Hopfield Neural Network and Associative Memory. Typical Myelinated Vertebrate Motoneuron (Wikipedia) Topic 3 Polymers and Neurons Lecture 5

Size: px
Start display at page:

Download "Hopfield Neural Network and Associative Memory. Typical Myelinated Vertebrate Motoneuron (Wikipedia) Topic 3 Polymers and Neurons Lecture 5"

Transcription

1 Hopfield Neural Network and Associative Memory Typical Myelinated Vertebrate Motoneuron (Wikipedia) PHY Computational Physics 2 1 Wednesday, March 5

2 1906 Nobel Prize in Physiology or Medicine. Drawings by Ramon y Cajal. PHY Computational Physics 2 2 Wednesday, March 5

3 Action Potential of an Excited Neuron Neuron Networks in the Brain The human brain contains about neurons connected in tree-like networks. The cell body of a neuron has as many as 10 5 dedrites or tree-like fibers on its surface The neuron integrates electrochemical signals received by its dendrites from other neurons If the integrated signal exceeds a threshold the neurons generates a spike-train of soliton-like signals that propagate along its axon PHY Computational Physics 2 3 Wednesday, March 5

4 The axon branches into as many as 10 4 strands each ending in an synapse with a denrite on another neuron The axonic spike-train triggers a flow of chemicals (neurotransmitters) across the synaptic junction Because spikes have characteristic fixed magnitude, profile and speed, information is likely encoded in the length of a spike train and the pattern of spikes as a function of time Physiology of Memory The brain can store information and recall it at a later time A sensory stimulus, for example seeing a face or hearing a voice, triggers a cascade of spike-trains in a large network of neurons, see Wikipedia: Neuroanatomy of memory Information contained in the spike-train cascade modifies the chemical structure of a network of synaptic connections, thus encoding the information in short- or long-term memory, see Wikipedia: Physiology of memory A different stimulus at a later time can trigger a spike-train cascade similar to the original stimulus, thus recalling the stored memory PHY Computational Physics 2 4 Wednesday, March 5

5 McCulloch-Pitts Neuron Model An Artificial neuron model was introduced by W. McCulloch and W. Pitts in 1943 to model the recall of information in a network of neural synapses. The action potential of the i-th neuron in a network is modeled by a simple binary voltage or state { 1 firing (active) V i = 0 not firing (resting) Synaptic information is represented by a matrix of weights w. The action potential in the i-th neuron is determined by the potentials is all of the other neurons which make synaptic connections to it by V i = Θ µ i + j w ij V j where w ij is the synaptic weight or strength of the j i synaptic connection, µ i is a threshold bias factor for neuron i, and Θ is a binary transfer function taking values 0, 1, for example a simple Heaviside step function { 1 if x > 0 Θ(x) = θ(x) = 0 otherwise The neuron is binary threshold device that switches on and off in time. PHY Computational Physics 2 5 Wednesday, March 5

6 Hebb s Rule and Hebbian Learning How does the weight matrix w get modified to store memories? In 1949 D. Hebb proposed a mechanism called Hebb s rule w ij = 1 p V (k) i V (k) j p for a network excited by p different memories with excitation patterns V (k) i. k=1 PHY Computational Physics 2 6 Wednesday, March 5

7 The Hopfield Neural Network Model J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. USA 79, (1982) introduced a neural network model for storage and retrieval of memories in a binary network. He showed that the model can store multiple memories, and that one or more memories can be simultaneously retrieved by stimulating the network with partial or damaged versions of the memories at a later time. This classic article has been cited more than 12,000 times, and is clearly written and relatively easy to understand. The Model System Consider N binary McCulloch-Pitts neurons with action potentials { 1 firing V i (t) = 0 not firing Each neuron changes its state at random times with a mean attempt rate W by instantaneously sampling PHY Computational Physics 2 7 Wednesday, March 5

8 the potentials of all the other neurons V i (t) = θ j T ij V j (t) The Information Storage Algorithm The network stores memories in a learning phase. A memory is represented by a pattern of action potentials, i.e., by a binary vector V with particular values for its N neuronal components V i, i = 0,..., N 1. To store P memories V k, k = 0,..., P 1 the synaptic matrix is set to T ij = P 1 k=0 (2V (k) i 1)(2V (k) j 1), i j, T ii = 0. Information Retrieval To retrieve memories the model is evolved using the McCulloch-Pitts update algorithm starting from a given initial state. The network is operated by updating the neurons according to some protocol, for example by choosing neurons at random or sequentially (which is usually what is done in software networks), or by updating the whole network synchronously (which is more natural for a hardwired network controlled by a clock). PHY Computational Physics 2 8 Wednesday, March 5

