7. Component Load State and Analysis of Stresses

Size: px
Start display at page:

Download "7. Component Load State and Analysis of Stresses"

Transcription

1 SREGH O AERIALS ehhanosüsteemide komponentide õppetool 7. Component Load State and Analsis of Stresses 7. Load State of a Component 7. Stress heor and Stress Analsis Priit Põdra 7. Component Load State and Analsis of Stresses SREGH O AERIALS 7.. Load State of a Component Priit Põdra 7. Component Load State and Analsis of Stresses

2 Structural odel is a Basis for Strength Analsis SRUCURAL ODEL = graphical representation of an ideal mechanical sstem together with relevant dimensions and other data Real Structure Simplified echanical Sstem Bar is deformable Supports are absolutel rigid Joints are absolutel rigid Ideal echanical Sstem Parameters with negligible influence are eliminated (Saint Venant Principle) oo simple structural model large uncertaint of analsis results Real Shaft oo comple structural model voluminous calculation work Shaft Structural odels Loads in principal centroidal planes plane plane Structural odel for orsion L L L L L L L L L Priit Põdra 7. Component Load State and Analsis of Stresses Internal orces Analsis with the ethod of s orce and oment Projections at a Q Centroid (Internal) orce Sstem = interaction of resultant force and resultant moment, that are applied to the section centroid Combination of,, andq depends on particular task Resultant force and resultant moment are represented b the projections about the section principal centroidal aes Priit Põdra 7. Component Load State and Analsis of Stresses 4 Q

3 Steps of Internal orces Analsis. Choosing of the sections to be analsed; Diagrams of Internal orces and Principal Plane. Determining of the sections centroid; A B. Determining of the sections principal centroidal aes; A B 4. Reduction of loads into components about the sections L L L principal centroidal aes; Diagram of Q is not shown 5. Calculation of section resultant force and resultant moment components about the principal centroidal aes together Diagram of Principal Plane with determination of signs (using the method of sections): A - aial force (in direction of ), B - shear force Q (in direction of and ), Diagram of Q is not shown - bending moments (around and ), - torque (around ); Diagram of 6. Distribution of internal force components along the bar ais is described b the inthernal force diagrams. Load state of each section is determined b the Diagram of combination of internal force components acting there Priit Põdra 7. Component Load State and Analsis of Stresses 5 or Load States of a Component () Component LOAD SAE = set of internal forces and respective deformations, acting in the loaded bar According to the number of different internal forces, acting simultaneousl in the component (and/or at some of its sections), the load states are divided as: SIPLE Load States = just one internal force is acting at the component cross-section (, Q, or ) COBIED Load States = a combination of several internal forces (simple load states) is acting at the component cross-section he SIPLE Load States are: ESIO/COPRESSIO = onl the aial force is acting (or is relevant) at the component cross-sections; ORSIO = onl the torque is acting (or is relevant) at the component cross-sections; BEDIG = just one and onl bending moment is acting (or is relevant) at the component cross-sections (planar bending); SHEAR = just one and onl shear force Q is acting (or is relevant) at the component cross-sections Priit Põdra 7. Component Load State and Analsis of Stresses 6

4 Properties of Simple Load States Each Simple Load State is chaeracterised b: direction (relative to section) and tpe (force or moment) of internal force; cpecific deformation and specific failure mechanism in the case of breakage. ESIO & COPRESSIO Pure SHEAR ORSIO Pure BEDIG. he cross-section remain plain (Bernoulli hpothesis). he shape of cross-sections does not change. he area of cross-sections does not change 4. he cross-sections remain perpendicular to the bar ais 5. he cross-sections remain parallel relative to each other and the initial position 5. he cross-sections rotate 6. he ais of (straigth) bar remains straigth 6. he bar ais curves 7. he length of bar changes 7. he length of bar does not change Priit Põdra 7. Component Load State and Analsis of Stresses 7 Component Deformations and ailure ESIO & COPRESSIO Pure SHEAR ORSIO Pure BEDIG ormal Deformation angential Deformation ormal Deformation Compressive Deformation e ensile Deformation Shearing Deformation Short Component Q orsional Deformation Bending Deformation Distance between crosssections changes in the direction of component ais ailure in Compression (shear) Cross-sections move relative to each other in direction perpendicular to component ais Shearing ailure Cross-sections rotate relative to each other around the component ais orsional ailure (shear) Cross-sections rotate relative to each other around the cross-sections principal centroidal ais Bending ailure ailure in ension Priit Põdra 7. Component Load State and Analsis of Stresses 8

5 Combined Load States of a Component COBIED Load State = several internal forces are simultaneousl acting at the componet cross-sections COBIED Load State = combined interaction of SIPLE load states ost common COBIED load states are: Bending + Shear = bending moment and shear force Q are acting at the same principal plane of component cross-section Bending + Bending = bending moments (shear forces Q ma also be present) areacting in both principal planes of component cross-section Eccentric ension or Compression orsion + Bending = aial force and bending moment(s) (at one or both principal planes) are acting at the component cross-section (shear forces Q ma also be present) = torque and bending moment(s) (at one or both principal planes) are acting at the component cross-section (shear forces Q ma also be present) Priit Põdra 7. Component Load State and Analsis of Stresses 9 Internal orces of Combined Load States Principle of orces Superposition Impact of a sstem of loads = sum of single load impacts Analsis of combined load state is based on the analsis of consistuent simple load states Solutions for simple load states give the solution of combined load state Bending + Shear Bending + Bending Eccentric Compression Q Bending and shear at the same principal plane orsion + Bending Bending or Bending + Compression and bending orsion and bending in one Shear in both principal in one or both principal or both principal planes planes planes Priit Põdra 7. Component Load State and Analsis of Stresses 0

