(a) (b) (c) Time Time. Time

Size: px
Start display at page:

Download "(a) (b) (c) Time Time. Time"

Transcription

1 Baltzer Journals Stochastic Neurodynamics and the System Size Expansion Toru Ohira and Jack D. Cowan 2 Sony Computer Science Laboratory Higashi-gotanda, Shinagawa, Tokyo 4, Japan ohiracsl.sony.co.jp and 2 Departments of Mathematics and Neurology, The University of Chicago, Chicago, IL cowansynapse.uchicago.edu We present here a method for the study of stochastic neurodynamics in the master equation framework. Our aim is to obtain a statistical description of the dynamics of uctuations and correlations of neural activity in large neural networks. We focus on a macroscopic description of the network via a master equation for the number of active neurons in the network. We present a systematic expansion of this equation using the \system size expansion". We obtain coupled dynamical equations for the average activity and of uctuations around this average. These equations exhibit non{monotonic approaches to equilibrium, as seen in Monte Carlo simulations. Keywords: stochastic neurodynamics, master equation, system size expansion. Introduction The correlated ring of neurons is considered to be an integral part of information processing in the brain[2, 2]. Experimentally, cross{correlations are used to study synaptic interactions between neurons and to probe for synchronous network activity. In theoretical studies of stochastic neural networks, understanding the dynamics of correlated neural activity requires one to go beyond the mean eld approximation that neglects correlations in non{ equilibrium states[8, 6]. In other words, we need to go beyond the simple mean{eld approximation to study the eects of uctuations about average ring activities. Recently, we have analyzed stochastic neurodynamics using a master equation[5, 8]. A network comprising binary neurons with asynchronous stochastic dynamics

2 T.Ohira and J.D.Cowan / Stochastic Neurodynamics 2 is considered, and a master equation is written in \second quantized form" to take advantage of the theoretical tools that then become available for its analysis. A hierarchy of moment equations is obtained and a heuristic closure at the level of second moment equations is introduced. Another approach based on the master equation via path integrals, and the extension to neurons with a refractory state are discussed in [9, ]. In this paper, we introduce another master equation based approach to go beyond the mean eld approximation. We concentrate on the macroscopic behavior of a network of two{state neurons, and introduce a master equation for the number of active neurons in the network at time t. We use a more systematic expansion of the master equation than hitherto, the \system size expansion"[]. The expansion parameter is the inverse of the total number of the neurons in the network. We truncate the expansion at second order and obtain an equation for uctuations about the mean number of active neurons, which is itself coupled to the equation for the average number of active neurons at time t. These equations show non{monotonic approaches to equilibrium values near critical points, a feature which is not seen in the mean eld approximation. Monte Carlo simulations of the master equation itself show qualitatively similar non{monotonic behavior. 2 Master Equation and the System Size Expansion We rst construct a master equation for a network comprising N binary elements with two states, \active" or ring and \quiescent" or non{ring. The transitions between these states are probabilistic and we assume that the transition rate from active to quiescent is a constant for every neuron in the network. We do not make any special assumption about network connectivity, but assume that it is \homogeneous", i.e., all neurons are statistically equivalent with respect to their activities, which depend only on the proportion of active neurons in the network. More specically, the transition rate from quiescent to active is given as a function of the number of active neurons in the network. Taking the ring time to be about 2ms, we have 5s?. For the transition rate from quiescent to active, the range of the function is 3? s? reecting empirically observed ring{ rates of cortical neurons. With these assumptions, one can write a master equation as follows.? t P N [n; t] = (np N [n; t]? (n + )P N [(n + ); t]) + N(? n N )( n N )P N[n; t]? N(? (n? ) N )( n? N )P N [(n? ); t]; ()

3 T.Ohira and J.D.Cowan / Stochastic Neurodynamics 3 where P N [n; t] is the probability that the number of active neurons is n at time t. (We absorbed the parameter representing total synaptic weight into the function.) This master equation can be deduced from the second quantized form cited earlier, which will be discussed elsewhere. The standard form of this equation can be rewritten by introducing the \step operator", dened by the following action on an arbitrary function of n: Ef(n) = f(n + ); E? f(n) = f(n? ) (2) In eect, E and E? shift n by one. Using such step operators, Eq. () becomes t P N [n; t] = (E? )r n P N [n; t] + (E?? )g n P N [n; t]; (3) where r n = n, and g n = (N? n)( n ). This master equation is non{linear since N g n is a nonlinear function of n. Linear master equations, in which both r n and g n are linear functions of n, can be solved exactly. However, in general, non{linear master equations cannot be solved exactly, so in our case, we seek an approximate solution. We now expand the master equation to obtain approximate equations for the stochastic dynamics of the network. We use the system size expansion, which is closely related to the Kramers{Moyal expansion, to obtain the \macroscopic equation" and time{dependent approximations to uctuations about the solutions of such equation. In essence, this method is a way to expand master equations in powers of a small parameter, which is usually identied as the inverse size of the system. Here, we identify the system size with the total number of neurons in a network. We make a change of variables in the master equation given in (3). We assume that uctuations about the macroscopic value of n are of order N (=2). In other words, we expect that P N (n; t) will have a maximum around the macroscopic value of n with a width of order N (=2). Hence, we set n(t) = N (t) + N 2 (t) (4) where satises the macroscopic equation and is a new variable, whose distribution is equivalent to P N (n; t), i.e., P N (n; t) = (; t). We expand the step operators as: E = + N? N? 2... ; E? =? N? N? 2... (5) as E shifts by + N (?=2). With this change of variables, the master equation is given as follows: t (; t)? N 2 t (t) (; t) = N(N? N? )[( + N? 2 )] +N(?N? N?...)[ 2? ( + N? 2 )][( + N? 2 )](; t) (6)