9 In general the state of the system tends to one of several equilibrium configurations, which represents the recalled memory. Energy Function and Ising Model Equivalence The behavior of the model can be analyzed by defining an energy function E = 1 T ij V i V j 2 which represents the energy of a random spin glass with spin variables s i = 1 2V i = ±1. If V i changes by V i in an evolution step, the energy of the system changes by E = V i T ij V j Hopfield showed that i,j i j i The network dynamics decreases the energy of the network This implies that if the network is started in an arbitrary state, then it will evolve to the nearest local energy minimum. The stored states are local minima of the energy function. So if the initial state happens to be in the basin of attraction of one of the stored minima, the that pattern will be recalled! PHY Computational Physics 2 9 Wednesday, March 5

10 A network with N neurons has a huge number 2 N states. The network works best if the stored memories partition the space of network states into well defined basins. The storage capacity of the network is found to be 0.13N. If too many memories are stored, then the minima are not well defined and memories may not be perfectly recalled. The Hamming Distance There are various possible criteria for deciding how closely a given pattern, which is a N-component binary vector, resembles another pattern. A commonly used measure of the distance between two binary vectors is the Hamming distance D H = N 1 i=0 [ξ i (1 ζ i ) + (1 ξ i )ζ i ]. PHY Computational Physics 2 10 Wednesday, March 5

11 This distance varies between 0 if all N bits are identical, and N if none of the bit components are the same. A simple application of neural networks is to storage and reconstruction of associative memories, illustrated in the Hopfield Java Applet PHY Computational Physics 2 11 Wednesday, March 5

Artificial Intelligence Hopfield Networks

Artificial Intelligence Hopfield Networks Artificial Intelligence Hopfield Networks Andrea Torsello Network Topologies Single Layer Recurrent Network Bidirectional Symmetric Connection Binary / Continuous Units Associative Memory Optimization

More information

Memories Associated with Single Neurons and Proximity Matrices

Memories Associated with Single Neurons and Proximity Matrices Memories Associated with Single Neurons and Proximity Matrices Subhash Kak Oklahoma State University, Stillwater Abstract: This paper extends the treatment of single-neuron memories obtained by the use

More information

Using a Hopfield Network: A Nuts and Bolts Approach

Using a Hopfield Network: A Nuts and Bolts Approach Using a Hopfield Network: A Nuts and Bolts Approach November 4, 2013 Gershon Wolfe, Ph.D. Hopfield Model as Applied to Classification Hopfield network Training the network Updating nodes Sequencing of

More information

A. The Hopfield Network. III. Recurrent Neural Networks. Typical Artificial Neuron. Typical Artificial Neuron. Hopfield Network.

A. The Hopfield Network. III. Recurrent Neural Networks. Typical Artificial Neuron. Typical Artificial Neuron. Hopfield Network. III. Recurrent Neural Networks A. The Hopfield Network 2/9/15 1 2/9/15 2 Typical Artificial Neuron Typical Artificial Neuron connection weights linear combination activation function inputs output net

More information

Lecture 7 Artificial neural networks: Supervised learning

Lecture 7 Artificial neural networks: Supervised learning Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

A. The Hopfield Network. III. Recurrent Neural Networks. Typical Artificial Neuron. Typical Artificial Neuron. Hopfield Network.

A. The Hopfield Network. III. Recurrent Neural Networks. Typical Artificial Neuron. Typical Artificial Neuron. Hopfield Network. Part 3A: Hopfield Network III. Recurrent Neural Networks A. The Hopfield Network 1 2 Typical Artificial Neuron Typical Artificial Neuron connection weights linear combination activation function inputs

More information

Using Variable Threshold to Increase Capacity in a Feedback Neural Network

Using Variable Threshold to Increase Capacity in a Feedback Neural Network Using Variable Threshold to Increase Capacity in a Feedback Neural Network Praveen Kuruvada Abstract: The article presents new results on the use of variable thresholds to increase the capacity of a feedback