6 SREGH O AERIALS 7.. Stress heor and Stress Analsis Priit Põdra 7. Component Load State and Analsis of Stresses Internal orce is a Resultant of Stresses ESIO & COPRESSIO Pure SHEAR ORSIO Pure BEDIG Q diagram diagram diagram diagram Aial force-resultant equation da A Shear force-resultant equation Q da A orque-resultant equation Priit Põdra 7. Component Load State and Analsis of Stresses A da Internal orce-resultant Equation = mathematical function of section internal force and stress SRESS = intensit of internal force at some point of the section Bending moment-resultant equation A A da da

7 Pingete koosmõju sisepinna punktides Igale sisepinna sisejõule vastab oma selle staatilisest seosest tulenev pingelaotus: Pikijõud pikkepinge Paindemoment paindepinge Vääne vildakpaindega epüür epüür ma O eed on normaalpinged mõjuvad sisepinnaga risti O h ma Põikjõud Q lõikepinge Q Väändemoment väändepinge ma O ma eed on nihkepinged mõjuvad piki sisepinda Analüüsida on vaja punktide (erinevatel sisepindadel mõjuvate) pingekomponentide koosmõju. b ma epüür ma epüür O : ma O : O : ma ma ; ; h ; b ma ma ma Priit Põdra 7. Component Load State and Analsis of Stresses Load State Stresses and Stress heor AXIU normal stress What is, for the given load state,:? AXIU shear stress Important problem of stress analsis Strength Condition: aimum Stress Design Stress SIPLE Load States aimum Stresses: act at the known sections, can easil be calculated WE OW: Distributions, values and directions of stresses at the CROSS-SECIOS COBIED Load States aimum Stresses: sections are not known, need more sophisticated analsis WE EED O OW: AXIU values and directions of normal and shear stresses at the component sections SRESS HEORY = Part of the Strength of aterials, that studies the interrelations among stresses, that act at the same point of componet, but on the sections of different angle of inclination Priit Põdra 7. Component Load State and Analsis of Stresses 4

8 Stress State of a Point Stress State of a Component Point = set and interrelation of stresses, that act at sections of given point s of a loaded component in equilibrium aterial point i 0 Component Each section at that point ma have different value of normal stress Each section at that point ma have different value of shear stress I II III 4 5 Sisepind IV Evan at the sections of same inclination, the stress values of different points ma be different HOOGEOUS SRESS SAE = at the sections of same inclination, the stress values of different points are equal Priit Põdra 7. Component Load State and Analsis of Stresses 5 PRICIPAL PLAE at the Point of a Loaded Component Onl normal stress (shear stress is absent) is acting at the crosssection points due to AXIAL load Both normal stress and shear stress are acting at inclined sections due to AXIAL load Stress valuea at the section depend on the inclination of that section Cross- under AXIAL LOADIG = PRICIPAL PLAE (at all points of that section) 0; = 0 PRICIPAL PLAE = section (of the loaded component at the given point) which has no shear stress Important Concept Priit Põdra 7. Component Load State and Analsis of Stresses 6

9 PRICIPAL SRESSES at the Point of a Loaded Component PRICIPAL SRESS = normal stress (tensile or compressive) acting at the principal plane (section, where shear stress = 0) HREE PERPEDICULAR PRICIPAL PLAES where the shear stresses are absent can be found at each point of the loaded componentga, so that: Principal stresses are designated:,, wo principal stresses are alwas the etremal stresses at that point Position of principal planes depend on the load state = maimum tensile stress at that point (+) = maimum compressive stress at that point (-) Stress states are characterised based on the principal stresses: HREE-dimensional stress, if 0; 0; 0 PLAE stress, if 0; =0; 0 OE-dimensional stress, if 0; = 0; = 0 Priit Põdra 7. Component Load State and Analsis of Stresses 7 Stress Analsis of Combined Bending and Shear Combained bending and shear action Point to be studied CROSS-SECIO normal stress at point the I h Cross- Q diagram A diagram Q Cross- Structural odel Q diagram Q diagram CROSS-SECIO shear stress at point the Q 4 Q A h Calculate the maimum stresses at the point!!! Priit Põdra 7. Component Load State and Analsis of Stresses 8

10 Plane Stress at the Component Points Stresses at the point due to combined bending and shear Internal forces and are absent at that section All internal forces are absent at that section = 0 0 = 0 = 0 Shear stress (with respective internal force) due to the law of complementar shear stresses Both normal and shear stress are acting at the cross-section Principal Stress = maimum tensile stress at the point Principal Stress = maimum compressive stress at the point Cross-section Longitudinal section Principal planes are inclined about the crosssection Priit Põdra 7. Component Load State and Analsis of Stresses 9 Principal stresses at the point Calculate the principal stresses at the point!!! Principal Stresses of a Plane Stress State () General Case of a Plane Stress da Cross- da Longitudinal aterial element with side surface areas of da and da is located at the point Surfaces da and da are small enough in order to consider the stress distributions uniform Q Internal forces of surfaces da and da da da Q da da Equilibrium of the aterial Element Inclined da n Q da Cross- da Longitudinal Q Q t aterial element is sectioned b the surface, that is inclined about the cross-section Equilibrium Equations of the ed aterial Element n t 0 0 Q cosφ sinφ sinφ Q cosφ Q sinφ Q cosφ Q cosφ 0 sinφ 0 Priit Põdra 7. Component Load State and Analsis of Stresses 0