4 T.Ohira and J.D.Cowan / Stochastic Neurodynamics 4 Collecting terms, we obtain, to order N (=2),? t =? (? )() (7) This is the macroscopic equation, which can be obtained also by using a mean{ led approximation to the master equation. We make satisfy this equation so that terms of order N (=2) vanish. The next order is N (), which gives a Fokker{Planck equation for the uctuation ( () x (x)j x=): t =? [?? () + (? ()] + 2 ) 2 2 [ + (? )()] (8) We note that this equation does not depend on the variable N justifying our assumption that uctuations are of order N (=2). We now study the behavior of the equations obtained through the system size expansion to the second order. From Eqs. (7) and (8), we obtain d dt =? + (? )(? ) + (? + ) (? ) (9) d dt =?? (? ) + (? + ) (? ) () where n = N +, and = N? 2. Equations (9) and () can be numerically integrated. Some examples are shown in Figure (B). For comparison, we plot solutions of the macroscopic equations with the same parameter sets in Figure (A). We observe a physically expected bifurcation into an active network state with decreasing, for either approximation. However, dierent dynamics are seen as one approaches bifurcation points. In particular, the coupled{equations exhibit a non{monotonic approach to the limiting value. The validity of the system size expansion is limited to the region not close to the bifurcation point, as discussed in the last section. The point is that by incorporating higher order terms into the approximation, we can extend its validity to a domain closer to the bifurcation point and thereby better capture stochastic dynamical behavior of such networks. Monte Carlo simulations[3] of the two dimensional network based on () with 25 neurons with periodic boundary conditions were performed. The connectivity is set up as follows: a neuron is connected to a specied number k of other neurons chosen randomly from the network. The strength of connection is given by the Poisson form: w ij = w r ij s s! e?r ij () where r ij is the distance between two neurons, and w and s are constants. We show in Figure 2 the average behavior of for (A) k = 2 (k=n = :8) and (B)

5 T.Ohira and J.D.Cowan / Stochastic Neurodynamics 5 k = 5m (k=n = :6). The non{monotonic dynamics is more noticeable in the low connectivity network. More quantitative comparisons between simulations and theory will be carried out in the future. The qualitative comparison shown here, however, indicate the need to model uctuations of total activity near critical points in order to capture the dynamics of sparsely connected networks. This is consistent with our earlier investigations of a one{dimensional ring of neurons via a master equation. A (a) {} {93} (b) {.9} (c) B (a) (b) (c) Figure : Comparison of solutions of (A) the macroscopic equation, and (B) (23) and (24). The parameters are set at = 5, = :5 and = (a), (b) 93, and (c).9. The initial conditions are = :5, and =(A)., and (B). A.5 (a). (b) (c) B. (a).5 (b) (c) Figure 2: Comparisons of Monte Carlo simulations of the master equation with high (k = 2) and low (k = 5) connectivities per neuron. The parameters are set at = 5, = :5, w = :, s = 3:, and for (A) = (a).5, (b)., and (c), and for (B) = (a)., (b).5, and (c). The initial condition is a random conguration.

6 T.Ohira and J.D.Cowan / Stochastic Neurodynamics 6 3 Discussion We have here outlined an application of the system size expansion to a master equation for stochastic neural network activity. It produced a dynamical equation for the uctuations about mean activity levels, the solutions of which showed a non{monotonic approach to such levels near a critical point. This has been seen in model networks with low connectivity. Two issues raised by this approach require further comment: () In this work we have used the number of neurons in the network as a expansion parameter. Given the observation that the overall connectedness aects the stochastic dynamics, a parameter representing the average connectivity per neuron may be better suited as an expansion parameter. We note that this parameter is typically small for biological neural networks. (2) There are many studies of Hebbian learning in neural networks[, 4, 7]. In such studies attempts have also been made to incorporate correlations of neural activities. It is of interest to see if we can formulate such attempts within the framework presented here. References [] S. Amari, K. Magiu, Statistical neurodynamics of associative memory, Neural Networks, (988) 63{73. [2] D. J. Amit, N. Brunel, M. V. Tsodyks, Correlations of cortical Hebbian reverberations: theory versus experiment, J. of Neuroscience, 4 (994) 6435{6445. [3] K. Binder, Introduction: Theory and \technical" aspects of Monte Carlo simulations. Monte Carlo Methods in Statistical Physics, 2nd Ed., Springer-Verlag, Berlin, 986. [4] A. C. C. Coolen, D. Sherrington, Dynamics of fully connected attractor neural networks near saturation, Phys. Rev. Lett., 7 (994) 3886{3889. [5] J. D. Cowan, Stochastic neurodynamics in Advances in Neural Information Processing Systems 3, R. P. Lippman, J. E. Moody, and D. S. Toretzky, eds., Morgan Kaufmann Publishers, San Mateo, 99. [6] I. Ginzburg, H. Sompolinsky, Theory of correlation in stochastic neural networks, Phys. Rev. E, 5 (995) 37{39. [7] H. Nishimori, T. Ozeki, Retrieval dynamics of associative memory of the Hopeld type, J. Phys. A: Math. Gen., 26 (993) 859{87. [8] T. Ohira, J. D. Cowan, Master equation approach to stochastic neurodynamics, Phys. Rev. E, 48 (993) 2259{2266. [9] T. Ohira, J. D. Cowan, Feynman diagrams for stochastic neurodynamics in Proceedings of Fifth Australian Conference of Neural Networks, Brisbane, 994. [] Ohira, T., and Cowan, J. D Stochastic dynamics of three{state neural networks in Advances in Neural Information Processing Systems 7, G. Tesauro, D. S. Toretzky, T. K. Leen, eds., MIT Press, Cambridge, 995. [] N. G. van Kampen, Stochastic Processes in Physics and Chemistry. North{Holland, Amsterdam, 992. [2] D. Wang, J. Buhmann, C. von der Malsburg, Pattern segmentation in associative memory, Neural Computation, 2 (99) 94{6.

T sg. α c (0)= T=1/β. α c (T ) α=p/n

T sg. α c (0)= T=1/β. α c (T ) α=p/n Taejon, Korea, vol. 2 of 2, pp. 779{784, Nov. 2. Capacity Analysis of Bidirectional Associative Memory Toshiyuki Tanaka y, Shinsuke Kakiya y, and Yoshiyuki Kabashima z ygraduate School of Engineering,

More information

Stochastic Learning in a Neural Network with Adapting. Synapses. Istituto Nazionale di Fisica Nucleare, Sezione di Bari

Stochastic Learning in a Neural Network with Adapting. Synapses. Istituto Nazionale di Fisica Nucleare, Sezione di Bari Stochastic Learning in a Neural Network with Adapting Synapses. G. Lattanzi 1, G. Nardulli 1, G. Pasquariello and S. Stramaglia 1 Dipartimento di Fisica dell'universita di Bari and Istituto Nazionale di

More information

Learning and Memory in Neural Networks

Learning and Memory in Neural Networks Learning and Memory in Neural Networks Guy Billings, Neuroinformatics Doctoral Training Centre, The School of Informatics, The University of Edinburgh, UK. Neural networks consist of computational units

More information

When is an Integrate-and-fire Neuron like a Poisson Neuron?

