Learning? Learning higher level abstractions/representations from data. Motivation: how the brain represents sensory information

More information

Computing Neural Network Gradients

Computing Neural Network Gradients Computing Neural Network Gradients Kevin Clark 1 Introduction The purpose of these notes is to demonstrate how to quickly compute neural network gradients in a completely vectorized way. It is complementary

More information

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November.

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. COGS Q250 Fall 2012 Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. For the first two questions of the homework you will need to understand the learning algorithm using the delta

More information

Advanced computational methods X Selected Topics: SGD

Advanced computational methods X Selected Topics: SGD Advanced computational methods X071521-Selected Topics: SGD. In this lecture, we look at the stochastic gradient descent (SGD) method 1 An illustrating example The MNIST is a simple dataset of variety

More information

Lecture 5 Multivariate Linear Regression

Lecture 5 Multivariate Linear Regression Lecture 5 Multivariate Linear Regression Dan Sheldon September 23, 2014 Topics Multivariate linear regression Model Cost function Normal equations Gradient descent Features Book Data 10 8 Weight (lbs.)

More information

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels

Need for Deep Networks Perceptron. Can only model linear functions. Kernel Machines. Non-linearity provided by kernels Need for Deep Networks Perceptron Can only model linear functions Kernel Machines Non-linearity provided by kernels Need to design appropriate kernels (possibly selecting from a set, i.e. kernel learning)

More information

Generative Adversarial Networks, and Applications

Generative Adversarial Networks, and Applications Generative Adversarial Networks, and Applications Ali Mirzaei Nimish Srivastava Kwonjoon Lee Songting Xu CSE 252C 4/12/17 2/44 Outline: Generative Models vs Discriminative Models (Background) Generative

More information

Using SVD to Recommend Movies

Using SVD to Recommend Movies Michael Percy University of California, Santa Cruz Last update: December 12, 2009 Last update: December 12, 2009 1 / Outline 1 Introduction 2 Singular Value Decomposition 3 Experiments 4 Conclusion Last

More information

Optimization and Gradient Descent

Optimization and Gradient Descent Optimization and Gradient Descent INFO-4604, Applied Machine Learning University of Colorado Boulder September 12, 2017 Prof. Michael Paul Prediction Functions Remember: a prediction function is the function

More information

CS229T/STATS231: Statistical Learning Theory. Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018

CS229T/STATS231: Statistical Learning Theory. Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018 CS229T/STATS231: Statistical Learning Theory Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018 1 Overview This lecture mainly covers Recall the statistical theory of GANs

More information

Training Generative Adversarial Networks Via Turing Test

Training Generative Adversarial Networks Via Turing Test raining enerative Adversarial Networks Via uring est Jianlin Su School of Mathematics Sun Yat-sen University uangdong, China bojone@spaces.ac.cn Abstract In this article, we introduce a new mode for training

More information

Lecture 7. Logistic Regression. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. December 11, 2016

Lecture 7. Logistic Regression. Luigi Freda. ALCOR Lab DIAG University of Rome La Sapienza. December 11, 2016 Lecture 7 Logistic Regression Luigi Freda ALCOR Lab DIAG University of Rome La Sapienza December 11, 2016 Luigi Freda ( La Sapienza University) Lecture 7 December 11, 2016 1 / 39 Outline 1 Intro Logistic

More information

GENERATIVE ADVERSARIAL LEARNING

GENERATIVE ADVERSARIAL LEARNING GENERATIVE ADVERSARIAL LEARNING OF MARKOV CHAINS Jiaming Song, Shengjia Zhao & Stefano Ermon Computer Science Department Stanford University {tsong,zhaosj12,ermon}@cs.stanford.edu ABSTRACT We investigate

More information