Lecture 10: Singular Perturbations and Averaging 1

Size: px
Start display at page:

Download "Lecture 10: Singular Perturbations and Averaging 1"

Transcription

1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 10: Singular Perturbations and Averaging 1 This lecture presents results which describe local behavior of parameter-dependent ODE models in cases when dependence on a parameter is not continuous in the usual sense Singularly perturbed ODE In this section we consider parameter-dependent systems of equations ẋ(t) = f(x(t), y(t), t), (10.1) ɛẏ = g(x(t), y(t), t), where ɛ [0, ɛ 0 ] is a small positive parameter. When ɛ > 0, (10.1) is an ODE model. For ɛ = 0, (10.1) is a combination of algebraic and differential equations. Models such as (10.1), where y represents a set of less relevant, fast changing parameters, are frequently studied in physics and mechanics. One can say that singular perturbations is the classical approach to dealing with uncertainty, complexity, and nonlinearity The Tikhonov s Theorem A typical question asked about the singularly perturbed system (10.1) is whether its solutions with ɛ > 0 converge to the solutions of (10.1) with ɛ = 0 as ɛ 0. A sufficient condition for such convergence is that the Jacobian of g with respect to its second argument should be a Hurwitz matrix in the region of interest. Theorem 10.1 Let x 0 : [t 0, t 1 ] R n, y 0 : [t 0, t 1 ] R m be continuous functions satisfying equations 1 Version of October 15, 2003 ẋ 0 (t) = f(x 0 (t), y 0 (t), t), 0 = g(x 0 (t), y 0 (t), t),

2 2 where f : R n R m R R n and g : R n R m R R m are continuous functions. Assume that f, g are continuously differentiable with respect to their first two arguments in a neigborhood of the trajectory x 0 (t), y 0 (t), and that the derivative A(t) = g 2 (x 0 (t), y 0 (t), t) is a Hurwitz matrix for all t [t 0, t 1 ]. Then for every t 2 (t 0, t 1 ) there exists d > 0 and C > 0 such that inequalities x 0 (t) x(t) Cɛ for all t [t 0, t 1 ] and y 0 (t) y(t) Cɛ for all t [t 2, t 1 ] for all solutions of (10.1) with x(t 0 ) x 0 (t 0 ) ɛ, y(t 0 ) y 0 (t 0 ) d, and ɛ (0, d). The theorem was originally proven by A. Tikhonov in 1930-s. It expresses a simple principle, which suggests that, for small ɛ > 0, x = x(t) can be considered a constant when predicting the behavior of y. From this viewpoint, for a given t (t 0, t 1 ), one can expect that y(t + ɛτ) y 1 (τ), where y 1 : [0, ) is the solution of the fast motion ODE ẏ 1 (τ) = g(x 0 (t ), y 1 (τ)), y 1 (0) = y(t ). Since y 0 (t ) is an equilibrium of the ODE, and the standard linearization around this equilibrium yields δ (τ) A(t )δ(τ) where δ(τ) = y 1 (τ) y 0 (t ), one can expect that y 1 (τ) y 0 (t ) exponentially as τ whenever A(t ) is a Hurwitz matrix and y(t ) y 0 (t ) is small enough. Hence, when ɛ > 0 is small enough, one can expect that y(t) y 0 (t) Proof of Theorem 10.1 First, let us show that the interval [t 0, t 1 ] can be subdivided into subintervals k = [τ k 1, τ k ], where k {1, 2,..., N} and t 0 = τ 0 < τ 1 < < τ N = t 1 in such a way that for every k there exists a symmetric matrix P k = P k > 0 for which P k A(t) + A(t) P k < I t [τ k 1, τ k ]. Indeed, since A(t) is a Hurwitz matrix for every t [t 0, t 1 ], there exists P (t) = P (t) > 0 such that P (t)a(t) + A(t) P (t) < I. Since A depends continuously on t, there exists an open interval (t) such that t (t) and P (t)a(τ) + A(τ) P (t) < I τ (t).

