Coherence detection in a spiking neuron via Hebbian learning

Size: px
Start display at page:

Download "Coherence detection in a spiking neuron via Hebbian learning"

Transcription

1 Neurocomputing (2002) Coherence detection in a spiking neuron via Hebbian learning L. Perrinet, M. Samuelides ONERA-DTIM, 2 Av. E. Belin, BP 4025, Toulouse, France Abstract It is generally assumehat neurons communicate through temporal ring patterns. As a rst step, we will study the learning of a layer of realistic neurons in the particular case where the relevant messages are formedby temporally correlatedpatterns, or synre patterns. The model is a layer of integrate-and-re neurons with synaptic current dynamics that adapts by minimizing a cost according to a gradient descent scheme. The cost we dene leads to a rule similar to spike-time dependent Hebbian plasticity. Moreover, our results show that the rule that we derive is biologically plausible and leads to the detection of the coherence in the input in an unsupervisedway. An application to shape recognition is shown as an illustration. c 2002 Publishedby Elsevier Science B.V. Keywords: Spiking neural networks; Hebb rule; Spike time dependent Hebbian plasticity; Gradient descent 1. Description of the model 1.1. Coding scheme We will represent (as in [2]) the signal S i at synapse i by the sum of Dirac pulses locatedat the spiking times ti k drawn from the lists of spikes i (see Fig. 1-left). S i = (t ti k ): (1) k i Synre patterns are generatedin analogy with the response of a retina to ashedbinary images. The input of the synapses is characterizedas the output of single-synapse IF Corresponding author. address: perrinet@cert.fr (L. Perrinet). URL: /02/$ - see front matter c 2002 Publishedby Elsevier Science B.V. PII: S (02)

2 134 L. Perrinet, M. Samuelides / Neurocomputing (2002) Fig. 1. Neuron model: (left) Input spikes (with a synre pattern at t = 25 ms), are (middle) modulated in time andamplitude forming postsynaptic current pulses andare nally (right) integratedat the soma. When the potential (plain line) reaches the threshold(dottedline), a spike is emittedanhe potential is decreased. A sample PSP (synapse 1) is also shown. neurons responding to a specic binary input. This response may be described as the sum of two random point processes with dierent time scales. At a narrow time scale, the input is the spontaneous activity, i.e. a background noise independent of time and synapses that may be described by a Poisson point process of rate 1= noise. At a larger time scale, the synre pattern activates a given subset M of synapses once per ash with a temporal correlation dened by its jitter jitter (see Fig. 1-left) Integrate-and-re layer We will consider N 1 synapses (indexed by i) connecteo a layer of N 2 neurons j. Those are generalizedversion of IF neurons with synaptic current dynamics, a one compartment model with no delay and the synapses have contacts characterized by their weight w ji. The state variables are N 1 N 2 synaptic driving conductances g ji and N 2 membrane potentials V j. Incoming spikes trigger those conductances by opening the driving gates with time constant g : dg ji = 1 g g ji + w ji S i (2) anhe potential V j at the soma integrates with time constant V the driving currents anhe leaking current g leak (with a potential V rest 70 mv): (see Fig. 1-