More information

7 Rate-Based Recurrent Networks of Threshold Neurons: Basis for Associative Memory

7 Rate-Based Recurrent Networks of Threshold Neurons: Basis for Associative Memory Physics 178/278 - David Kleinfeld - Fall 2005; Revised for Winter 2017 7 Rate-Based Recurrent etworks of Threshold eurons: Basis for Associative Memory 7.1 A recurrent network with threshold elements The

More information

7 Recurrent Networks of Threshold (Binary) Neurons: Basis for Associative Memory

7 Recurrent Networks of Threshold (Binary) Neurons: Basis for Associative Memory Physics 178/278 - David Kleinfeld - Winter 2019 7 Recurrent etworks of Threshold (Binary) eurons: Basis for Associative Memory 7.1 The network The basic challenge in associative networks, also referred

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

How can ideas from quantum computing improve or speed up neuromorphic models of computation?

How can ideas from quantum computing improve or speed up neuromorphic models of computation? Neuromorphic Computation: Architectures, Models, Applications Associative Memory Models with Adiabatic Quantum Optimization Kathleen Hamilton, Alexander McCaskey, Jonathan Schrock, Neena Imam and Travis

More information

Hopfield Neural Network

Hopfield Neural Network Lecture 4 Hopfield Neural Network Hopfield Neural Network A Hopfield net is a form of recurrent artificial neural network invented by John Hopfield. Hopfield nets serve as content-addressable memory systems

More information

Hopfield Networks. (Excerpt from a Basic Course at IK 2008) Herbert Jaeger. Jacobs University Bremen

Hopfield Networks. (Excerpt from a Basic Course at IK 2008) Herbert Jaeger. Jacobs University Bremen Hopfield Networks (Excerpt from a Basic Course at IK 2008) Herbert Jaeger Jacobs University Bremen Building a model of associative memory should be simple enough... Our brain is a neural network Individual

More information

Artificial Neural Network and Fuzzy Logic

Artificial Neural Network and Fuzzy Logic Artificial Neural Network and Fuzzy Logic 1 Syllabus 2 Syllabus 3 Books 1. Artificial Neural Networks by B. Yagnanarayan, PHI - (Cover Topologies part of unit 1 and All part of Unit 2) 2. Neural Networks

More information

arxiv:quant-ph/ v1 17 Oct 1995

arxiv:quant-ph/ v1 17 Oct 1995 PHYSICS AND CONSCIOUSNESS Patricio Pérez arxiv:quant-ph/9510017v1 17 Oct 1995 Departamento de Física, Universidad de Santiago de Chile Casilla 307, Correo 2, Santiago, Chile ABSTRACT Some contributions

More information

Storage Capacity of Letter Recognition in Hopfield Networks

Storage Capacity of Letter Recognition in Hopfield Networks Storage Capacity of Letter Recognition in Hopfield Networks Gang Wei (gwei@cs.dal.ca) Zheyuan Yu (zyu@cs.dal.ca) Faculty of Computer Science, Dalhousie University, Halifax, N.S., Canada B3H 1W5 Abstract:

More information

Linear Regression, Neural Networks, etc.

Linear Regression, Neural Networks, etc. Linear Regression, Neural Networks, etc. Gradient Descent Many machine learning problems can be cast as optimization problems Define a function that corresponds to learning error. (More on this later)

More information

Introduction Biologically Motivated Crude Model Backpropagation

Introduction Biologically Motivated Crude Model Backpropagation Introduction Biologically Motivated Crude Model Backpropagation 1 McCulloch-Pitts Neurons In 1943 Warren S. McCulloch, a neuroscientist, and Walter Pitts, a logician, published A logical calculus of the

More information

Neural Nets in PR. Pattern Recognition XII. Michal Haindl. Outline. Neural Nets in PR 2

Neural Nets in PR. Pattern Recognition XII. Michal Haindl. Outline. Neural Nets in PR 2 Neural Nets in PR NM P F Outline Motivation: Pattern Recognition XII human brain study complex cognitive tasks Michal Haindl Faculty of Information Technology, KTI Czech Technical University in Prague

More information

In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required.

In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required. In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required. In humans, association is known to be a prominent feature of memory.