3 3 Now the open intervals (t) with t [t 0, t 1 ] cover the whole closed bounded interval [t 0, t 1 ], and taking a finite number of t k, k = 1,..., m such that [t 0, t 1 ] is completely covered by (t k ) yields the desired partition subdivision of [t 0, t 1 ]. Second, note that, due to the continuous differentiability of f, g, for every µ > 0 there exist C, r > 0 such that and f(x 0 (t) + δ x, y 0 (t) + δ y, t) f(x 0 (t), y 0 (t), t) C( δ x + δ y ) g(x 0 (t) + δ x, y 0 (t) + δ y, t) A(t)δ y C δ x + µ δ y for all t R, δ x R n, δ y R m satisfying t [t 0, t 1 ], δ x x 0 (t) r, δ y y 0 (t) r. For t k let δ y k = (δ y P k δ y ) 1/2. Then, for δ x (t) = x(t) x 0 (t), δ y (t) = y(t) y 0 (t), we have δ x C 1 ( δ x + δ y k ), ɛ δ y k q δ y k + C 1 δ x + ɛc 1 (10.2) as long as δ x, δ y are sufficiently small, where C 1, q are positive constants which do not depend on k. Combining these two derivative bounds yields d ( δx + (ɛc 1 /q) δ y ) C 2 δ x + ɛc 2 for some constant C 2 independent of k. Hence δ x (τ k 1 + τ) e C 3τ ( δ x (τ k 1 ) + (ɛc 1 /q) δ y (τ k 1 ) ) + C 3 ɛ for τ [0, τ k τ k 1 ]. With the aid of this bound for the growth of δ x, inequality (10.2) yields a bound for δ y k : δ y (τ k 1 + τ) exp( qτ/ɛ) δ y (τ k 1 ) + C 4 ( δ x (τ k 1 ) + (ɛc 1 /q) δ y (τ k 1 ) ) + C 4 ɛ, which in turn yields the result of Theorem 10.1.

4 Averaging Another case of potentially discontinuous dependence on parameters is covered by the following averaging result. Theorem 10.2 Let f : R n R R R n be a continuous function which is τ-periodic with respect to its second argument t, and continuously differentiable with respect to its first argument. Let x 0 R n be such that f( x 0, t, ɛ) = 0 for all t, ɛ. For x R n define f( x, ɛ) = τ 0 f( x, t, ɛ). If /dx x=0,ɛ=0 is a Hurwitz matrix, then, for sufficiently small ɛ > 0, the equilibrium x 0 of the system ẋ(t) = ɛf(x, t, ɛ) (10.3) is exponentially stable. Though the parameter dependence in Theorem 10.2 is continuous, the question asked is about the behavior at t =, which makes system behavior for ɛ = 0 not a valid indicator of what will occur for ɛ > 0 being sufficiently small. (Indeed, for ɛ = 0 the equilibrium x 0 is not asymptotically stable.) To prove Theorem 10.2, consider the function S : R n R R n which maps x(0), ɛ to x(τ) = S(x(0), ɛ), where x( ) is a solution of (10.3). It is sufficient to show that the derivative (Jacobian) Ṡ( x, ɛ) of Ṡ with respect to its first argument, evaluated at x = x 0 and ɛ > 0 sufficiently small, is a Schur matrix. Note first that, according to the rules on differentiating with respect to initial conditions, Ṡ( x 0, ɛ) = (τ, ɛ), where d (t, ɛ) Consider D(t, ɛ) defined by d (t, ɛ) = ɛ (0, t, ɛ) (t, ɛ), (0, ɛ) = I. dx = ɛ (0, t, 0) (t, ɛ), (0, ɛ) = I. dx Let δ(t) be the derivative of (t, ɛ) with respect to ɛ at ɛ = 0. According to the rule for differentiating solutions of ODE with respect to parameters, t δ(t) = (0, t 1, 0) 1. 0 dx Hence δ(τ) = /dx x=0,ɛ=0

5 5 is by assumption a Hurwitz matrix. On the other hand, (τ, ɛ) (τ, ɛ) = o(ɛ). Combining this with (τ, ɛ) = I + δ(τ)ɛ + o(ɛ) yields (τ, ɛ) = I + δ(τ)ɛ + o(ɛ). Since δ(τ) is a Hurwitz matrix, this implies that all eigenvalues of (τ, ɛ) have absolute value strictly less than one for all sufficiently small ɛ > 0.

Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems. p. 1/1

Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems. p. 1/1 Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems p. 1/1 p. 2/1 Converse Lyapunov Theorem Exponential Stability Let x = 0 be an exponentially stable equilibrium

More information

An Application of Perturbation Methods in Evolutionary Ecology

An Application of Perturbation Methods in Evolutionary Ecology Dynamics at the Horsetooth Volume 2A, 2010. Focused Issue: Asymptotics and Perturbations An Application of Perturbation Methods in Evolutionary Ecology Department of Mathematics Colorado State University

More information

Lecture 5: Lyapunov Functions and Storage Functions 1

Lecture 5: Lyapunov Functions and Storage Functions 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.243j (Fall 2003): DYNAMICS OF NONLINEAR SYSTEMS by A. Megretski Lecture 5: Lyapunov Functions and Storage