11 Principal Stresses of a Plane Stress State () Surface of inclined Internal orces of section da is small Surface da enough in order to consider the stress distributions uniform da Q da da da dacos dasin ormal and Shear Stress at the Inclined of Point cos sin cos Cross- ormal Stress Equilibrium Equations of the aterial Element using Stresses da dacos dasin dasincos da dasincos dasincos dacos sin Longitudinal ormal Stress sin Angle of Inclination Cross- Shear Stress ind the angle, when = 0 and = ma of that angle is the principal plane at the point Priit Põdra 7. Component Load State and Analsis of Stresses Principal Stresses of a Plane Stress State () Principal Stresses of point Principal Planes Cross- d d unction etremal values are, where its derivative equals 0 d = ma where 0 d sin cos 0 Principal Plane Angle (section, where = ma and = 0) tan d d d = ma where 0 d cos sin 0, where = ma cot Principal Stresses at the Point aimum ensile Stress aimum Compressive Stress ma min aimum Shear Stress at the Point ma Priit Põdra 7. Component Load State and Analsis of Stresses

12 aimum Stresses of the Plane Stress State Principal Stresses of a Plane Stress State Principal Planes aimum Shear Stresses of a Plane Stress State 45 Principal Planes a a Cross- Cross- a a tan cot tan cot 45 of maimum shear stress is inclined b 45 relative to the principal planes Priit Põdra 7. Component Load State and Analsis of Stresses PLAE Stress Applications aimum Stresses for Combined Bending and Shear aimum Stresses of Pure orsion Structural odel Cross- diagram aimum ormal Stresses Q Q Stresses of Cross- 0 ma Q aimum Shear Stress Q diagram Stresses of Cross- 0 0 aimum ormal Stresses aimum Shear Stress ma Priit Põdra 7. Component Load State and Analsis of Stresses 4

13 OE-DIESIOAL Stress Applications aimum Stresses for ension/compression Structural odel Cross- Stresses of diagram diagram Cross- 0 aimum ormal Stresses 0 0 aimum Shear Stress ma OE-DIESIOAL Stress = just one principal stress is acting at the given point (values of other principal stresses equal to 0) maimum Stresses for Pure BEDIG Structural odel Stresses of Cross- aimum ormal Stresses 0 Cross- Priit Põdra 7. Component Load State and Analsis of Stresses 5 diagram 0 diagram aimum Shear Stress ma Principal Plane of One- Dimensional Stress = Component Cross- 0 HREE-DIESIOAL Stress State and Hooke Law in general D Stress State Principal Direction hree-dimensioanal Stress state is to be analsed as a combination of three plane stress states hree Plane Stress States of a hree-dimensional Stress 45 Principal Direction Hooke law for One- Dimensional Stress E Principal Direction Hooke law in General for the Principal Directions E E E = Strain E = aterial odulus of Elasticit, Pa = aterial Poisson Ratio Priit Põdra 7. Component Load State and Analsis of Stresses 6

14 SREGH O AERIALS ehhanosüsteemide komponentide õppetool HA YOU! Questions, please? Priit Põdra 7. Component Load State and Analsis of Stresses 7

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Pure Bending Ch 2 Aial Loading & Parallel Loading: uniform normal stress and shearing stress distribution Ch 3 Torsion:

More information

Chapter 8 BIAXIAL BENDING

Chapter 8 BIAXIAL BENDING Chapter 8 BAXAL BENDN 8.1 DEFNTON A cross section is subjected to biaial (oblique) bending if the normal (direct) stresses from section are reduced to two bending moments and. enerall oblique bending is

More information

MECHANICS OF MATERIALS REVIEW

MECHANICS OF MATERIALS REVIEW MCHANICS OF MATRIALS RVIW Notation: - normal stress (psi or Pa) - shear stress (psi or Pa) - normal strain (in/in or m/m) - shearing strain (in/in or m/m) I - area moment of inertia (in 4 or m 4 ) J -

More information

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering

Stress and Strain ( , 3.14) MAE 316 Strength of Mechanical Components NC State University Department of Mechanical & Aerospace Engineering (3.8-3.1, 3.14) MAE 316 Strength of Mechanical Components NC State Universit Department of Mechanical & Aerospace Engineering 1 Introduction MAE 316 is a continuation of MAE 314 (solid mechanics) Review

More information

Aircraft Structures Structural & Loading Discontinuities

Aircraft Structures Structural & Loading Discontinuities Universit of Liège Aerospace & Mechanical Engineering Aircraft Structures Structural & Loading Discontinuities Ludovic Noels Computational & Multiscale Mechanics of Materials CM3 http://www.ltas-cm3.ulg.ac.be/

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To generalize the procedure by formulating equations that can be plotted so that they describe the internal shear and moment throughout a member. To use the relations between distributed

More information

5.1. Cross-Section and the Strength of a Bar

5.1. Cross-Section and the Strength of a Bar TRENGTH OF MTERL Meanosüsteemide komponentide õppetool 5. Properties of ections 5. ross-ection and te trengt of a Bar 5. rea Properties of Plane apes 5. entroid of a ection 5.4 rea Moments of nertia 5.5

More information

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection

Mechanics of Materials II. Chapter III. A review of the fundamental formulation of stress, strain, and deflection Mechanics of Materials II Chapter III A review of the fundamental formulation of stress, strain, and deflection Outline Introduction Assumtions and limitations Axial loading Torsion of circular shafts

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS STATICS AND MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr, John T. DeWolf David E Mazurek \Cawect Mc / iur/» Craw SugomcT Hilt Introduction 1 1.1 What is Mechanics? 2 1.2 Fundamental