More information

Neural Network Essentials 1

Neural Network Essentials 1 Neural Network Essentials Draft: Associative Memory Chapter Anthony S. Maida University of Louisiana at Lafayette, USA June 6, 205 Copyright c 2000 2003 by Anthony S. Maida Contents 0. Associative memory.............................

More information

Learning and Memory in Neural Networks

Learning and Memory in Neural Networks Learning and Memory in Neural Networks Guy Billings, Neuroinformatics Doctoral Training Centre, The School of Informatics, The University of Edinburgh, UK. Neural networks consist of computational units

More information

Neural Networks. Prof. Dr. Rudolf Kruse. Computational Intelligence Group Faculty for Computer Science

Neural Networks. Prof. Dr. Rudolf Kruse. Computational Intelligence Group Faculty for Computer Science Neural Networks Prof. Dr. Rudolf Kruse Computational Intelligence Group Faculty for Computer Science kruse@iws.cs.uni-magdeburg.de Rudolf Kruse Neural Networks 1 Hopfield Networks Rudolf Kruse Neural Networks

More information

Introduction to Artificial Neural Networks

Introduction to Artificial Neural Networks Facultés Universitaires Notre-Dame de la Paix 27 March 2007 Outline 1 Introduction 2 Fundamentals Biological neuron Artificial neuron Artificial Neural Network Outline 3 Single-layer ANN Perceptron Adaline

More information

Neural networks. Chapter 20. Chapter 20 1

Neural networks. Chapter 20. Chapter 20 1 Neural networks Chapter 20 Chapter 20 1 Outline Brains Neural networks Perceptrons Multilayer networks Applications of neural networks Chapter 20 2 Brains 10 11 neurons of > 20 types, 10 14 synapses, 1ms

More information

Artificial Neural Networks Examination, March 2004

Artificial Neural Networks Examination, March 2004 Artificial Neural Networks Examination, March 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Consider the way we are able to retrieve a pattern from a partial key as in Figure 10 1.

Consider the way we are able to retrieve a pattern from a partial key as in Figure 10 1. CompNeuroSci Ch 10 September 8, 2004 10 Associative Memory Networks 101 Introductory concepts Consider the way we are able to retrieve a pattern from a partial key as in Figure 10 1 Figure 10 1: A key

More information

Lecture 4: Feed Forward Neural Networks

Lecture 4: Feed Forward Neural Networks Lecture 4: Feed Forward Neural Networks Dr. Roman V Belavkin Middlesex University BIS4435 Biological neurons and the brain A Model of A Single Neuron Neurons as data-driven models Neural Networks Training

More information

CSE 5526: Introduction to Neural Networks Hopfield Network for Associative Memory

CSE 5526: Introduction to Neural Networks Hopfield Network for Associative Memory CSE 5526: Introduction to Neural Networks Hopfield Network for Associative Memory Part VII 1 The basic task Store a set of fundamental memories {ξξ 1, ξξ 2,, ξξ MM } so that, when presented a new pattern

More information

Neurochemistry 1. Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906

Neurochemistry 1. Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906 Neurochemistry 1 Nervous system is made of neurons & glia, as well as other cells. Santiago Ramon y Cajal Nobel Prize 1906 How Many Neurons Do We Have? The human brain contains ~86 billion neurons and

More information

Sections 18.6 and 18.7 Artificial Neural Networks

Sections 18.6 and 18.7 Artificial Neural Networks Sections 18.6 and 18.7 Artificial Neural Networks CS4811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline The brain vs. artifical neural

More information

Neural networks. Chapter 20, Section 5 1

Neural networks. Chapter 20, Section 5 1 Neural networks Chapter 20, Section 5 Chapter 20, Section 5 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 20, Section 5 2 Brains 0 neurons of

More information

Hertz, Krogh, Palmer: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company (1991). (v ji (1 x i ) + (1 v ji )x i )

Hertz, Krogh, Palmer: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company (1991). (v ji (1 x i ) + (1 v ji )x i ) Symmetric Networks Hertz, Krogh, Palmer: Introduction to the Theory of Neural Computation. Addison-Wesley Publishing Company (1991). How can we model an associative memory? Let M = {v 1,..., v m } be a

More information

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

Logic Learning in Hopfield Networks

Logic Learning in Hopfield Networks Logic Learning in Hopfield Networks Saratha Sathasivam (Corresponding author) School of Mathematical Sciences, University of Science Malaysia, Penang, Malaysia E-mail: saratha@cs.usm.my Wan Ahmad Tajuddin