More information

Lyapunov Stability Theory

Lyapunov Stability Theory Lyapunov Stability Theory Peter Al Hokayem and Eduardo Gallestey March 16, 2015 1 Introduction In this lecture we consider the stability of equilibrium points of autonomous nonlinear systems, both in continuous

More information

Solution of Additional Exercises for Chapter 4

Solution of Additional Exercises for Chapter 4 1 1. (1) Try V (x) = 1 (x 1 + x ). Solution of Additional Exercises for Chapter 4 V (x) = x 1 ( x 1 + x ) x = x 1 x + x 1 x In the neighborhood of the origin, the term (x 1 + x ) dominates. Hence, the

More information

L2 gains and system approximation quality 1

L2 gains and system approximation quality 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 24: MODEL REDUCTION L2 gains and system approximation quality 1 This lecture discusses the utility

More information

7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system

7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system 7 Stability 7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system ẋ(t) = A x(t), x(0) = x 0, A R n n, x 0 R n. (14) The origin x = 0 is a globally asymptotically

More information

CDS Solutions to the Midterm Exam

CDS Solutions to the Midterm Exam CDS 22 - Solutions to the Midterm Exam Instructor: Danielle C. Tarraf November 6, 27 Problem (a) Recall that the H norm of a transfer function is time-delay invariant. Hence: ( ) Ĝ(s) = s + a = sup /2

More information

3 Stability and Lyapunov Functions

3 Stability and Lyapunov Functions CDS140a Nonlinear Systems: Local Theory 02/01/2011 3 Stability and Lyapunov Functions 3.1 Lyapunov Stability Denition: An equilibrium point x 0 of (1) is stable if for all ɛ > 0, there exists a δ > 0 such

More information

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Time-varying Systems ẋ = f(t,x) f(t,x) is piecewise continuous in t and locally Lipschitz in x for all t 0 and all x D, (0 D). The origin

More information

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Time-varying Systems ẋ = f(t,x) f(t,x) is piecewise continuous in t and locally Lipschitz in x for all t 0 and all x D, (0 D). The origin

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 57 Outline 1 Lecture 13: Linear System - Stability

More information

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits

Poincaré Map, Floquet Theory, and Stability of Periodic Orbits Poincaré Map, Floquet Theory, and Stability of Periodic Orbits CDS140A Lecturer: W.S. Koon Fall, 2006 1 Poincaré Maps Definition (Poincaré Map): Consider ẋ = f(x) with periodic solution x(t). Construct

More information

Nonlinear Control. Nonlinear Control Lecture # 2 Stability of Equilibrium Points

Nonlinear Control. Nonlinear Control Lecture # 2 Stability of Equilibrium Points Nonlinear Control Lecture # 2 Stability of Equilibrium Points Basic Concepts ẋ = f(x) f is locally Lipschitz over a domain D R n Suppose x D is an equilibrium point; that is, f( x) = 0 Characterize and

More information

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations S. Y. Ha and J. Park Department of Mathematical Sciences Seoul National University Sep 23, 2013 Contents 1 Logistic Map 2 Euler and

More information

Lecture 9. Systems of Two First Order Linear ODEs

Lecture 9. Systems of Two First Order Linear ODEs Math 245 - Mathematics of Physics and Engineering I Lecture 9. Systems of Two First Order Linear ODEs January 30, 2012 Konstantin Zuev (USC) Math 245, Lecture 9 January 30, 2012 1 / 15 Agenda General Form

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 2013 Outline

More information

Prof. Krstic Nonlinear Systems MAE281A Homework set 1 Linearization & phase portrait

Prof. Krstic Nonlinear Systems MAE281A Homework set 1 Linearization & phase portrait Prof. Krstic Nonlinear Systems MAE28A Homework set Linearization & phase portrait. For each of the following systems, find all equilibrium points and determine the type of each isolated equilibrium. Use

More information

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 1/5 Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 2/5 Time-varying Systems ẋ = f(t, x) f(t, x) is piecewise continuous in t and locally Lipschitz in x for all t

More information

MATH 215/255 Solutions to Additional Practice Problems April dy dt

MATH 215/255 Solutions to Additional Practice Problems April dy dt . For the nonlinear system MATH 5/55 Solutions to Additional Practice Problems April 08 dx dt = x( x y, dy dt = y(.5 y x, x 0, y 0, (a Show that if x(0 > 0 and y(0 = 0, then the solution (x(t, y(t of the

More information

Lecture 20/Lab 21: Systems of Nonlinear ODEs

Lecture 20/Lab 21: Systems of Nonlinear ODEs Lecture 20/Lab 21: Systems of Nonlinear ODEs MAR514 Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth Coupled ODEs: Species