More information

6. Bending CHAPTER OBJECTIVES

6. Bending CHAPTER OBJECTIVES CHAPTER OBJECTIVES Determine stress in members caused by bending Discuss how to establish shear and moment diagrams for a beam or shaft Determine largest shear and moment in a member, and specify where

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 1

MECE 3321 MECHANICS OF SOLIDS CHAPTER 1 MECE 3321 MECHANICS O SOLIDS CHAPTER 1 Samantha Ramirez, MSE WHAT IS MECHANICS O MATERIALS? Rigid Bodies Statics Dynamics Mechanics Deformable Bodies Solids/Mech. Of Materials luids 1 WHAT IS MECHANICS

More information

MEM202 Engineering Mechanics - Statics MEM

MEM202 Engineering Mechanics - Statics MEM E Engineering echanics - Statics E hapter 6 Equilibrium of Rigid odies k j i k j i R z z r r r r r r r r z z E Engineering echanics - Statics Equilibrium of Rigid odies E Pin Support N w N/m 5 N m 6 m

More information

LECTURE 13 Strength of a Bar in Pure Bending

LECTURE 13 Strength of a Bar in Pure Bending V. DEMENKO MECHNCS OF MTERLS 015 1 LECTURE 13 Strength of a Bar in Pure Bending Bending is a tpe of loading under which bending moments and also shear forces occur at cross sections of a rod. f the bending

More information

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur

Module 2 Stresses in machine elements. Version 2 ME, IIT Kharagpur Module Stresses in machine elements Lesson Compound stresses in machine parts Instructional Objectives t the end of this lesson, the student should be able to understand Elements of force system at a beam

More information

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states?

Lecture Triaxial Stress and Yield Criteria. When does yielding occurs in multi-axial stress states? Lecture 5.11 Triaial Stress and Yield Criteria When does ielding occurs in multi-aial stress states? Representing stress as a tensor operational stress sstem Compressive stress sstems Triaial stresses:

More information

7.4 The Elementary Beam Theory

7.4 The Elementary Beam Theory 7.4 The Elementary Beam Theory In this section, problems involving long and slender beams are addressed. s with pressure vessels, the geometry of the beam, and the specific type of loading which will be

More information

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane

x y plane is the plane in which the stresses act, yy xy xy Figure 3.5.1: non-zero stress components acting in the x y plane 3.5 Plane Stress This section is concerned with a special two-dimensional state of stress called plane stress. It is important for two reasons: () it arises in real components (particularl in thin components

More information

CH. 1 FUNDAMENTAL PRINCIPLES OF MECHANICS

CH. 1 FUNDAMENTAL PRINCIPLES OF MECHANICS 446.201 (Solid echanics) Professor Youn, eng Dong CH. 1 FUNDENTL PRINCIPLES OF ECHNICS Ch. 1 Fundamental Principles of echanics 1 / 14 446.201 (Solid echanics) Professor Youn, eng Dong 1.2 Generalied Procedure

More information

Chapter Two: Mechanical Properties of materials

Chapter Two: Mechanical Properties of materials Chapter Two: Mechanical Properties of materials Time : 16 Hours An important consideration in the choice of a material is the way it behave when subjected to force. The mechanical properties of a material

More information

y R T However, the calculations are easier, when carried out using the polar set of co-ordinates ϕ,r. The relations between the co-ordinates are:

y R T However, the calculations are easier, when carried out using the polar set of co-ordinates ϕ,r. The relations between the co-ordinates are: Curved beams. Introduction Curved beams also called arches were invented about ears ago. he purpose was to form such a structure that would transfer loads, mainl the dead weight, to the ground b the elements

More information

BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS

BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS BOUNDARY EFFECTS IN STEEL MOMENT CONNECTIONS Koung-Heog LEE 1, Subhash C GOEL 2 And Bozidar STOJADINOVIC 3 SUMMARY Full restrained beam-to-column connections in steel moment resisting frames have been

More information

Outline. Organization. Stresses in Beams

Outline. Organization. Stresses in Beams Stresses in Beams B the end of this lesson, ou should be able to: Calculate the maimum stress in a beam undergoing a bending moment 1 Outline Curvature Normal Strain Normal Stress Neutral is Moment of

More information

Advanced Structural Analysis EGF Section Properties and Bending

Advanced Structural Analysis EGF Section Properties and Bending Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

[8] Bending and Shear Loading of Beams

[8] Bending and Shear Loading of Beams [8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending Homework Answers

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 4 Pure Bending Homework Answers EA 3702 echanics & aterials Science (echanics of aterials) Chapter 4 Pure Bending Homework Answers 100 mm Homework 4.1 For pure bending moment of 5 kn m on hollow beam with uniform wall thickness of 10

More information

LECTURE 4 Stresses in Elastic Solid. 1 Concept of Stress

LECTURE 4 Stresses in Elastic Solid. 1 Concept of Stress V. DEMENKO MECHANICS OF MATERIALS 2015 1 LECTURE 4 Stresses in Elastic Solid 1 Concept of Stress In order to characterize the law of internal forces distribution over the section a measure of their intensity

More information

Comb Resonator Design (2)

Comb Resonator Design (2) Lecture 6: Comb Resonator Design () -Intro. to Mechanics of Materials Sh School of felectrical ti lengineering i and dcomputer Science, Si Seoul National University Nano/Micro Systems & Controls Laboratory

More information

Bending stress strain of bar exposed to bending moment

Bending stress strain of bar exposed to bending moment Elasticit and Plasticit Bending stress strain of ar eposed to ending moment Basic principles and conditions of solution Calculation of ending (direct) stress Design of ar eposed to ending moment Comined