3 middle): V dv j L. Perrinet, M. Samuelides / Neurocomputing (2002) = g leak (V rest V j )+ ( 16i6N 2 g ji ) : (3) When V j reaches the threshold s potential V threshold 54 mv from below, the target neuron res (see Fig. 1-right) andis shunted(v j is set e.g. to V reset 75 mv) Reduced equations We introduce reduced equations for this IF Layer to study its dynamical behavior andsimplify its implementation. In fact, this reduction follows the concept of the spike-response model (SRM) which was extensively studied in [2,3]. It is similar to [4] which aimed at reducing the STDHP equations to a set of rst-order equations. dc i = 1 c i + S i ; g dp i V = p i + c i (4) then, V j =V rest +( 16i6N 1 w ji p i ) veries the equation system (2), (3), with g ji =w ji c i. To account for the thresholdmechanism at a spiking time tj k, we may then add a resetting value to V j by setting j (tj k)=v reset V threshold anhen j (t) V = j (t): (5) So that nally, an equivalent version of the IF Layer consists of (4), (5) and ( ) V j (t)=v rest + w ji p i (t) + j (t): (6) 16i6N 1 This formulation depends only on the present state and not on the past values. It is therefore biologically more plausible andcomputationally cheaper. Integrating these equations after emission of a presynaptic spike at t i or a postsynaptic spike at t j leads to ( c i (t) = exp t t ) i ; (7) g p i (t)= ( ( g exp t t i V g g ( (t)=(v reset V threshold ) exp ) ( exp t t i t t j V v )) ; (8) ) : (9) Those equations (6) (9) are the equivalent SRM version of our IF model. More precisely Eq. (7) represents the PostSynaptic Current (PSC), see Fig. 1-middle, and Eq. (8)

4 136 L. Perrinet, M. Samuelides / Neurocomputing (2002) the PostSynaptic Potential (PSP), see Fig. 1-right, which may be experimentally observed. 2. The learning mechanism 2.1. Denition of the cost function Basedon neurophysiological studies, we set the following principles: (1) the learning is associatedwith a spiking response: the nth learning step occurs at the nth output ring time t n, (2) to discriminate between the dierent input patterns, the output voltage should be close to a winner-take-all conguration: the potential of the winning neuron (which we index j = j n ) shouldbe above thresholdwhereas other neurons shouldbe hyperpolarized, (3) economy of the total synaptic ecacy andcurrent use shouldbe respected. A possible cost function may therefore be the squareddistance to the potentials of neurons at the ring time t n added to the total sum of the squared weights: 2E = (V j Vj t ) 2 + ( ) ji; 2 (10) 16j6N 2 16i6N 1 16j6N 2 V t j = V rest for j j n ; (11) Vj t n = V threshold +V; (12) where and are scaling parameters andwe set V 5mV Gradient descent It follows from Eqs. (10) =(V j Vj t j =(V j V t j )p i j + w + w ji : We may therefore formulate the gradient descent algorithm in our model as wji n+1 = wji ji =(1 n )wji n + n (Vj t V j j + ji V ji

5 L. Perrinet, M. Samuelides / Neurocomputing (2002) Fig. 2. STDHP: relative weight change versus time dierence between input and output spikes in a single neuron modelized with our model replicating the experimental conditions of [1]. with learning factors n ; n and n which satises (e.g. for n ) n=1::: n and n=1::: 2 n. Finally, writing ṗ i =dp i =, w n+1 ji =(1 n )w n ji + n (V t j V j )p i + n ( wji ṗ i ) ṗ i : (13) 2.3. Spike-time dependent plasticity A closer look at Eq. (13) shows that a direction in the change of w ji is proportional to (V target j V j )p i. This is the Hebbian part of the rule: when a neuron j res after the ring of synapse j, there is a mechanism that strengthen the connection. The strengthening depends therefore on the relative time of the pre- and post-synaptic spikes (see Fig. 2) as is observedin biological systems [1]. 3. Numerical results We implemented this model using discrete versions of the dierential equations (forwardeuler method) on a MATLAB system Response to synre patterns To achieve this experiment we presentedsynre patterns to the layer. The weights were set at random so that the network could re to all the inputs. The patterns were presented at random times that were suciently distant. This unsupervised learning converges quickly, andas may be observedin neuromuscular connectivity, the synapses teno sparsify anhe neurons teno respono only one input (see Fig. 3).