More information

Chapter III. Stability of Linear Systems

Chapter III. Stability of Linear Systems 1 Chapter III Stability of Linear Systems 1. Stability and state transition matrix 2. Time-varying (non-autonomous) systems 3. Time-invariant systems 1 STABILITY AND STATE TRANSITION MATRIX 2 In this chapter,

More information

Linearization problem. The simplest example

Linearization problem. The simplest example Linear Systems Lecture 3 1 problem Consider a non-linear time-invariant system of the form ( ẋ(t f x(t u(t y(t g ( x(t u(t (1 such that x R n u R m y R p and Slide 1 A: f(xu f(xu g(xu and g(xu exist and

More information

Lyapunov stability ORDINARY DIFFERENTIAL EQUATIONS

Lyapunov stability ORDINARY DIFFERENTIAL EQUATIONS Lyapunov stability ORDINARY DIFFERENTIAL EQUATIONS An ordinary differential equation is a mathematical model of a continuous state continuous time system: X = < n state space f: < n! < n vector field (assigns

More information

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis Topic # 16.30/31 Feedback Control Systems Analysis of Nonlinear Systems Lyapunov Stability Analysis Fall 010 16.30/31 Lyapunov Stability Analysis Very general method to prove (or disprove) stability of

More information

Nonlinear Control. Nonlinear Control Lecture # 3 Stability of Equilibrium Points

Nonlinear Control. Nonlinear Control Lecture # 3 Stability of Equilibrium Points Nonlinear Control Lecture # 3 Stability of Equilibrium Points The Invariance Principle Definitions Let x(t) be a solution of ẋ = f(x) A point p is a positive limit point of x(t) if there is a sequence

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 15: Nonlinear Systems and Lyapunov Functions Overview Our next goal is to extend LMI s and optimization to nonlinear

More information

IN [1], an Approximate Dynamic Inversion (ADI) control

IN [1], an Approximate Dynamic Inversion (ADI) control 1 On Approximate Dynamic Inversion Justin Teo and Jonathan P How Technical Report ACL09 01 Aerospace Controls Laboratory Department of Aeronautics and Astronautics Massachusetts Institute of Technology

More information

Problem set 7 Math 207A, Fall 2011 Solutions

Problem set 7 Math 207A, Fall 2011 Solutions Problem set 7 Math 207A, Fall 2011 s 1. Classify the equilibrium (x, y) = (0, 0) of the system x t = x, y t = y + x 2. Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y)- phase

More information

Lyapunov Theory for Discrete Time Systems

Lyapunov Theory for Discrete Time Systems Università degli studi di Padova Dipartimento di Ingegneria dell Informazione Nicoletta Bof, Ruggero Carli, Luca Schenato Technical Report Lyapunov Theory for Discrete Time Systems This work contains a

More information

Balanced Truncation 1

Balanced Truncation 1 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.242, Fall 2004: MODEL REDUCTION Balanced Truncation This lecture introduces balanced truncation for LTI

More information

Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability

Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability p. 1/1 Nonlinear Systems and Control Lecture # 19 Perturbed Systems & Input-to-State Stability p. 2/1 Perturbed Systems: Nonvanishing Perturbation Nominal System: Perturbed System: ẋ = f(x), f(0) = 0 ẋ

More information

Nonlinear Dynamical Systems Lecture - 01

Nonlinear Dynamical Systems Lecture - 01 Nonlinear Dynamical Systems Lecture - 01 Alexandre Nolasco de Carvalho August 08, 2017 Presentation Course contents Aims and purpose of the course Bibliography Motivation To explain what is a dynamical

More information

8 Example 1: The van der Pol oscillator (Strogatz Chapter 7)

8 Example 1: The van der Pol oscillator (Strogatz Chapter 7) 8 Example 1: The van der Pol oscillator (Strogatz Chapter 7) So far we have seen some different possibilities of what can happen in two-dimensional systems (local and global attractors and bifurcations)

More information

Stability of Stochastic Differential Equations

Stability of Stochastic Differential Equations Lyapunov stability theory for ODEs s Stability of Stochastic Differential Equations Part 1: Introduction Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH December 2010

More information

Department of Mathematics IIT Guwahati

Department of Mathematics IIT Guwahati Stability of Linear Systems in R 2 Department of Mathematics IIT Guwahati A system of first order differential equations is called autonomous if the system can be written in the form dx 1 dt = g 1(x 1,