More information

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002

Mechanical Engineering Ph.D. Preliminary Qualifying Examination Solid Mechanics February 25, 2002 student personal identification (ID) number on each sheet. Do not write your name on any sheet. #1. A homogeneous, isotropic, linear elastic bar has rectangular cross sectional area A, modulus of elasticity

More information

STATICALLY INDETERMINATE STRUCTURES

STATICALLY INDETERMINATE STRUCTURES STATICALLY INDETERMINATE STRUCTURES INTRODUCTION Generally the trusses are supported on (i) a hinged support and (ii) a roller support. The reaction components of a hinged support are two (in horizontal

More information

CHAPTER -6- BENDING Part -1-

CHAPTER -6- BENDING Part -1- Ishik University / Sulaimani Civil Engineering Department Mechanics of Materials CE 211 CHAPTER -6- BENDING Part -1-1 CHAPTER -6- Bending Outlines of this chapter: 6.1. Chapter Objectives 6.2. Shear and

More information

Calculus of the Elastic Properties of a Beam Cross-Section

Calculus of the Elastic Properties of a Beam Cross-Section Presented at the COMSOL Conference 2009 Milan Calculus of the Elastic Properties of a Beam Cross-Section Dipartimento di Modellistica per l Ingegneria Università degli Studi della Calabria (Ital) COMSOL

More information

Chapter 5 Equilibrium of a Rigid Body Objectives

Chapter 5 Equilibrium of a Rigid Body Objectives Chapter 5 Equilibrium of a Rigid Bod Objectives Develop the equations of equilibrium for a rigid bod Concept of the free-bod diagram for a rigid bod Solve rigid-bod equilibrium problems using the equations

More information

Mechanics in Energy Resources Engineering - Chapter 5 Stresses in Beams (Basic topics)

Mechanics in Energy Resources Engineering - Chapter 5 Stresses in Beams (Basic topics) Week 7, 14 March Mechanics in Energy Resources Engineering - Chapter 5 Stresses in Beams (Basic topics) Ki-Bok Min, PhD Assistant Professor Energy Resources Engineering i Seoul National University Shear

More information

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014

University of Pretoria Department of Mechanical & Aeronautical Engineering MOW 227, 2 nd Semester 2014 Universit of Pretoria Department of Mechanical & Aeronautical Engineering MOW 7, nd Semester 04 Semester Test Date: August, 04 Total: 00 Internal eaminer: Duration: hours Mr. Riaan Meeser Instructions:

More information

σ = Eα(T T C PROBLEM #1.1 (4 + 4 points, no partial credit)

σ = Eα(T T C PROBLEM #1.1 (4 + 4 points, no partial credit) PROBLEM #1.1 (4 + 4 points, no partial credit A thermal switch consists of a copper bar which under elevation of temperature closes a gap and closes an electrical circuit. The copper bar possesses a length

More information

4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support

4. SHAFTS. A shaft is an element used to transmit power and torque, and it can support 4. SHAFTS A shaft is an element used to transmit power and torque, and it can support reverse bending (fatigue). Most shafts have circular cross sections, either solid or tubular. The difference between

More information

Structural Analysis I Chapter 4 - Torsion TORSION

Structural Analysis I Chapter 4 - Torsion TORSION ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

More information

A. Objective of the Course: Objectives of introducing this subject at second year level in civil branches are: 1. Introduction 02

A. Objective of the Course: Objectives of introducing this subject at second year level in civil branches are: 1. Introduction 02 Subject Code: 0CL030 Subject Name: Mechanics of Solids B.Tech. II Year (Sem-3) Mechanical & Automobile Engineering Teaching Credits Examination Marks Scheme Theory Marks Practical Marks Total L 4 T 0 P

More information

Fig Example 8-4. Rotor shaft of a helicopter (combined torsion and axial force).

Fig Example 8-4. Rotor shaft of a helicopter (combined torsion and axial force). PEF 309 Fundamentos de Mecânica das Estruturas Eercícios resolvidos etraídos de Mechanics of Materials, th edition, GERE, J.M. e Timoshenko, S.P.,PWS Publishing Company, 997, Boston, USA, p.08-0, 580-583.

More information

Solution: T, A1, A2, A3, L1, L2, L3, E1, E2, E3, P are known Five equations in five unknowns, F1, F2, F3, ua and va

Solution: T, A1, A2, A3, L1, L2, L3, E1, E2, E3, P are known Five equations in five unknowns, F1, F2, F3, ua and va ME 323 Examination # 1 February 18, 2016 Name (Print) (Last) (First) Instructor PROBLEM #1 (20 points) A structure is constructed from members 1, 2 and 3, with these members made up of the same material

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The McGraw-Hill Companies, Inc. All rights reserved. T Edition CHAPTER MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Teas Tech Universit

More information

Elasticity and Plasticity. 1.Basic principles of Elasticity and plasticity. 2.Stress and Deformation of Bars in Axial load 1 / 59

Elasticity and Plasticity. 1.Basic principles of Elasticity and plasticity. 2.Stress and Deformation of Bars in Axial load 1 / 59 Elasticity and Plasticity 1.Basic principles of Elasticity and plasticity 2.Stress and Deformation of Bars in Axial load 1 / 59 Basic principles of Elasticity and plasticity Elasticity and plasticity in

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS GE SI CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes: J. Walt Oler Texas Tech University Torsional Loads on Circular Shafts

More information

Comb resonator design (2)

Comb resonator design (2) Lecture 6: Comb resonator design () -Intro Intro. to Mechanics of Materials School of Electrical l Engineering i and Computer Science, Seoul National University Nano/Micro Systems & Controls Laboratory