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for ARTIFICIAL NEURAL NETWORKS. COURSE CODES: FFR 135, FIM 720 GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for ARTIFICIAL NEURAL NETWORKS COURSE CODES: FFR 135, FIM 72 GU, PhD Time: Place: Teachers: Allowed material: Not allowed: October 23, 217, at 8 3 12 3 Lindholmen-salar

More information

Feedforward Neural Nets and Backpropagation

Feedforward Neural Nets and Backpropagation Feedforward Neural Nets and Backpropagation Julie Nutini University of British Columbia MLRG September 28 th, 2016 1 / 23 Supervised Learning Roadmap Supervised Learning: Assume that we are given the features

More information

Hopfield and Potts-Hopfield Networks

Hopfield and Potts-Hopfield Networks Hopfield and Potts-Hopfield Networks Andy Somogyi Dec 10, 2010 1 Introduction Many early models of neural networks lacked mathematical rigor or analysis. They were, by and large, ad hoc models. John Hopfield

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Contents 2 What is ANN? Biological Neuron Structure of Neuron Types of Neuron Models of Neuron Analogy with human NN Perceptron OCR Multilayer Neural Network Back propagation

More information

Chapter 9: The Perceptron

Chapter 9: The Perceptron Chapter 9: The Perceptron 9.1 INTRODUCTION At this point in the book, we have completed all of the exercises that we are going to do with the James program. These exercises have shown that distributed

More information

Instituto Tecnológico y de Estudios Superiores de Occidente Departamento de Electrónica, Sistemas e Informática. Introductory Notes on Neural Networks

Instituto Tecnológico y de Estudios Superiores de Occidente Departamento de Electrónica, Sistemas e Informática. Introductory Notes on Neural Networks Introductory Notes on Neural Networs Dr. José Ernesto Rayas Sánche April Introductory Notes on Neural Networs Dr. José Ernesto Rayas Sánche BIOLOGICAL NEURAL NETWORKS The brain can be seen as a highly

More information

Neural Networks. Fundamentals of Neural Networks : Architectures, Algorithms and Applications. L, Fausett, 1994

Neural Networks. Fundamentals of Neural Networks : Architectures, Algorithms and Applications. L, Fausett, 1994 Neural Networks Neural Networks Fundamentals of Neural Networks : Architectures, Algorithms and Applications. L, Fausett, 1994 An Introduction to Neural Networks (nd Ed). Morton, IM, 1995 Neural Networks

More information

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 40 (2003) pp. 607 613 c International Academic Publishers Vol. 40, No. 5, November 15, 2003 Effects of Interactive Function Forms in a Self-Organized Critical Model

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline How the Brain Works Artificial Neural Networks Simple Computing Elements Feed-Forward Networks Perceptrons (Single-layer,

More information

Neural Networks and Fuzzy Logic Rajendra Dept.of CSE ASCET

Neural Networks and Fuzzy Logic Rajendra Dept.of CSE ASCET Unit-. Definition Neural network is a massively parallel distributed processing system, made of highly inter-connected neural computing elements that have the ability to learn and thereby acquire knowledge

More information

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling

Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling Name: AP Biology Mr. Croft Section 1 1. What is a neuron? Chapter 37 Active Reading Guide Neurons, Synapses, and Signaling 2. Neurons can be placed into three groups, based on their location and function.

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Associative Memories (I) Hopfield Networks

Associative Memories (I) Hopfield Networks Associative Memories (I) Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Applied Brain Science - Computational Neuroscience (CNS) A Pun Associative Memories Introduction

More information

Simple neuron model Components of simple neuron

Simple neuron model Components of simple neuron Outline 1. Simple neuron model 2. Components of artificial neural networks 3. Common activation functions 4. MATLAB representation of neural network. Single neuron model Simple neuron model Components

More information

Nervous System Organization

Nervous System Organization The Nervous System Nervous System Organization Receptors respond to stimuli Sensory receptors detect the stimulus Motor effectors respond to stimulus Nervous system divisions Central nervous system Command

More information

Compartmental Modelling

Compartmental Modelling Modelling Neurons Computing and the Brain Compartmental Modelling Spring 2010 2 1 Equivalent Electrical Circuit A patch of membrane is equivalent to an electrical circuit This circuit can be described