When is an Integrate-and-fire Neuron like a Poisson Neuron? When is an Integrate-and-fire Neuron like a Poisson Neuron? Charles F. Stevens Salk Institute MNL/S La Jolla, CA 92037 cfs@salk.edu Anthony Zador Salk Institute MNL/S La Jolla, CA 92037 zador@salk.edu

More information

Chaotic Balanced State in a Model of Cortical Circuits C. van Vreeswijk and H. Sompolinsky Racah Institute of Physics and Center for Neural Computatio

Chaotic Balanced State in a Model of Cortical Circuits C. van Vreeswijk and H. Sompolinsky Racah Institute of Physics and Center for Neural Computatio Chaotic Balanced State in a Model of Cortical Circuits C. van Vreeswij and H. Sompolinsy Racah Institute of Physics and Center for Neural Computation Hebrew University Jerusalem, 91904 Israel 10 March

More information

in a Chaotic Neural Network distributed randomness of the input in each neuron or the weight in the

in a Chaotic Neural Network distributed randomness of the input in each neuron or the weight in the Heterogeneity Enhanced Order in a Chaotic Neural Network Shin Mizutani and Katsunori Shimohara NTT Communication Science Laboratories, 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 69-237 Japan shin@cslab.kecl.ntt.co.jp

More information

High-conductance states in a mean-eld cortical network model

High-conductance states in a mean-eld cortical network model Neurocomputing 58 60 (2004) 935 940 www.elsevier.com/locate/neucom High-conductance states in a mean-eld cortical network model Alexander Lerchner a;, Mandana Ahmadi b, John Hertz b a Oersted-DTU, Technical

More information

Analysis of Neural Networks with Chaotic Dynamics

Analysis of Neural Networks with Chaotic Dynamics Chaos, Solitonr & Fructals Vol. 3, No. 2, pp. 133-139, 1993 Printed in Great Britain @60-0779/93$6.00 + 40 0 1993 Pergamon Press Ltd Analysis of Neural Networks with Chaotic Dynamics FRANCOIS CHAPEAU-BLONDEAU

More information

The Variance of Covariance Rules for Associative Matrix Memories and Reinforcement Learning

The Variance of Covariance Rules for Associative Matrix Memories and Reinforcement Learning NOTE Communicated by David Willshaw The Variance of Covariance Rules for Associative Matrix Memories and Reinforcement Learning Peter Dayan Terrence J. Sejnowski Computational Neurobiology Laboratory,

More information

F.P. Battaglia 1. Istituto di Fisica. Universita di Roma, La Sapienza, Ple Aldo Moro, Roma and. S. Fusi

F.P. Battaglia 1. Istituto di Fisica. Universita di Roma, La Sapienza, Ple Aldo Moro, Roma and. S. Fusi partially structured synaptic transitions F.P. Battaglia 1 Istituto di Fisica Universita di Roma, La Sapienza, Ple Aldo oro, Roma and S. Fusi INFN, Sezione dell'istituto Superiore di Sanita, Viale Regina

More information

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), April 1999, D-Facto public., ISBN X, pp.

ESANN'1999 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), April 1999, D-Facto public., ISBN X, pp. Statistical mechanics of support vector machines Arnaud Buhot and Mirta B. Gordon Department de Recherche Fondamentale sur la Matiere Condensee CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9,

More information

Storage Capacity of Letter Recognition in Hopfield Networks

Storage Capacity of Letter Recognition in Hopfield Networks Storage Capacity of Letter Recognition in Hopfield Networks Gang Wei (gwei@cs.dal.ca) Zheyuan Yu (zyu@cs.dal.ca) Faculty of Computer Science, Dalhousie University, Halifax, N.S., Canada B3H 1W5 Abstract:

More information

Shigetaka Fujita. Rokkodai, Nada, Kobe 657, Japan. Haruhiko Nishimura. Yashiro-cho, Kato-gun, Hyogo , Japan. Abstract

Shigetaka Fujita. Rokkodai, Nada, Kobe 657, Japan. Haruhiko Nishimura. Yashiro-cho, Kato-gun, Hyogo , Japan. Abstract KOBE-TH-94-07 HUIS-94-03 November 1994 An Evolutionary Approach to Associative Memory in Recurrent Neural Networks Shigetaka Fujita Graduate School of Science and Technology Kobe University Rokkodai, Nada,

More information

Properties of Associative Memory Model with the β-th-order Synaptic Decay

Properties of Associative Memory Model with the β-th-order Synaptic Decay Regular Paper Properties of Associative Memory Model with the β-th-order Synaptic Decay Ryota Miyata 1,2 Toru Aonishi 1 Jun Tsuzurugi 3 Koji Kurata 4,a) Received: January 30, 2013, Revised: March 20, 2013/June

More information

Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II

Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II Jack Cowan Mathematics Department and Committee on Computational Neuroscience University of Chicago 1 A simple Markov

More information

Stochastic Dynamics of Learning with Momentum. in Neural Networks. Department of Medical Physics and Biophysics,

Stochastic Dynamics of Learning with Momentum. in Neural Networks. Department of Medical Physics and Biophysics, Stochastic Dynamics of Learning with Momentum in Neural Networks Wim Wiegerinck Andrzej Komoda Tom Heskes 2 Department of Medical Physics and Biophysics, University of Nijmegen, Geert Grooteplein Noord

More information

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience An Introductory Course in Computational Neuroscience Contents Series Foreword Acknowledgments Preface 1 Preliminary Material 1.1. Introduction 1.1.1 The Cell, the Circuit, and the Brain 1.1.2 Physics of

More information

In Advances in Neural Information Processing Systems 6. J. D. Cowan, G. Tesauro and. Convergence of Indirect Adaptive. Andrew G.