More information

MECHANICS OF MATERIALS. Analysis of Beams for Bending

MECHANICS OF MATERIALS. Analysis of Beams for Bending MECHANICS OF MATERIALS Analysis of Beams for Bending By NUR FARHAYU ARIFFIN Faculty of Civil Engineering & Earth Resources Chapter Description Expected Outcomes Define the elastic deformation of an axially

More information

Rigid and Braced Frames

Rigid and Braced Frames RH 331 Note Set 12.1 F2014abn Rigid and raced Frames Notation: E = modulus of elasticit or Young s modulus F = force component in the direction F = force component in the direction FD = free bod diagram

More information

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a. E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

More information

ME 202 STRENGTH OF MATERIALS SPRING 2014 HOMEWORK 4 SOLUTIONS

ME 202 STRENGTH OF MATERIALS SPRING 2014 HOMEWORK 4 SOLUTIONS ÇANKAYA UNIVERSITY MECHANICAL ENGINEERING DEPARTMENT ME 202 STRENGTH OF MATERIALS SPRING 2014 Due Date: 1 ST Lecture Hour of Week 12 (02 May 2014) Quiz Date: 3 rd Lecture Hour of Week 12 (08 May 2014)

More information

Chapter 4-b Axially Loaded Members

Chapter 4-b Axially Loaded Members CIVL 222 STRENGTH OF MATERIALS Chapter 4-b Axially Loaded Members AXIAL LOADED MEMBERS Today s Objectives: Students will be able to: a) Determine the elastic deformation of axially loaded member b) Apply

More information

3 Stress internal forces stress stress components Stress analysis stress transformation equations principal stresses stress invariants

3 Stress internal forces stress stress components Stress analysis stress transformation equations principal stresses stress invariants 3 Stress orces acting at the surfaces of components were considered in the previous chapter. The task now is to eamine forces arising inside materials, internal forces. Internal forces are described using

More information

Using the finite element method of structural analysis, determine displacements at nodes 1 and 2.

Using the finite element method of structural analysis, determine displacements at nodes 1 and 2. Question 1 A pin-jointed plane frame, shown in Figure Q1, is fixed to rigid supports at nodes and 4 to prevent their nodal displacements. The frame is loaded at nodes 1 and by a horizontal and a vertical

More information

Combined Stresses and Mohr s Circle. General Case of Combined Stresses. General Case of Combined Stresses con t. Two-dimensional stress condition

Combined Stresses and Mohr s Circle. General Case of Combined Stresses. General Case of Combined Stresses con t. Two-dimensional stress condition Combined Stresses and Mohr s Circle Material in this lecture was taken from chapter 4 of General Case of Combined Stresses Two-dimensional stress condition General Case of Combined Stresses con t The normal

More information

CE 221: MECHANICS OF SOLIDS I CHAPTER 1: STRESS. Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university

CE 221: MECHANICS OF SOLIDS I CHAPTER 1: STRESS. Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university CE 221: MECHANICS OF SOLIDS I CHAPTER 1: STRESS By Dr. Krisada Chaiyasarn Department of Civil Engineering, Faculty of Engineering Thammasat university Agenda Introduction to your lecturer Introduction

More information

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 20, 2011 Professor A. Dolovich

UNIVERSITY OF SASKATCHEWAN ME MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 20, 2011 Professor A. Dolovich UNIVERSITY OF SASKATCHEWAN ME 313.3 MECHANICS OF MATERIALS I FINAL EXAM DECEMBER 20, 2011 Professor A. Dolovich A CLOSED BOOK EXAMINATION TIME: 3 HOURS LAST NAME (printed): FIRST NAME (printed): STUDENT

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The cgraw-hill Copanies, Inc. All rights reserved. Third E CHAPTER 8 Principle ECHANICS OF ATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University

More information

4.5 The framework element stiffness matrix

4.5 The framework element stiffness matrix 45 The framework element stiffness matri Consider a 1 degree-of-freedom element that is straight prismatic and symmetric about both principal cross-sectional aes For such a section the shear center coincides

More information

Members Subjected to Combined Loads

Members Subjected to Combined Loads Members Subjected to Combined Loads Combined Bending & Twisting : In some applications the shaft are simultaneously subjected to bending moment M and Torque T.The Bending moment comes on the shaft due

More information

Equilibrium of Rigid Bodies

Equilibrium of Rigid Bodies Equilibrium of Rigid Bodies 1 2 Contents Introduction Free-Bod Diagram Reactions at Supports and Connections for a wo-dimensional Structure Equilibrium of a Rigid Bod in wo Dimensions Staticall Indeterminate

More information

Solution ME 323 EXAM #2 FALL SEMESTER :00 PM 9:30 PM Nov. 2, 2010

Solution ME 323 EXAM #2 FALL SEMESTER :00 PM 9:30 PM Nov. 2, 2010 Solution ME 33 EXAM # FALL SEMESTER 1 8: PM 9:3 PM Nov., 1 Instructions 1. Begin each problem in the space provided on the eamination sheets. If additional space is required, use the paper provided. Work

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics

PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [ ] Introduction, Fundamentals of Statics Page1 PDDC 1 st Semester Civil Engineering Department Assignments of Mechanics of Solids [2910601] Introduction, Fundamentals of Statics 1. Differentiate between Scalar and Vector quantity. Write S.I.