More information

Neural Networks. Hopfield Nets and Auto Associators Fall 2017

Neural Networks. Hopfield Nets and Auto Associators Fall 2017 Neural Networks Hopfield Nets and Auto Associators Fall 2017 1 Story so far Neural networks for computation All feedforward structures But what about.. 2 Loopy network Θ z = ቊ +1 if z > 0 1 if z 0 y i

More information

Universality of sensory-response systems

Universality of sensory-response systems excite.org(anism): Electrical Signaling Universality of sensory-response systems Three step process: sensation-integration-response Bacterial chemotaxis Madigan et al. Fig. 8.24 Rick Stewart (CBMG) Human

More information

Sections 18.6 and 18.7 Artificial Neural Networks

Sections 18.6 and 18.7 Artificial Neural Networks Sections 18.6 and 18.7 Artificial Neural Networks CS4811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline The brain vs artifical neural networks

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES Neuron Communication Neurons are stimulated by receptors on dendrites and cell bodies (soma) Ligand gated ion channels GPCR s Neurons stimulate cells

More information

Terminal attractor optical associative memory with adaptive control parameter

Terminal attractor optical associative memory with adaptive control parameter 1 June 1998 Ž. Optics Communications 151 1998 353 365 Full length article Terminal attractor optical associative memory with adaptive control parameter Xin Lin a,), Junji Ohtsubo b, Masahiko Mori a a Electrotechnical

More information

The Neuron - F. Fig. 45.3

The Neuron - F. Fig. 45.3 excite.org(anism): Electrical Signaling The Neuron - F. Fig. 45.3 Today s lecture we ll use clickers Review today 11:30-1:00 in 2242 HJ Patterson Electrical signals Dendrites: graded post-synaptic potentials

More information

Machine Learning. Neural Networks

Machine Learning. Neural Networks Machine Learning Neural Networks Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 Biological Analogy Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 THE

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE 4: Linear Systems Summary # 3: Introduction to artificial neural networks DISTRIBUTED REPRESENTATION An ANN consists of simple processing units communicating with each other. The basic elements of

More information

Hopfield Network for Associative Memory

Hopfield Network for Associative Memory CSE 5526: Introduction to Neural Networks Hopfield Network for Associative Memory 1 The next few units cover unsupervised models Goal: learn the distribution of a set of observations Some observations

More information

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau Last update: October 26, 207 Neural networks CMSC 42: Section 8.7 Dana Nau Outline Applications of neural networks Brains Neural network units Perceptrons Multilayer perceptrons 2 Example Applications

More information

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals Control and Integration Neurophysiology Chapters 10-12 Nervous system composed of nervous tissue cells designed to conduct electrical impulses rapid communication to specific cells or groups of cells Endocrine

More information

Modelling stochastic neural learning

Modelling stochastic neural learning Modelling stochastic neural learning Computational Neuroscience András Telcs telcs.andras@wigner.mta.hu www.cs.bme.hu/~telcs http://pattern.wigner.mta.hu/participants/andras-telcs Compiled from lectures

More information

Artificial Neural Networks. Historical description

Artificial Neural Networks. Historical description Artificial Neural Networks Historical description Victor G. Lopez 1 / 23 Artificial Neural Networks (ANN) An artificial neural network is a computational model that attempts to emulate the functions of

More information

Neural Networks: Introduction

Neural Networks: Introduction Neural Networks: Introduction Machine Learning Fall 2017 Based on slides and material from Geoffrey Hinton, Richard Socher, Dan Roth, Yoav Goldberg, Shai Shalev-Shwartz and Shai Ben-David, and others 1

More information

2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net.

2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net. 2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net. - For an autoassociative net, the training input and target output

More information

Neural Nets and Symbolic Reasoning Hopfield Networks

Neural Nets and Symbolic Reasoning Hopfield Networks Neural Nets and Symbolic Reasoning Hopfield Networks Outline The idea of pattern completion The fast dynamics of Hopfield networks Learning with Hopfield networks Emerging properties of Hopfield networks

More information

Artifical Neural Networks

Artifical Neural Networks Neural Networks Artifical Neural Networks Neural Networks Biological Neural Networks.................................. Artificial Neural Networks................................... 3 ANN Structure...........................................