In Advances in Neural Information Processing Systems 6. J. D. Cowan, G. Tesauro and. Convergence of Indirect Adaptive. Andrew G. In Advances in Neural Information Processing Systems 6. J. D. Cowan, G. Tesauro and J. Alspector, (Eds.). Morgan Kaufmann Publishers, San Fancisco, CA. 1994. Convergence of Indirect Adaptive Asynchronous

More information

of the dynamics. There is a competition between the capacity of the network and the stability of the

of the dynamics. There is a competition between the capacity of the network and the stability of the Special Issue on the Role and Control of Random Events in Biological Systems c World Scientic Publishing Company LEARNING SYNFIRE CHAINS: TURNING NOISE INTO SIGNAL JOHN HERTZ and ADAM PRUGEL-BENNETT y

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/319/5869/1543/dc1 Supporting Online Material for Synaptic Theory of Working Memory Gianluigi Mongillo, Omri Barak, Misha Tsodyks* *To whom correspondence should be addressed.

More information

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations

Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Influence of Criticality on 1/f α Spectral Characteristics of Cortical Neuron Populations Robert Kozma rkozma@memphis.edu Computational Neurodynamics Laboratory, Department of Computer Science 373 Dunn

More information

Synaptic plasticity in neuromorphic hardware. Stefano Fusi Columbia University

Synaptic plasticity in neuromorphic hardware. Stefano Fusi Columbia University Synaptic plasticity in neuromorphic hardware Stefano Fusi Columbia University The memory problem Several efficient memory models assume that the synaptic dynamic variables are unbounded, or can be modified

More information

Stochastic Oscillator Death in Globally Coupled Neural Systems

Stochastic Oscillator Death in Globally Coupled Neural Systems Journal of the Korean Physical Society, Vol. 52, No. 6, June 2008, pp. 19131917 Stochastic Oscillator Death in Globally Coupled Neural Systems Woochang Lim and Sang-Yoon Kim y Department of Physics, Kangwon

More information

Hopfield Neural Network

Hopfield Neural Network Lecture 4 Hopfield Neural Network Hopfield Neural Network A Hopfield net is a form of recurrent artificial neural network invented by John Hopfield. Hopfield nets serve as content-addressable memory systems

More information

HOPFIELD neural networks (HNNs) are a class of nonlinear

HOPFIELD neural networks (HNNs) are a class of nonlinear IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 4, APRIL 2005 213 Stochastic Noise Process Enhancement of Hopfield Neural Networks Vladimir Pavlović, Member, IEEE, Dan Schonfeld,

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 30 Sep 1999

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 30 Sep 1999 arxiv:cond-mat/9909443v1 [cond-mat.dis-nn] 30 Sep 1999 Thresholds in layered neural networks with variable activity 1. Introduction D Bollé and G Massolo Instituut voor Theoretische Fysica, K.U. Leuven,

More information

Activity Driven Adaptive Stochastic. Resonance. Gregor Wenning and Klaus Obermayer. Technical University of Berlin.

Activity Driven Adaptive Stochastic. Resonance. Gregor Wenning and Klaus Obermayer. Technical University of Berlin. Activity Driven Adaptive Stochastic Resonance Gregor Wenning and Klaus Obermayer Department of Electrical Engineering and Computer Science Technical University of Berlin Franklinstr. 8/9, 187 Berlin fgrewe,obyg@cs.tu-berlin.de

More information

Artificial Intelligence Hopfield Networks

Artificial Intelligence Hopfield Networks Artificial Intelligence Hopfield Networks Andrea Torsello Network Topologies Single Layer Recurrent Network Bidirectional Symmetric Connection Binary / Continuous Units Associative Memory Optimization

More information

Fast pruning using principal components

Fast pruning using principal components Oregon Health & Science University OHSU Digital Commons CSETech January 1993 Fast pruning using principal components Asriel U. Levin Todd K. Leen John E. Moody Follow this and additional works at: http://digitalcommons.ohsu.edu/csetech

More information

A Dynamical Implementation of Self-organizing Maps. Wolfgang Banzhaf. Department of Computer Science, University of Dortmund, Germany.

A Dynamical Implementation of Self-organizing Maps. Wolfgang Banzhaf. Department of Computer Science, University of Dortmund, Germany. Fraunhofer Institut IIE, 994, pp. 66 73 A Dynamical Implementation of Self-organizing Maps Abstract Wolfgang Banzhaf Department of Computer Science, University of Dortmund, Germany and Manfred Schmutz

More information

Neuronal Tuning: To Sharpen or Broaden?

Neuronal Tuning: To Sharpen or Broaden? NOTE Communicated by Laurence Abbott Neuronal Tuning: To Sharpen or Broaden? Kechen Zhang Howard Hughes Medical Institute, Computational Neurobiology Laboratory, Salk Institute for Biological Studies,

More information

Memory capacity of networks with stochastic binary synapses

Memory capacity of networks with stochastic binary synapses Memory capacity of networks with stochastic binary synapses Alexis M. Dubreuil 1,, Yali Amit 3 and Nicolas Brunel 1, 1 UMR 8118, CNRS, Université Paris Descartes, Paris, France Departments of Statistics

More information

Dynamical Systems and Deep Learning: Overview. Abbas Edalat

Dynamical Systems and Deep Learning: Overview. Abbas Edalat Dynamical Systems and Deep Learning: Overview Abbas Edalat Dynamical Systems The notion of a dynamical system includes the following: A phase or state space, which may be continuous, e.g. the real line,

More information

Support Vector Machines vs Multi-Layer. Perceptron in Particle Identication. DIFI, Universita di Genova (I) INFN Sezione di Genova (I) Cambridge (US)

Support Vector Machines vs Multi-Layer. Perceptron in Particle Identication. DIFI, Universita di Genova (I) INFN Sezione di Genova (I) Cambridge (US) Support Vector Machines vs Multi-Layer Perceptron in Particle Identication N.Barabino 1, M.Pallavicini 2, A.Petrolini 1;2, M.Pontil 3;1, A.Verri 4;3 1 DIFI, Universita di Genova (I) 2 INFN Sezione di Genova

More information

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 40 (2003) pp. 607 613 c International Academic Publishers Vol. 40, No. 5, November 15, 2003 Effects of Interactive Function Forms in a Self-Organized Critical Model

More information

Approximate Optimal-Value Functions. Satinder P. Singh Richard C. Yee. University of Massachusetts.