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 2009 The McGraw-Hill Companies, Inc. All rights reserved. Fifth SI Edition CHAPTER 3 MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Torsion Lecture Notes:

More information

Conceptual question Conceptual question 12.2

Conceptual question Conceptual question 12.2 Conceptual question 12.1 rigid cap of weight W t g r A thin-walled tank (having an inner radius of r and wall thickness t) constructed of a ductile material contains a gas with a pressure of p. A rigid

More information

MECHANICS OF MATERIALS Design of a Transmission Shaft

MECHANICS OF MATERIALS Design of a Transmission Shaft Design of a Transmission Shaft If power is transferred to and from the shaft by gears or sprocket wheels, the shaft is subjected to transverse loading as well as shear loading. Normal stresses due to transverse

More information

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture

twenty one concrete construction: shear & deflection ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2014 lecture twenty one concrete construction: Copyright Kirk Martini shear & deflection Concrete Shear 1 Shear in Concrete

More information

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS

STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1 UNIT I STRESS STRAIN AND DEFORMATION OF SOLIDS, STATES OF STRESS 1. Define: Stress When an external force acts on a body, it undergoes deformation. At the same time the body resists deformation. The

More information

PROBLEM #1.1 (4 + 4 points, no partial credit)

PROBLEM #1.1 (4 + 4 points, no partial credit) PROBLEM #1.1 ( + points, no partial credit A thermal switch consists of a copper bar which under elevation of temperature closes a gap and closes an electrical circuit. The copper bar possesses a length

More information

ANALYSIS & DESIGN OF MACHINE ELEMENTS I MET 301 SUMMARY OF TOPICS & FORMULAE

ANALYSIS & DESIGN OF MACHINE ELEMENTS I MET 301 SUMMARY OF TOPICS & FORMULAE AALYI & DEIG OF MACHIE ELEMET I MET 0 UMMARY OF TOPIC & FORMULAE Prepared b Prof. A. K. engupta Department of Engineering Technolog JIT Januar 8, 008 TABLE OF COTET. Resolving a force in two orthogonal

More information

WORCESTER POLYTECHNIC INSTITUTE

WORCESTER POLYTECHNIC INSTITUTE WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT STRESS ANALYSIS ES-2502, C 2012 Lecture 03: Stress 17 January 2012 General information Instructor: Cosme Furlong HL-151 (508) 831-5126

More information

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323

Problem d d d B C E D. 0.8d. Additional lecturebook examples 29 ME 323 Problem 9.1 Two beam segments, AC and CD, are connected together at C by a frictionless pin. Segment CD is cantilevered from a rigid support at D, and segment AC has a roller support at A. a) Determine

More information

Experiment 6 THIN CYLINDER. 1. Dermination of circumferential stress under open condition, and analysis of combined and circumferential stress.

Experiment 6 THIN CYLINDER. 1. Dermination of circumferential stress under open condition, and analysis of combined and circumferential stress. periment 6 TIN CYLINDR Objective. Dermination of circumferential stress under open condition, and analsis of combined and circumferential stress. Theor a) Comple Stress Sstem The diagrams in Figure 4.

More information

Mechanics of Materials

Mechanics of Materials Mechanics of Materials 2. Introduction Dr. Rami Zakaria References: 1. Engineering Mechanics: Statics, R.C. Hibbeler, 12 th ed, Pearson 2. Mechanics of Materials: R.C. Hibbeler, 9 th ed, Pearson 3. Mechanics

More information

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work.

MAAE 2202 A. Come to the PASS workshop with your mock exam complete. During the workshop you can work with other students to review your work. It is most beneficial to you to write this mock final exam UNDER EXAM CONDITIONS. This means: Complete the exam in 3 hours. Work on your own. Keep your textbook closed. Attempt every question. After the

More information

MECHANICS OF SOLIDS Credit Hours: 6

MECHANICS OF SOLIDS Credit Hours: 6 MECHANICS OF SOLIDS Credit Hours: 6 Teaching Scheme Theory Tutorials Practical Total Credit Hours/week 4 0 6 6 Marks 00 0 50 50 6 A. Objective of the Course: Objectives of introducing this subject at second

More information

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture

five Mechanics of Materials 1 ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture ARCHITECTURAL STRUCTURES: FORM, BEHAVIOR, AND DESIGN DR. ANNE NICHOLS SUMMER 2017 lecture five mechanics www.carttalk.com of materials Mechanics of Materials 1 Mechanics of Materials MECHANICS MATERIALS

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

UNIT-I Introduction & Plane Stress and Plane Strain Analysis

UNIT-I Introduction & Plane Stress and Plane Strain Analysis SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Advanced Solid Mechanics (18CE1002) Year

More information

Downloaded from Downloaded from / 1

Downloaded from   Downloaded from   / 1 PURWANCHAL UNIVERSITY III SEMESTER FINAL EXAMINATION-2002 LEVEL : B. E. (Civil) SUBJECT: BEG256CI, Strength of Material Full Marks: 80 TIME: 03:00 hrs Pass marks: 32 Candidates are required to give their

More information

hwhat is mechanics? hscalars and vectors hforces are vectors htransmissibility of forces hresolution of colinear forces hmoments and couples

hwhat is mechanics? hscalars and vectors hforces are vectors htransmissibility of forces hresolution of colinear forces hmoments and couples orces and Moments CIEG-125 Introduction to Civil Engineering all 2005 Lecture 3 Outline hwhat is mechanics? hscalars and vectors horces are vectors htransmissibilit of forces hresolution of colinear forces

More information

Montgomery County Community College EGR 213 Mechanics of Materials 3-2-2

Montgomery County Community College EGR 213 Mechanics of Materials 3-2-2 Montgomery County Community College EGR 213 Mechanics of Materials 3-2-2 COURSE DESCRIPTION: This course covers the deformation of beams and shafts using energy methods and structural analysis, the analysis