More information

Introduction To Artificial Neural Networks

Introduction To Artificial Neural Networks Introduction To Artificial Neural Networks Machine Learning Supervised circle square circle square Unsupervised group these into two categories Supervised Machine Learning Supervised Machine Learning Supervised

More information

J. Marro Institute Carlos I, University of Granada. Net-Works 08, Pamplona, 9-11 June 2008

J. Marro  Institute Carlos I, University of Granada. Net-Works 08, Pamplona, 9-11 June 2008 J. Marro http://ergodic.ugr.es/jmarro Institute Carlos I, University of Granada Net-Works 08, Pamplona, 9-11 June 2008 Networks? mathematical objects Königsberg bridges + Euler graphs (s. XVIII),... models

More information

INTRODUCTION TO NEURAL NETWORKS

INTRODUCTION TO NEURAL NETWORKS INTRODUCTION TO NEURAL NETWORKS R. Beale & T.Jackson: Neural Computing, an Introduction. Adam Hilger Ed., Bristol, Philadelphia and New York, 990. THE STRUCTURE OF THE BRAIN The brain consists of about

More information

Hopfield Networks and Boltzmann Machines. Christian Borgelt Artificial Neural Networks and Deep Learning 296

Hopfield Networks and Boltzmann Machines. Christian Borgelt Artificial Neural Networks and Deep Learning 296 Hopfield Networks and Boltzmann Machines Christian Borgelt Artificial Neural Networks and Deep Learning 296 Hopfield Networks A Hopfield network is a neural network with a graph G = (U,C) that satisfies

More information

3.3 Discrete Hopfield Net An iterative autoassociative net similar to the nets described in the previous sections has been developed by Hopfield

3.3 Discrete Hopfield Net An iterative autoassociative net similar to the nets described in the previous sections has been developed by Hopfield 3.3 Discrete Hopfield Net An iterative autoassociative net similar to the nets described in the previous sections has been developed by Hopfield (1982, 1984). - The net is a fully interconnected neural

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Neural Networks Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart

More information

Neural Networks Introduction

Neural Networks Introduction Neural Networks Introduction H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011 H. A. Talebi, Farzaneh Abdollahi Neural Networks 1/22 Biological

More information

COMP9444 Neural Networks and Deep Learning 2. Perceptrons. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 2. Perceptrons. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 2. Perceptrons COMP9444 17s2 Perceptrons 1 Outline Neurons Biological and Artificial Perceptron Learning Linear Separability Multi-Layer Networks COMP9444 17s2

More information

Ch. 5. Membrane Potentials and Action Potentials

Ch. 5. Membrane Potentials and Action Potentials Ch. 5. Membrane Potentials and Action Potentials Basic Physics of Membrane Potentials Nerve and muscle cells: Excitable Capable of generating rapidly changing electrochemical impulses at their membranes

More information

Neural networks: Unsupervised learning

Neural networks: Unsupervised learning Neural networks: Unsupervised learning 1 Previously The supervised learning paradigm: given example inputs x and target outputs t learning the mapping between them the trained network is supposed to give

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

Neural Networks for Machine Learning. Lecture 11a Hopfield Nets

Neural Networks for Machine Learning. Lecture 11a Hopfield Nets Neural Networks for Machine Learning Lecture 11a Hopfield Nets Geoffrey Hinton Nitish Srivastava, Kevin Swersky Tijmen Tieleman Abdel-rahman Mohamed Hopfield Nets A Hopfield net is composed of binary threshold

More information

EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, Sasidharan Sreedharan

EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, Sasidharan Sreedharan EE04 804(B) Soft Computing Ver. 1.2 Class 2. Neural Networks - I Feb 23, 2012 Sasidharan Sreedharan www.sasidharan.webs.com 3/1/2012 1 Syllabus Artificial Intelligence Systems- Neural Networks, fuzzy logic,

More information

Marr's Theory of the Hippocampus: Part I

Marr's Theory of the Hippocampus: Part I Marr's Theory of the Hippocampus: Part I Computational Models of Neural Systems Lecture 3.3 David S. Touretzky October, 2015 David Marr: 1945-1980 10/05/15 Computational Models of Neural Systems 2 Marr

More information

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon Neuron Detector Model 1 The detector model. 2 Biological properties of the neuron. 3 The computational unit. Each neuron is detecting some set of conditions (e.g., smoke detector). Representation is what