More information

Stability in the sense of Lyapunov

Stability in the sense of Lyapunov CHAPTER 5 Stability in the sense of Lyapunov Stability is one of the most important properties characterizing a system s qualitative behavior. There are a number of stability concepts used in the study

More information

Reflected Brownian Motion

Reflected Brownian Motion Chapter 6 Reflected Brownian Motion Often we encounter Diffusions in regions with boundary. If the process can reach the boundary from the interior in finite time with positive probability we need to decide

More information

Introduction to Modern Control MT 2016

Introduction to Modern Control MT 2016 CDT Autonomous and Intelligent Machines & Systems Introduction to Modern Control MT 2016 Alessandro Abate Lecture 2 First-order ordinary differential equations (ODE) Solution of a linear ODE Hints to nonlinear

More information

One-Sided Laplace Transform and Differential Equations

One-Sided Laplace Transform and Differential Equations One-Sided Laplace Transform and Differential Equations As in the dcrete-time case, the one-sided transform allows us to take initial conditions into account. Preliminaries The one-sided Laplace transform

More information

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12 Chapter 6 Nonlinear Systems and Phenomena 6.1 Stability and the Phase Plane We now move to nonlinear systems Begin with the first-order system for x(t) d dt x = f(x,t), x(0) = x 0 In particular, consider

More information

Nonlinear Control Lecture # 14 Input-Output Stability. Nonlinear Control

Nonlinear Control Lecture # 14 Input-Output Stability. Nonlinear Control Nonlinear Control Lecture # 14 Input-Output Stability L Stability Input-Output Models: y = Hu u(t) is a piecewise continuous function of t and belongs to a linear space of signals The space of bounded

More information

A review of stability and dynamical behaviors of differential equations:

A review of stability and dynamical behaviors of differential equations: A review of stability and dynamical behaviors of differential equations: scalar ODE: u t = f(u), system of ODEs: u t = f(u, v), v t = g(u, v), reaction-diffusion equation: u t = D u + f(u), x Ω, with boundary

More information

EN Nonlinear Control and Planning in Robotics Lecture 3: Stability February 4, 2015

EN Nonlinear Control and Planning in Robotics Lecture 3: Stability February 4, 2015 EN530.678 Nonlinear Control and Planning in Robotics Lecture 3: Stability February 4, 2015 Prof: Marin Kobilarov 0.1 Model prerequisites Consider ẋ = f(t, x). We will make the following basic assumptions

More information

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4. Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

More information

Discrete and continuous dynamic systems

Discrete and continuous dynamic systems Discrete and continuous dynamic systems Bounded input bounded output (BIBO) and asymptotic stability Continuous and discrete time linear time-invariant systems Katalin Hangos University of Pannonia Faculty

More information

Nonlinear Systems Theory

Nonlinear Systems Theory Nonlinear Systems Theory Matthew M. Peet Arizona State University Lecture 2: Nonlinear Systems Theory Overview Our next goal is to extend LMI s and optimization to nonlinear systems analysis. Today we

More information

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. Printed Name: Signature: Applied Math Qualifying Exam 11 October 2014 Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. 2 Part 1 (1) Let Ω be an open subset of R

More information

Dynamical Systems as Solutions of Ordinary Differential Equations

Dynamical Systems as Solutions of Ordinary Differential Equations CHAPTER 3 Dynamical Systems as Solutions of Ordinary Differential Equations Chapter 1 defined a dynamical system as a type of mathematical system, S =(X, G, U, ), where X is a normed linear space, G is

More information

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories

Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories Linear Systems of ODE: Nullclines, Eigenvector lines and trajectories James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 6, 203 Outline

More information

Lecture 4. Chapter 4: Lyapunov Stability. Eugenio Schuster. Mechanical Engineering and Mechanics Lehigh University.

Lecture 4. Chapter 4: Lyapunov Stability. Eugenio Schuster. Mechanical Engineering and Mechanics Lehigh University. Lecture 4 Chapter 4: Lyapunov Stability Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 4 p. 1/86 Autonomous Systems Consider the autonomous system ẋ

More information

Math 312 Lecture Notes Linearization

Math 312 Lecture Notes Linearization Math 3 Lecture Notes Linearization Warren Weckesser Department of Mathematics Colgate University 3 March 005 These notes discuss linearization, in which a linear system is used to approximate the behavior

More information

Lecture 4: Numerical solution of ordinary differential equations

Lecture 4: Numerical solution of ordinary differential equations Lecture 4: Numerical solution of ordinary differential equations Department of Mathematics, ETH Zürich General explicit one-step method: Consistency; Stability; Convergence. High-order methods: Taylor