6 138 L. Perrinet, M. Samuelides / Neurocomputing (2002) Fig. 3. Coherence detection: (left) dierent input patterns (ring times t = 100; 300; 500; 700; 900 ms) are (right) learnt by the system: only one neuron per input res (100 learning steps). Fig. 4. Orientedbars detection: after learning, the weights show sensitivity to orientation (black:off; white:on; gray:neutral) Response to oriented bars The next experiment consistedin applying those results to a basic retina which input consists of centeredrotatedlines. A xedanalogical contrast layer (ON andoff radial cells) sends then spikes to the learning layer that adapts with the rule we presented. We observe unsupervisedemergence of V1-like receptors elds sensitive to the orientation (see Fig. 4). Further experiments with lateral interactions and accounting for dendritic delay show even more realistic lters and column architecture. 4. Conclusion We have presentedan original gradient descent methoo nda learning rule for a layer of spiking neurons. The simplicity of the rule gives a new insight into the comprehension of the mechanism behinhe observedstdhp. Further work is done for the detection of asynchronous patterns.

7 L. Perrinet, M. Samuelides / Neurocomputing (2002) However, this study should be extended to more realistic spike trains (e.g. bursts), account for more complex behavior (e.g. facilitation anddepression) andmay be extendeo population of neurons andrecurrent systems. Acknowledgements This work has been initiated during the EU Advanced Course in Computational Neuroscience. LP wish to thank its organizers, the teachers, the course-mates andmy tutor, S. Panzeri. References [1] G.-Q. Bi, M.-M. Poo, Synaptic modications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, andpostsynaptic cell type, J. Neurosci. 18 (1998) [2] W. Gerstner, Spiking neurons, in: W. Maass, C.M. Bishop (Eds.), PulsedCoupledNeural Networks, MIT Press, Cambridge, MA, 1999, pp (Chapter 1). [3] R. Kempter, W. Gerstner, J. van Hemmen, Hebbian learning andspiking neurons, Phys. Rev. E 59 (4) (1999) [4] L. Perrinet, A. Delorme, S. Thorpe, Network of integrate-and-re neurons using rank order coding A: how to implement spike timing dependent plasticity, Neurocomputing (2001) Laurent Perrinet is a Ph.D. student in Computational Neuroscience, under the direction of Manuel Samuelides at the CERT-ONERA, Toulouse and in narrow collaboration with the team of Simon Thorpe at the CERCO-CNRS, Toulouse. He works on theoretical andsimulatedaspects of neural coding, especially on the implication of fast-categorization visual experiments. Working areas span learning (especially in spike timing dependant plasticity) and the statistics of natural images.

A gradient descent rule for spiking neurons emitting multiple spikes

A gradient descent rule for spiking neurons emitting multiple spikes A gradient descent rule for spiking neurons emitting multiple spikes Olaf Booij a, Hieu tat Nguyen a a Intelligent Sensory Information Systems, University of Amsterdam, Faculty of Science, Kruislaan 403,

More information

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture CSE/NB 528 Final Lecture: All Good Things Must 1 Course Summary Where have we been? Course Highlights Where do we go from here? Challenges and Open Problems Further Reading 2 What is the neural code? What

More information

Fast neural network simulations with population density methods

Fast neural network simulations with population density methods Fast neural network simulations with population density methods Duane Q. Nykamp a,1 Daniel Tranchina b,a,c,2 a Courant Institute of Mathematical Science b Department of Biology c Center for Neural Science

More information

High-conductance states in a mean-eld cortical network model

High-conductance states in a mean-eld cortical network model Neurocomputing 58 60 (2004) 935 940 www.elsevier.com/locate/neucom High-conductance states in a mean-eld cortical network model Alexander Lerchner a;, Mandana Ahmadi b, John Hertz b a Oersted-DTU, Technical

More information

of the dynamics. There is a competition between the capacity of the network and the stability of the

of the dynamics. There is a competition between the capacity of the network and the stability of the Special Issue on the Role and Control of Random Events in Biological Systems c World Scientic Publishing Company LEARNING SYNFIRE CHAINS: TURNING NOISE INTO SIGNAL JOHN HERTZ and ADAM PRUGEL-BENNETT y