More information

Systems Biology: A Personal View IX. Landscapes. Sitabhra Sinha IMSc Chennai

Systems Biology: A Personal View IX. Landscapes. Sitabhra Sinha IMSc Chennai Systems Biology: A Personal View IX. Landscapes Sitabhra Sinha IMSc Chennai Fitness Landscapes Sewall Wright pioneered the description of how genotype or phenotypic fitness are related in terms of a fitness

More information

2401 : Anatomy/Physiology

2401 : Anatomy/Physiology Dr. Chris Doumen Week 6 2401 : Anatomy/Physiology Action Potentials NeuroPhysiology TextBook Readings Pages 400 through 408 Make use of the figures in your textbook ; a picture is worth a thousand words!

More information

Chapter ML:VI. VI. Neural Networks. Perceptron Learning Gradient Descent Multilayer Perceptron Radial Basis Functions

Chapter ML:VI. VI. Neural Networks. Perceptron Learning Gradient Descent Multilayer Perceptron Radial Basis Functions Chapter ML:VI VI. Neural Networks Perceptron Learning Gradient Descent Multilayer Perceptron Radial asis Functions ML:VI-1 Neural Networks STEIN 2005-2018 The iological Model Simplified model of a neuron:

More information

Math in systems neuroscience. Quan Wen

Math in systems neuroscience. Quan Wen Math in systems neuroscience Quan Wen Human brain is perhaps the most complex subject in the universe 1 kg brain 10 11 neurons 180,000 km nerve fiber 10 15 synapses 10 18 synaptic proteins Multiscale

More information

Week 4: Hopfield Network

Week 4: Hopfield Network Week 4: Hopfield Network Phong Le, Willem Zuidema November 20, 2013 Last week we studied multi-layer perceptron, a neural network in which information is only allowed to transmit in one direction (from

More information

Artificial neural networks

Artificial neural networks Artificial neural networks Chapter 8, Section 7 Artificial Intelligence, spring 203, Peter Ljunglöf; based on AIMA Slides c Stuart Russel and Peter Norvig, 2004 Chapter 8, Section 7 Outline Brains Neural

More information

CN2 1: Introduction. Paul Gribble. Sep 10,

CN2 1: Introduction. Paul Gribble. Sep 10, CN2 1: Introduction Paul Gribble http://gribblelab.org Sep 10, 2012 Administrivia Class meets Mondays, 2:00pm - 3:30pm and Thursdays, 11:30am - 1:00pm, in NSC 245A Contact me with any questions or to set

More information

COMP304 Introduction to Neural Networks based on slides by:

COMP304 Introduction to Neural Networks based on slides by: COMP34 Introduction to Neural Networks based on slides by: Christian Borgelt http://www.borgelt.net/ Christian Borgelt Introduction to Neural Networks Motivation: Why (Artificial) Neural Networks? (Neuro-)Biology

More information

CHAPTER 3. Pattern Association. Neural Networks

CHAPTER 3. Pattern Association. Neural Networks CHAPTER 3 Pattern Association Neural Networks Pattern Association learning is the process of forming associations between related patterns. The patterns we associate together may be of the same type or

More information

Iterative Autoassociative Net: Bidirectional Associative Memory

Iterative Autoassociative Net: Bidirectional Associative Memory POLYTECHNIC UNIVERSITY Department of Computer and Information Science Iterative Autoassociative Net: Bidirectional Associative Memory K. Ming Leung Abstract: Iterative associative neural networks are introduced.

More information

Nervous System Organization

Nervous System Organization The Nervous System Chapter 44 Nervous System Organization All animals must be able to respond to environmental stimuli -Sensory receptors = Detect stimulus -Motor effectors = Respond to it -The nervous

More information

Neurons, Synapses, and Signaling

Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34

NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 NEURONS, SENSE ORGANS, AND NERVOUS SYSTEMS CHAPTER 34 KEY CONCEPTS 34.1 Nervous Systems Are Composed of Neurons and Glial Cells 34.2 Neurons Generate Electric Signals by Controlling Ion Distributions 34.3

More information

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer

BIOLOGY 11/10/2016. Neurons, Synapses, and Signaling. Concept 48.1: Neuron organization and structure reflect function in information transfer 48 Neurons, Synapses, and Signaling CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Concept 48.1: Neuron organization

More information