More information

Tutorial #1 - CivE. 205 Name: I.D:

Tutorial #1 - CivE. 205 Name: I.D: Tutorial # - CivE. 0 Name: I.D: Eercise : For the Beam below: - Calculate the reactions at the supports and check the equilibrium of point a - Define the points at which there is change in load or beam

More information

Lecture 5: Pure bending of beams

Lecture 5: Pure bending of beams Lecture 5: Pure bending of beams Each end of an initiall straight, uniform beam is subjected to equal and opposite couples. The moment of the couples is denoted b (units of F-L. t is shown in solid mechanics

More information

PES Institute of Technology

PES Institute of Technology PES Institute of Technology Bangalore south campus, Bangalore-5460100 Department of Mechanical Engineering Faculty name : Madhu M Date: 29/06/2012 SEM : 3 rd A SEC Subject : MECHANICS OF MATERIALS Subject

More information

FAILURE CRITERIA: MOHR S CIRCLE AND PRINCIPAL STRESSES

FAILURE CRITERIA: MOHR S CIRCLE AND PRINCIPAL STRESSES LECTURE Third Editio FAILURE CRITERIA: MOHR S CIRCLE AND PRINCIPAL STRESSES A. J. Clark School of Egieerig Departmet of Civil ad Evirometal Egieerig Chapter 7.4 b Dr. Ibrahim A. Assakkaf SPRING 3 ENES

More information

Stress-strain relations

Stress-strain relations SICLLY INDRMIN SRSS SYSMS staticall determinate stress sstem simple eample of this is a bar loaded b a weight, hanging in tension. he solution for the stress is simpl W/ where is the cross sectional area.

More information

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 4 ME 76 Spring 017-018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a

More information

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents 9/3/2015.

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents 9/3/2015. 3 Rigid CHPTER VECTR ECHNICS R ENGINEERS: STTICS erdinand P. eer E. Russell Johnston, Jr. Lecture Notes: J. Walt ler Teas Tech Universit odies: Equivalent Sstems of orces Contents Introduction Eternal

More information

σ = F/A. (1.2) σ xy σ yy σ zx σ xz σ yz σ, (1.3) The use of the opposite convention should cause no problem because σ ij = σ ji.

σ = F/A. (1.2) σ xy σ yy σ zx σ xz σ yz σ, (1.3) The use of the opposite convention should cause no problem because σ ij = σ ji. Cambridge Universit Press 978-1-107-00452-8 - Metal Forming: Mechanics Metallurg, Fourth Edition Ecerpt 1 Stress Strain An understing of stress strain is essential for the analsis of metal forming operations.

More information

ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING

ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING ISHIK UNIVERSITY DEPARTMENT OF MECHATRONICS ENGINEERING QUESTION BANK FOR THE MECHANICS OF MATERIALS-I 1. A rod 150 cm long and of diameter 2.0 cm is subjected to an axial pull of 20 kn. If the modulus

More information

Torsion of shafts with circular symmetry

Torsion of shafts with circular symmetry orsion of shafts with circular symmetry Introduction Consider a uniform bar which is subject to a torque, eg through the action of two forces F separated by distance d, hence Fd orsion is the resultant

More information

Theories of Failure 2.1 RANKINE S THEORY OR MAXIMUM NORMAL STRESS THEORY

Theories of Failure 2.1 RANKINE S THEORY OR MAXIMUM NORMAL STRESS THEORY CHPTER Theories of ailure n the previous chapter, we have en that a member is subjected to any of the simple stress tensile, compressive, shear or bending stress then it is easy to predict the failure

More information

1 of 12. Law of Sines: Stress = E = G. Deformation due to Temperature: Δ

1 of 12. Law of Sines: Stress = E = G. Deformation due to Temperature: Δ NAME: ES30 STRENGTH OF MATERIALS FINAL EXAM: FRIDAY, MAY 1 TH 4PM TO 7PM Closed book. Calculator and writing supplies allowed. Protractor and compass allowed. 180 Minute Time Limit GIVEN FORMULAE: Law

More information

SLOPE-DEFLECTION METHOD

SLOPE-DEFLECTION METHOD SLOPE-DEFLECTION ETHOD The slope-deflection method uses displacements as unknowns and is referred to as a displacement method. In the slope-deflection method, the moments at the ends of the members are

More information

Strength of Materials Prof S. K. Bhattacharya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture - 18 Torsion - I

Strength of Materials Prof S. K. Bhattacharya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture - 18 Torsion - I Strength of Materials Prof S. K. Bhattacharya Department of Civil Engineering Indian Institute of Technology, Kharagpur Lecture - 18 Torsion - I Welcome to the first lesson of Module 4 which is on Torsion

More information

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG

BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE 2 ND YEAR STUDENTS OF THE UACEG BOOK OF COURSE WORKS ON STRENGTH OF MATERIALS FOR THE ND YEAR STUDENTS OF THE UACEG Assoc.Prof. Dr. Svetlana Lilkova-Markova, Chief. Assist. Prof. Dimitar Lolov Sofia, 011 STRENGTH OF MATERIALS GENERAL

More information

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002

REVIEW FOR EXAM II. Dr. Ibrahim A. Assakkaf SPRING 2002 REVIEW FOR EXM II. J. Clark School of Engineering Department of Civil and Environmental Engineering b Dr. Ibrahim. ssakkaf SPRING 00 ENES 0 Mechanics of Materials Department of Civil and Environmental

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Fifth SI Edition CHTER 1 MECHNICS OF MTERILS Ferdinand. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Introduction Concept of Stress Lecture Notes: J. Walt Oler Teas Tech University Contents

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information