Approximate Optimal-Value Functions. Satinder P. Singh Richard C. Yee. University of Massachusetts. An Upper Bound on the oss from Approximate Optimal-Value Functions Satinder P. Singh Richard C. Yee Department of Computer Science University of Massachusetts Amherst, MA 01003 singh@cs.umass.edu, yee@cs.umass.edu

More information

arxiv: v1 [cond-mat.dis-nn] 9 May 2008

arxiv: v1 [cond-mat.dis-nn] 9 May 2008 Functional Optimization in Complex Excitable Networks Samuel Johnson, J. Marro, and Joaquín J. Torres Departamento de Electromagnetismo y Física de la Materia, and Institute Carlos I for Theoretical and

More information

In: Proc. BENELEARN-98, 8th Belgian-Dutch Conference on Machine Learning, pp 9-46, 998 Linear Quadratic Regulation using Reinforcement Learning Stephan ten Hagen? and Ben Krose Department of Mathematics,

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Coherence detection in a spiking neuron via Hebbian learning

Coherence detection in a spiking neuron via Hebbian learning Neurocomputing 44 46 (2002) 133 139 www.elsevier.com/locate/neucom Coherence detection in a spiking neuron via Hebbian learning L. Perrinet, M. Samuelides ONERA-DTIM, 2 Av. E. Belin, BP 4025, 31055 Toulouse,

More information

Equivalence of Backpropagation and Contrastive Hebbian Learning in a Layered Network

Equivalence of Backpropagation and Contrastive Hebbian Learning in a Layered Network LETTER Communicated by Geoffrey Hinton Equivalence of Backpropagation and Contrastive Hebbian Learning in a Layered Network Xiaohui Xie xhx@ai.mit.edu Department of Brain and Cognitive Sciences, Massachusetts

More information

Neural variability and Poisson statistics

Neural variability and Poisson statistics Neural variability and Poisson statistics January 15, 2014 1 Introduction We are in the process of deriving the Hodgkin-Huxley model. That model describes how an action potential is generated by ion specic

More information

Hopfield Neural Network and Associative Memory. Typical Myelinated Vertebrate Motoneuron (Wikipedia) Topic 3 Polymers and Neurons Lecture 5

Hopfield Neural Network and Associative Memory. Typical Myelinated Vertebrate Motoneuron (Wikipedia) Topic 3 Polymers and Neurons Lecture 5 Hopfield Neural Network and Associative Memory Typical Myelinated Vertebrate Motoneuron (Wikipedia) PHY 411-506 Computational Physics 2 1 Wednesday, March 5 1906 Nobel Prize in Physiology or Medicine.

More information

Neural spike statistics modify the impact of background noise

Neural spike statistics modify the impact of background noise Neurocomputing 38}40 (2001) 445}450 Neural spike statistics modify the impact of background noise Stefan D. Wilke*, Christian W. Eurich Institut fu( r Theoretische Physik, Universita( t Bremen, Postfach

More information

Memories Associated with Single Neurons and Proximity Matrices

Memories Associated with Single Neurons and Proximity Matrices Memories Associated with Single Neurons and Proximity Matrices Subhash Kak Oklahoma State University, Stillwater Abstract: This paper extends the treatment of single-neuron memories obtained by the use

More information

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 121 125 c International Academic Publishers Vol. 42, No. 1, July 15, 2004 Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized

More information

The Bias-Variance dilemma of the Monte Carlo. method. Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel

The Bias-Variance dilemma of the Monte Carlo. method. Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel The Bias-Variance dilemma of the Monte Carlo method Zlochin Mark 1 and Yoram Baram 1 Technion - Israel Institute of Technology, Technion City, Haifa 32000, Israel fzmark,baramg@cs.technion.ac.il Abstract.

More information

Entrainment and Chaos in the Hodgkin-Huxley Oscillator

Entrainment and Chaos in the Hodgkin-Huxley Oscillator Entrainment and Chaos in the Hodgkin-Huxley Oscillator Kevin K. Lin http://www.cims.nyu.edu/ klin Courant Institute, New York University Mostly Biomath - 2005.4.5 p.1/42 Overview (1) Goal: Show that the

More information

Biological Modeling of Neural Networks:

Biological Modeling of Neural Networks: Week 14 Dynamics and Plasticity 14.1 Reservoir computing - Review:Random Networks - Computing with rich dynamics Biological Modeling of Neural Networks: 14.2 Random Networks - stationary state - chaos

More information

Akinori Sekiguchi and Yoshihiko Nakamura. Dept. of Mechano-Informatics, University of Tokyo Hongo, Bunkyo-Ku, Tokyo , Japan

Akinori Sekiguchi and Yoshihiko Nakamura. Dept. of Mechano-Informatics, University of Tokyo Hongo, Bunkyo-Ku, Tokyo , Japan The Chaotic Mobile Robot Akinori Sekiguchi and Yoshihiko Nakamura Dept. of Mechano-Informatics, University of Tokyo 7-- Hongo, Bunkyo-Ku, Tokyo -866, Japan ABSTRACT In this paper, we develop a method to

More information

W (x) W (x) (b) (a) 1 N

W (x) W (x) (b) (a) 1 N Delay Adaptation in the Nervous System Christian W. Eurich a, Klaus Pawelzik a, Udo Ernst b, Andreas Thiel a, Jack D. Cowan c and John G. Milton d a Institut fur Theoretische Physik, Universitat Bremen,

More information

OTHER SYNCHRONIZATION EXAMPLES IN NATURE 1667 Christiaan Huygens: synchronization of pendulum clocks hanging on a wall networks of coupled Josephson j

OTHER SYNCHRONIZATION EXAMPLES IN NATURE 1667 Christiaan Huygens: synchronization of pendulum clocks hanging on a wall networks of coupled Josephson j WHAT IS RHYTHMIC APPLAUSE? a positive manifestation of the spectators after an exceptional performance spectators begin to clap in phase (synchronization of the clapping) appears after the initial thunderous

More information

Probabilistic Models in Theoretical Neuroscience

Probabilistic Models in Theoretical Neuroscience Probabilistic Models in Theoretical Neuroscience visible unit Boltzmann machine semi-restricted Boltzmann machine restricted Boltzmann machine hidden unit Neural models of probabilistic sampling: introduction

More information

a subset of these N input variables. A naive method is to train a new neural network on this subset to determine this performance. Instead of the comp

a subset of these N input variables. A naive method is to train a new neural network on this subset to determine this performance. Instead of the comp Input Selection with Partial Retraining Pierre van de Laar, Stan Gielen, and Tom Heskes RWCP? Novel Functions SNN?? Laboratory, Dept. of Medical Physics and Biophysics, University of Nijmegen, The Netherlands.