More information

Principles of Optimal Control Spring 2008

Principles of Optimal Control Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 16.323 Principles of Optimal Control Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 16.323 Lecture

More information

Solutions to Homework 11

Solutions to Homework 11 Solutions to Homework 11 Read the statement of Proposition 5.4 of Chapter 3, Section 5. Write a summary of the proof. Comment on the following details: Does the proof work if g is piecewise C 1? Or did

More information

3 Gramians and Balanced Realizations

3 Gramians and Balanced Realizations 3 Gramians and Balanced Realizations In this lecture, we use an optimization approach to find suitable realizations for truncation and singular perturbation of G. It turns out that the recommended realizations

More information

Dynamic Inversion of Multi-input Nonaffine Systems via Time-scale Separation

Dynamic Inversion of Multi-input Nonaffine Systems via Time-scale Separation Proceedings of the 26 American Control Conference Minneapolis, Minnesota, USA, June 4-6, 26 ThC3 Dynamic Inversion of Multi-input Nonaffine Systems via Time-scale Separation Naira Hovakimyan, Eugene Lavretsky

More information

Global stabilization of feedforward systems with exponentially unstable Jacobian linearization

Global stabilization of feedforward systems with exponentially unstable Jacobian linearization Global stabilization of feedforward systems with exponentially unstable Jacobian linearization F Grognard, R Sepulchre, G Bastin Center for Systems Engineering and Applied Mechanics Université catholique

More information

Nonlinear Control Lecture 5: Stability Analysis II

Nonlinear Control Lecture 5: Stability Analysis II Nonlinear Control Lecture 5: Stability Analysis II Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2010 Farzaneh Abdollahi Nonlinear Control Lecture 5 1/41

More information

Problem Set Number 5, j/2.036j MIT (Fall 2014)

Problem Set Number 5, j/2.036j MIT (Fall 2014) Problem Set Number 5, 18.385j/2.036j MIT (Fall 2014) Rodolfo R. Rosales (MIT, Math. Dept.,Cambridge, MA 02139) Due Fri., October 24, 2014. October 17, 2014 1 Large µ limit for Liénard system #03 Statement:

More information

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli Control Systems I Lecture 2: Modeling Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch. 2-3 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich September 29, 2017 E. Frazzoli

More information

6 Linear Equation. 6.1 Equation with constant coefficients

6 Linear Equation. 6.1 Equation with constant coefficients 6 Linear Equation 6.1 Equation with constant coefficients Consider the equation ẋ = Ax, x R n. This equating has n independent solutions. If the eigenvalues are distinct then the solutions are c k e λ

More information

NOTES ON LINEAR ODES

NOTES ON LINEAR ODES NOTES ON LINEAR ODES JONATHAN LUK We can now use all the discussions we had on linear algebra to study linear ODEs Most of this material appears in the textbook in 21, 22, 23, 26 As always, this is a preliminary

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 4: LMIs for State-Space Internal Stability Solving the Equations Find the output given the input State-Space:

More information

E209A: Analysis and Control of Nonlinear Systems Problem Set 6 Solutions

E209A: Analysis and Control of Nonlinear Systems Problem Set 6 Solutions E9A: Analysis and Control of Nonlinear Systems Problem Set 6 Solutions Michael Vitus Gabe Hoffmann Stanford University Winter 7 Problem 1 The governing equations are: ẋ 1 = x 1 + x 1 x ẋ = x + x 3 Using

More information

Exam 2 Study Guide: MATH 2080: Summer I 2016

Exam 2 Study Guide: MATH 2080: Summer I 2016 Exam Study Guide: MATH 080: Summer I 016 Dr. Peterson June 7 016 First Order Problems Solve the following IVP s by inspection (i.e. guessing). Sketch a careful graph of each solution. (a) u u; u(0) 0.

More information

Large Deviations for Small-Noise Stochastic Differential Equations

Large Deviations for Small-Noise Stochastic Differential Equations Chapter 22 Large Deviations for Small-Noise Stochastic Differential Equations This lecture is at once the end of our main consideration of diffusions and stochastic calculus, and a first taste of large

More information

Half of Final Exam Name: Practice Problems October 28, 2014

Half of Final Exam Name: Practice Problems October 28, 2014 Math 54. Treibergs Half of Final Exam Name: Practice Problems October 28, 24 Half of the final will be over material since the last midterm exam, such as the practice problems given here. The other half

More information

Large Deviations for Small-Noise Stochastic Differential Equations

Large Deviations for Small-Noise Stochastic Differential Equations Chapter 21 Large Deviations for Small-Noise Stochastic Differential Equations This lecture is at once the end of our main consideration of diffusions and stochastic calculus, and a first taste of large