More information

MODEL NEURONS: FROM HODGKIN-HUXLEY TO HOPFIELD. L.F. Abbott and Thomas B. Kepler. Physics and Biology Departments. and. Center for Complex Systems

MODEL NEURONS: FROM HODGKIN-HUXLEY TO HOPFIELD. L.F. Abbott and Thomas B. Kepler. Physics and Biology Departments. and. Center for Complex Systems MODEL NEURONS: FROM HODGKIN-HUXLEY TO HOPFIELD L.F. Abbott and Thomas B. Kepler Physics and Biology Departments and Center for Complex Systems Brandeis University Waltham, MA 02254 Abstract A new technique

More information

Power Calculations for Preclinical Studies Using a K-Sample Rank Test and the Lehmann Alternative Hypothesis

Power Calculations for Preclinical Studies Using a K-Sample Rank Test and the Lehmann Alternative Hypothesis Power Calculations for Preclinical Studies Using a K-Sample Rank Test and the Lehmann Alternative Hypothesis Glenn Heller Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center,

More information

898 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 6, DECEMBER X/01$ IEEE

898 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 6, DECEMBER X/01$ IEEE 898 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 17, NO. 6, DECEMBER 2001 Short Papers The Chaotic Mobile Robot Yoshihiko Nakamura and Akinori Sekiguchi Abstract In this paper, we develop a method

More information

Quasi-Stationary Simulation: the Subcritical Contact Process

Quasi-Stationary Simulation: the Subcritical Contact Process Brazilian Journal of Physics, vol. 36, no. 3A, September, 6 685 Quasi-Stationary Simulation: the Subcritical Contact Process Marcelo Martins de Oliveira and Ronald Dickman Departamento de Física, ICEx,

More information

Viewpoint invariant face recognition using independent component analysis and attractor networks

Viewpoint invariant face recognition using independent component analysis and attractor networks Viewpoint invariant face recognition using independent component analysis and attractor networks Marian Stewart Bartlett University of California San Diego The Salk Institute La Jolla, CA 92037 marni@salk.edu

More information

Information Capacity of Binary Weights Associative. Memories. Mathematical Sciences. University at Bualo. Bualo NY

Information Capacity of Binary Weights Associative. Memories. Mathematical Sciences. University at Bualo. Bualo NY Information Capacity of Binary Weights Associative Memories Arun Jagota Department of Computer Science University of California, Santa Cruz CA 95064 jagota@cse.ucsc.edu Kenneth W. Regan University at Bualo

More information

Problem Set Number 02, j/2.036j MIT (Fall 2018)

Problem Set Number 02, j/2.036j MIT (Fall 2018) Problem Set Number 0, 18.385j/.036j MIT (Fall 018) Rodolfo R. Rosales (MIT, Math. Dept., room -337, Cambridge, MA 0139) September 6, 018 Due October 4, 018. Turn it in (by 3PM) at the Math. Problem Set

More information

Learning in Boltzmann Trees. Lawrence Saul and Michael Jordan. Massachusetts Institute of Technology. Cambridge, MA January 31, 1995.

Learning in Boltzmann Trees. Lawrence Saul and Michael Jordan. Massachusetts Institute of Technology. Cambridge, MA January 31, 1995. Learning in Boltzmann Trees Lawrence Saul and Michael Jordan Center for Biological and Computational Learning Massachusetts Institute of Technology 79 Amherst Street, E10-243 Cambridge, MA 02139 January

More information

Model of a Biological Neuron as a Temporal Neural Network

Model of a Biological Neuron as a Temporal Neural Network Model of a Biological Neuron as a Temporal Neural Network Sean D. Murphy and Edward W. Kairiss Interdepartmental Neuroscience Program, Department of Psychology, and The Center for Theoretical and Applied

More information

In#uence of dendritic topologyon "ring patterns in model neurons

In#uence of dendritic topologyon ring patterns in model neurons Neurocomputing 38}40 (2001) 183}189 In#uence of dendritic topologyon "ring patterns in model neurons Jacob Duijnhouwer, Michiel W.H. Remme, Arjen van Ooyen*, Jaap van Pelt Netherlands Institute for Brain

More information

Finite-temperature magnetism of ultrathin lms and nanoclusters PhD Thesis Booklet. Levente Rózsa Supervisor: László Udvardi

Finite-temperature magnetism of ultrathin lms and nanoclusters PhD Thesis Booklet. Levente Rózsa Supervisor: László Udvardi Finite-temperature magnetism of ultrathin lms and nanoclusters PhD Thesis Booklet Levente Rózsa Supervisor: László Udvardi BME 2016 Background of the research Magnetic materials continue to play an ever

More information

Associative Memories (I) Hopfield Networks

Associative Memories (I) Hopfield Networks Associative Memories (I) Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Applied Brain Science - Computational Neuroscience (CNS) A Pun Associative Memories Introduction

More information

Iterative procedure for multidimesional Euler equations Abstracts A numerical iterative scheme is suggested to solve the Euler equations in two and th

Iterative procedure for multidimesional Euler equations Abstracts A numerical iterative scheme is suggested to solve the Euler equations in two and th Iterative procedure for multidimensional Euler equations W. Dreyer, M. Kunik, K. Sabelfeld, N. Simonov, and K. Wilmanski Weierstra Institute for Applied Analysis and Stochastics Mohrenstra e 39, 07 Berlin,

More information

Methods for Estimating the Computational Power and Generalization Capability of Neural Microcircuits

Methods for Estimating the Computational Power and Generalization Capability of Neural Microcircuits Methods for Estimating the Computational Power and Generalization Capability of Neural Microcircuits Wolfgang Maass, Robert Legenstein, Nils Bertschinger Institute for Theoretical Computer Science Technische

More information

Functional optimization in complex excitable networks

Functional optimization in complex excitable networks August 28 EPL, 83 (28) 466 doi:.29/295-575/83/466 www.epljournal.org S. Johnson, J. Marro and J. J. Torres Departamento de Electromagnetismo y Física de la Materia, and Institute Carlos I for Theoretical

More information

STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY

STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY Third edition N.G. VAN KAMPEN Institute for Theoretical Physics of the University at Utrecht ELSEVIER Amsterdam Boston Heidelberg London New York Oxford Paris

More information

Batch-mode, on-line, cyclic, and almost cyclic learning 1 1 Introduction In most neural-network applications, learning plays an essential role. Throug

Batch-mode, on-line, cyclic, and almost cyclic learning 1 1 Introduction In most neural-network applications, learning plays an essential role. Throug A theoretical comparison of batch-mode, on-line, cyclic, and almost cyclic learning Tom Heskes and Wim Wiegerinck RWC 1 Novel Functions SNN 2 Laboratory, Department of Medical hysics and Biophysics, University

More information

A Robust PCA by LMSER Learning with Iterative Error. Bai-ling Zhang Irwin King Lei Xu.