More information

Path integrals for classical Markov processes

Path integrals for classical Markov processes Path integrals for classical Markov processes Hugo Touchette National Institute for Theoretical Physics (NITheP) Stellenbosch, South Africa Chris Engelbrecht Summer School on Non-Linear Phenomena in Field

More information

Mathematical Economics. Lecture Notes (in extracts)

Mathematical Economics. Lecture Notes (in extracts) Prof. Dr. Frank Werner Faculty of Mathematics Institute of Mathematical Optimization (IMO) http://math.uni-magdeburg.de/ werner/math-ec-new.html Mathematical Economics Lecture Notes (in extracts) Winter

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 20: LMI/SOS Tools for the Study of Hybrid Systems Stability Concepts There are several classes of problems for

More information

System Control Engineering 0

System Control Engineering 0 System Control Engineering 0 Koichi Hashimoto Graduate School of Information Sciences Text: Nonlinear Control Systems Analysis and Design, Wiley Author: Horacio J. Marquez Web: http://www.ic.is.tohoku.ac.jp/~koichi/system_control/

More information

2 Lyapunov Stability. x(0) x 0 < δ x(t) x 0 < ɛ

2 Lyapunov Stability. x(0) x 0 < δ x(t) x 0 < ɛ 1 2 Lyapunov Stability Whereas I/O stability is concerned with the effect of inputs on outputs, Lyapunov stability deals with unforced systems: ẋ = f(x, t) (1) where x R n, t R +, and f : R n R + R n.

More information

Converse Lyapunov theorem and Input-to-State Stability

Converse Lyapunov theorem and Input-to-State Stability Converse Lyapunov theorem and Input-to-State Stability April 6, 2014 1 Converse Lyapunov theorem In the previous lecture, we have discussed few examples of nonlinear control systems and stability concepts

More information

Lecture 38. Almost Linear Systems

Lecture 38. Almost Linear Systems Math 245 - Mathematics of Physics and Engineering I Lecture 38. Almost Linear Systems April 20, 2012 Konstantin Zuev (USC) Math 245, Lecture 38 April 20, 2012 1 / 11 Agenda Stability Properties of Linear

More information

Global Analysis of Piecewise Linear Systems Using Impact Maps and Quadratic Surface Lyapunov Functions

Global Analysis of Piecewise Linear Systems Using Impact Maps and Quadratic Surface Lyapunov Functions Global Analysis of Piecewise Linear Systems Using Impact Maps and Quadratic Surface Lyapunov Functions Jorge M. Gonçalves, Alexandre Megretski, Munther A. Dahleh Department of EECS, Room 35-41 MIT, Cambridge,

More information

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

1. Find the solution of the following uncontrolled linear system. 2 α 1 1 Appendix B Revision Problems 1. Find the solution of the following uncontrolled linear system 0 1 1 ẋ = x, x(0) =. 2 3 1 Class test, August 1998 2. Given the linear system described by 2 α 1 1 ẋ = x +

More information

MCE693/793: Analysis and Control of Nonlinear Systems

MCE693/793: Analysis and Control of Nonlinear Systems MCE693/793: Analysis and Control of Nonlinear Systems Systems of Differential Equations Phase Plane Analysis Hanz Richter Mechanical Engineering Department Cleveland State University Systems of Nonlinear

More information

Lecture 8. Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control. Eugenio Schuster.

Lecture 8. Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control. Eugenio Schuster. Lecture 8 Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture

More information

EE363 homework 8 solutions

EE363 homework 8 solutions EE363 Prof. S. Boyd EE363 homework 8 solutions 1. Lyapunov condition for passivity. The system described by ẋ = f(x, u), y = g(x), x() =, with u(t), y(t) R m, is said to be passive if t u(τ) T y(τ) dτ

More information

Introduction to multiscale modeling and simulation. Explicit methods for ODEs : forward Euler. y n+1 = y n + tf(y n ) dy dt = f(y), y(0) = y 0

Introduction to multiscale modeling and simulation. Explicit methods for ODEs : forward Euler. y n+1 = y n + tf(y n ) dy dt = f(y), y(0) = y 0 Introduction to multiscale modeling and simulation Lecture 5 Numerical methods for ODEs, SDEs and PDEs The need for multiscale methods Two generic frameworks for multiscale computation Explicit methods

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

2 Discrete growth models, logistic map (Murray, Chapter 2)

2 Discrete growth models, logistic map (Murray, Chapter 2) 2 Discrete growth models, logistic map (Murray, Chapter 2) As argued in Lecture 1 the population of non-overlapping generations can be modelled as a discrete dynamical system. This is an example of an

More information

ME 234, Lyapunov and Riccati Problems. 1. This problem is to recall some facts and formulae you already know. e Aτ BB e A τ dτ

ME 234, Lyapunov and Riccati Problems. 1. This problem is to recall some facts and formulae you already know. e Aτ BB e A τ dτ ME 234, Lyapunov and Riccati Problems. This problem is to recall some facts and formulae you already know. (a) Let A and B be matrices of appropriate dimension. Show that (A, B) is controllable if and

More information

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form Qualifying exam for numerical analysis (Spring 2017) Show your work for full credit. If you are unable to solve some part, attempt the subsequent parts. 1. Consider the following finite difference: f (0)

More information

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems Chapter #4 Robust and Adaptive Control Systems Nonlinear Dynamics.... Linear Combination.... Equilibrium points... 3 3. Linearisation... 5 4. Limit cycles... 3 5. Bifurcations... 4 6. Stability... 6 7.

More information

y + p(t)y = g(t) for each t I, and that also satisfies the initial condition y(t 0 ) = y 0 where y 0 is an arbitrary prescribed initial value.

y + p(t)y = g(t) for each t I, and that also satisfies the initial condition y(t 0 ) = y 0 where y 0 is an arbitrary prescribed initial value. p1 Differences Between Linear and Nonlinear Equation Theorem 1: If the function p and g are continuous on an open interval I : α < t < β containing the point t = t 0, then there exists a unique function

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 14: Controllability Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 14: Controllability p.1/23 Outline

More information

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games

Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Stability of Feedback Solutions for Infinite Horizon Noncooperative Differential Games Alberto Bressan ) and Khai T. Nguyen ) *) Department of Mathematics, Penn State University **) Department of Mathematics,

More information

Numerical Algorithms as Dynamical Systems

Numerical Algorithms as Dynamical Systems A Study on Numerical Algorithms as Dynamical Systems Moody Chu North Carolina State University What This Study Is About? To recast many numerical algorithms as special dynamical systems, whence to derive

More information

Complex Dynamic Systems: Qualitative vs Quantitative analysis

Complex Dynamic Systems: Qualitative vs Quantitative analysis Complex Dynamic Systems: Qualitative vs Quantitative analysis Complex Dynamic Systems Chiara Mocenni Department of Information Engineering and Mathematics University of Siena (mocenni@diism.unisi.it) Dynamic

More information

Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s

Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s Lecture 19: Solving linear ODEs + separable techniques for nonlinear ODE s Geoffrey Cowles Department of Fisheries Oceanography School for Marine Science and Technology University of Massachusetts-Dartmouth

More information

High-Gain Observers in Nonlinear Feedback Control. Lecture # 3 Regulation

High-Gain Observers in Nonlinear Feedback Control. Lecture # 3 Regulation High-Gain Observers in Nonlinear Feedback Control Lecture # 3 Regulation High-Gain ObserversinNonlinear Feedback ControlLecture # 3Regulation p. 1/5 Internal Model Principle d r Servo- Stabilizing u y

More information

1 The Observability Canonical Form

1 The Observability Canonical Form NONLINEAR OBSERVERS AND SEPARATION PRINCIPLE 1 The Observability Canonical Form In this Chapter we discuss the design of observers for nonlinear systems modelled by equations of the form ẋ = f(x, u) (1)

More information

Numerical integration of DAE s

Numerical integration of DAE s Numerical integration of DAE s seminar Sandra Allaart-Bruin sbruin@win.tue.nl seminar p.1 Seminar overview February 18 Arie Verhoeven Introduction to DAE s seminar p.2 Seminar overview February 18 Arie

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 24: H2 Synthesis Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology May 4, 2011 E. Frazzoli (MIT) Lecture 24: H 2 Synthesis May

More information

Nonlinear and robust MPC with applications in robotics

Nonlinear and robust MPC with applications in robotics Nonlinear and robust MPC with applications in robotics Boris Houska, Mario Villanueva, Benoît Chachuat ShanghaiTech, Texas A&M, Imperial College London 1 Overview Introduction to Robust MPC Min-Max Differential

More information

High-Gain Observers in Nonlinear Feedback Control. Lecture # 2 Separation Principle

High-Gain Observers in Nonlinear Feedback Control. Lecture # 2 Separation Principle High-Gain Observers in Nonlinear Feedback Control Lecture # 2 Separation Principle High-Gain ObserversinNonlinear Feedback ControlLecture # 2Separation Principle p. 1/4 The Class of Systems ẋ = Ax + Bφ(x,

More information