A Robust PCA by LMSER Learning with Iterative Error. Bai-ling Zhang Irwin King Lei Xu. A Robust PCA by LMSER Learning with Iterative Error Reinforcement y Bai-ling Zhang Irwin King Lei Xu blzhang@cs.cuhk.hk king@cs.cuhk.hk lxu@cs.cuhk.hk Department of Computer Science The Chinese University

More information

Robust linear optimization under general norms

Robust linear optimization under general norms Operations Research Letters 3 (004) 50 56 Operations Research Letters www.elsevier.com/locate/dsw Robust linear optimization under general norms Dimitris Bertsimas a; ;, Dessislava Pachamanova b, Melvyn

More information

Controllingthe spikingactivity in excitable membranes via poisoning

Controllingthe spikingactivity in excitable membranes via poisoning Physica A 344 (2004) 665 670 www.elsevier.com/locate/physa Controllingthe spikingactivity in excitable membranes via poisoning Gerhard Schmid, Igor Goychuk, Peter Hanggi Universitat Augsburg, Institut

More information

The wake-sleep algorithm for unsupervised neural networks

The wake-sleep algorithm for unsupervised neural networks The wake-sleep algorithm for unsupervised neural networks Geoffrey E Hinton Peter Dayan Brendan J Frey Radford M Neal Department of Computer Science University of Toronto 6 King s College Road Toronto

More information

Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts 1 and Stephan Matthai 2 3rd Febr

Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts 1 and Stephan Matthai 2 3rd Febr HIGH RESOLUTION POTENTIAL FLOW METHODS IN OIL EXPLORATION Stephen Roberts and Stephan Matthai Mathematics Research Report No. MRR 003{96, Mathematics Research Report No. MRR 003{96, HIGH RESOLUTION POTENTIAL

More information

Boxlets: a Fast Convolution Algorithm for. Signal Processing and Neural Networks. Patrice Y. Simard, Leon Bottou, Patrick Haner and Yann LeCun

Boxlets: a Fast Convolution Algorithm for. Signal Processing and Neural Networks. Patrice Y. Simard, Leon Bottou, Patrick Haner and Yann LeCun Boxlets: a Fast Convolution Algorithm for Signal Processing and Neural Networks Patrice Y. Simard, Leon Bottou, Patrick Haner and Yann LeCun AT&T Labs-Research 100 Schultz Drive, Red Bank, NJ 07701-7033

More information

7 Rate-Based Recurrent Networks of Threshold Neurons: Basis for Associative Memory

7 Rate-Based Recurrent Networks of Threshold Neurons: Basis for Associative Memory Physics 178/278 - David Kleinfeld - Fall 2005; Revised for Winter 2017 7 Rate-Based Recurrent etworks of Threshold eurons: Basis for Associative Memory 7.1 A recurrent network with threshold elements The

More information

Mapping Closure Approximation to Conditional Dissipation Rate for Turbulent Scalar Mixing

Mapping Closure Approximation to Conditional Dissipation Rate for Turbulent Scalar Mixing NASA/CR--1631 ICASE Report No. -48 Mapping Closure Approximation to Conditional Dissipation Rate for Turbulent Scalar Mixing Guowei He and R. Rubinstein ICASE, Hampton, Virginia ICASE NASA Langley Research

More information

Effects of refractory periods in the dynamics of a diluted neural network

Effects of refractory periods in the dynamics of a diluted neural network Effects of refractory periods in the dynamics of a diluted neural network F. A. Tamarit, 1, * D. A. Stariolo, 2, * S. A. Cannas, 2, *, and P. Serra 2, 1 Facultad de Matemática, Astronomía yfísica, Universidad

More information

Spurious Chaotic Solutions of Dierential. Equations. Sigitas Keras. September Department of Applied Mathematics and Theoretical Physics

Spurious Chaotic Solutions of Dierential. Equations. Sigitas Keras. September Department of Applied Mathematics and Theoretical Physics UNIVERSITY OF CAMBRIDGE Numerical Analysis Reports Spurious Chaotic Solutions of Dierential Equations Sigitas Keras DAMTP 994/NA6 September 994 Department of Applied Mathematics and Theoretical Physics

More information

Stationary Bumps in Networks of Spiking Neurons

Stationary Bumps in Networks of Spiking Neurons LETTER Communicated by Misha Tsodyks Stationary Bumps in Networks of Spiking Neurons Carlo R. Laing Carson C. Chow Department of Mathematics, University of Pittsburgh, Pittsburgh PA 1526, U.S.A. We examine

More information

adap-org/ Jan 1994

adap-org/ Jan 1994 Self-organized criticality in living systems C. Adami W. K. Kellogg Radiation Laboratory, 106{38, California Institute of Technology Pasadena, California 91125 USA (December 20,1993) adap-org/9401001 27

More information

Neural Nets and Symbolic Reasoning Hopfield Networks

Neural Nets and Symbolic Reasoning Hopfield Networks Neural Nets and Symbolic Reasoning Hopfield Networks Outline The idea of pattern completion The fast dynamics of Hopfield networks Learning with Hopfield networks Emerging properties of Hopfield networks

More information

Field indeced pattern simulation and spinodal. point in nematic liquid crystals. Chun Zheng Frank Lonberg Robert B. Meyer. June 18, 1995.

Field indeced pattern simulation and spinodal. point in nematic liquid crystals. Chun Zheng Frank Lonberg Robert B. Meyer. June 18, 1995. Field indeced pattern simulation and spinodal point in nematic liquid crystals Chun Zheng Frank Lonberg Robert B. Meyer June 18, 1995 Abstract We explore the novel periodic Freeredicksz Transition found

More information

Proceedings of Neural, Parallel, and Scientific Computations 4 (2010) xx-xx PHASE OSCILLATOR NETWORK WITH PIECEWISE-LINEAR DYNAMICS

Proceedings of Neural, Parallel, and Scientific Computations 4 (2010) xx-xx PHASE OSCILLATOR NETWORK WITH PIECEWISE-LINEAR DYNAMICS Proceedings of Neural, Parallel, and Scientific Computations 4 (2010) xx-xx PHASE OSCILLATOR NETWORK WITH PIECEWISE-LINEAR DYNAMICS WALTER GALL, YING ZHOU, AND JOSEPH SALISBURY Department of Mathematics

More information

Schiestel s Derivation of the Epsilon Equation and Two Equation Modeling of Rotating Turbulence

Schiestel s Derivation of the Epsilon Equation and Two Equation Modeling of Rotating Turbulence NASA/CR-21-2116 ICASE Report No. 21-24 Schiestel s Derivation of the Epsilon Equation and Two Equation Modeling of Rotating Turbulence Robert Rubinstein NASA Langley Research Center, Hampton, Virginia

More information

1 Introduction Tasks like voice or face recognition are quite dicult to realize with conventional computer systems, even for the most powerful of them

1 Introduction Tasks like voice or face recognition are quite dicult to realize with conventional computer systems, even for the most powerful of them Information Storage Capacity of Incompletely Connected Associative Memories Holger Bosch Departement de Mathematiques et d'informatique Ecole Normale Superieure de Lyon Lyon, France Franz Kurfess Department

More information

Abstract. In this paper we propose recurrent neural networks with feedback into the input

Abstract. In this paper we propose recurrent neural networks with feedback into the input Recurrent Neural Networks for Missing or Asynchronous Data Yoshua Bengio Dept. Informatique et Recherche Operationnelle Universite de Montreal Montreal, Qc H3C-3J7 bengioy@iro.umontreal.ca Francois Gingras

More information

λ-universe: Introduction and Preliminary Study

λ-universe: Introduction and Preliminary Study λ-universe: Introduction and Preliminary Study ABDOLREZA JOGHATAIE CE College Sharif University of Technology Azadi Avenue, Tehran IRAN Abstract: - Interactions between the members of an imaginary universe,

More information

MODELS OF LEARNING AND THE POLAR DECOMPOSITION OF BOUNDED LINEAR OPERATORS

MODELS OF LEARNING AND THE POLAR DECOMPOSITION OF BOUNDED LINEAR OPERATORS Eighth Mississippi State - UAB Conference on Differential Equations and Computational Simulations. Electronic Journal of Differential Equations, Conf. 19 (2010), pp. 31 36. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu

More information

hidden -> output input -> hidden PCA 1 pruned 2 pruned pruned 6 pruned 7 pruned 8 9 pruned 10 pruned 11 pruned pruned 14 pruned 15

hidden -> output input -> hidden PCA 1 pruned 2 pruned pruned 6 pruned 7 pruned 8 9 pruned 10 pruned 11 pruned pruned 14 pruned 15 LOCOCODE PERFORMS NONLINEAR ICA WITHOUT KNOWING THE NUMBER OF SOURCES Sepp Hochreiter Fakultat fur Informatik Technische Universitat Munchen 8090 Munchen, Germany hochreit@informatik.tu-muenchen.de Jurgen

More information

Reinforcement Learning, Neural Networks and PI Control Applied to a Heating Coil

Reinforcement Learning, Neural Networks and PI Control Applied to a Heating Coil Reinforcement Learning, Neural Networks and PI Control Applied to a Heating Coil Charles W. Anderson 1, Douglas C. Hittle 2, Alon D. Katz 2, and R. Matt Kretchmar 1 1 Department of Computer Science Colorado

More information

Rate- and Phase-coded Autoassociative Memory

Rate- and Phase-coded Autoassociative Memory Rate- and Phase-coded Autoassociative Memory Máté Lengyel Peter Dayan Gatsby Computational Neuroscience Unit, University College London 7 Queen Square, London WCN 3AR, United Kingdom {lmate,dayan}@gatsby.ucl.ac.uk

More information

Error Empirical error. Generalization error. Time (number of iteration)

Error Empirical error. Generalization error. Time (number of iteration) Submitted to Neural Networks. Dynamics of Batch Learning in Multilayer Networks { Overrealizability and Overtraining { Kenji Fukumizu The Institute of Physical and Chemical Research (RIKEN) E-mail: fuku@brain.riken.go.jp

More information

Force Field for Water Based on Neural Network

Force Field for Water Based on Neural Network Force Field for Water Based on Neural Network Hao Wang Department of Chemistry, Duke University, Durham, NC 27708, USA Weitao Yang* Department of Chemistry, Duke University, Durham, NC 27708, USA Department

More information

Bursting and Chaotic Activities in the Nonlinear Dynamics of FitzHugh-Rinzel Neuron Model

Bursting and Chaotic Activities in the Nonlinear Dynamics of FitzHugh-Rinzel Neuron Model Bursting and Chaotic Activities in the Nonlinear Dynamics of FitzHugh-Rinzel Neuron Model Abhishek Yadav *#, Anurag Kumar Swami *, Ajay Srivastava * * Department of Electrical Engineering, College of Technology,

More information

Lateral organization & computation

Lateral organization & computation Lateral organization & computation review Population encoding & decoding lateral organization Efficient representations that reduce or exploit redundancy Fixation task 1rst order Retinotopic maps Log-polar

More information

Basic Principles of Unsupervised and Unsupervised

Basic Principles of Unsupervised and Unsupervised Basic Principles of Unsupervised and Unsupervised Learning Toward Deep Learning Shun ichi Amari (RIKEN Brain Science Institute) collaborators: R. Karakida, M. Okada (U. Tokyo) Deep Learning Self Organization

More information

Visual Selection and Attention Shifting Based on FitzHugh-Nagumo Equations

Visual Selection and Attention Shifting Based on FitzHugh-Nagumo Equations Visual Selection and Attention Shifting Based on FitzHugh-Nagumo Equations Haili Wang, Yuanhua Qiao, Lijuan Duan, Faming Fang, Jun Miao 3, and Bingpeng Ma 3 College of Applied Science, Beijing University

More information