More information

In#uence of dendritic topologyon "ring patterns in model neurons

In#uence of dendritic topologyon ring patterns in model neurons Neurocomputing 38}40 (2001) 183}189 In#uence of dendritic topologyon "ring patterns in model neurons Jacob Duijnhouwer, Michiel W.H. Remme, Arjen van Ooyen*, Jaap van Pelt Netherlands Institute for Brain

More information

How to read a burst duration code

How to read a burst duration code Neurocomputing 58 60 (2004) 1 6 www.elsevier.com/locate/neucom How to read a burst duration code Adam Kepecs a;, John Lisman b a Cold Spring Harbor Laboratory, Marks Building, 1 Bungtown Road, Cold Spring

More information

Triplets of Spikes in a Model of Spike Timing-Dependent Plasticity

Triplets of Spikes in a Model of Spike Timing-Dependent Plasticity The Journal of Neuroscience, September 20, 2006 26(38):9673 9682 9673 Behavioral/Systems/Cognitive Triplets of Spikes in a Model of Spike Timing-Dependent Plasticity Jean-Pascal Pfister and Wulfram Gerstner

More information

Synaptic dynamics. John D. Murray. Synaptic currents. Simple model of the synaptic gating variable. First-order kinetics

Synaptic dynamics. John D. Murray. Synaptic currents. Simple model of the synaptic gating variable. First-order kinetics Synaptic dynamics John D. Murray A dynamical model for synaptic gating variables is presented. We use this to study the saturation of synaptic gating at high firing rate. Shunting inhibition and the voltage

More information

W (x) W (x) (b) (a) 1 N

W (x) W (x) (b) (a) 1 N Delay Adaptation in the Nervous System Christian W. Eurich a, Klaus Pawelzik a, Udo Ernst b, Andreas Thiel a, Jack D. Cowan c and John G. Milton d a Institut fur Theoretische Physik, Universitat Bremen,

More information

This script will produce a series of pulses of amplitude 40 na, duration 1ms, recurring every 50 ms.

This script will produce a series of pulses of amplitude 40 na, duration 1ms, recurring every 50 ms. 9.16 Problem Set #4 In the final problem set you will combine the pieces of knowledge gained in the previous assignments to build a full-blown model of a plastic synapse. You will investigate the effects

More information

Short-Term Synaptic Plasticity and Network Behavior

Short-Term Synaptic Plasticity and Network Behavior LETTER Communicated by Misha Tsodyks Short-Term Synaptic Plasticity and Network Behavior Werner M. Kistler J. Leo van Hemmen Physik-Department der TU München, D-85747 Garching bei München, Germany We develop

More information

Computing with Inter-spike Interval Codes in Networks of Integrate and Fire Neurons

Computing with Inter-spike Interval Codes in Networks of Integrate and Fire Neurons Computing with Inter-spike Interval Codes in Networks of Integrate and Fire Neurons Dileep George a,b Friedrich T. Sommer b a Dept. of Electrical Engineering, Stanford University 350 Serra Mall, Stanford,

More information

Learning Spatio-Temporally Encoded Pattern Transformations in Structured Spiking Neural Networks 12

Learning Spatio-Temporally Encoded Pattern Transformations in Structured Spiking Neural Networks 12 Learning Spatio-Temporally Encoded Pattern Transformations in Structured Spiking Neural Networks 12 André Grüning, Brian Gardner and Ioana Sporea Department of Computer Science University of Surrey Guildford,

More information

Novel VLSI Implementation for Triplet-based Spike-Timing Dependent Plasticity

Novel VLSI Implementation for Triplet-based Spike-Timing Dependent Plasticity Novel LSI Implementation for Triplet-based Spike-Timing Dependent Plasticity Mostafa Rahimi Azghadi, Omid Kavehei, Said Al-Sarawi, Nicolangelo Iannella, and Derek Abbott Centre for Biomedical Engineering,

More information

CISC 3250 Systems Neuroscience

CISC 3250 Systems Neuroscience CISC 3250 Systems Neuroscience Systems Neuroscience How the nervous system performs computations How groups of neurons work together to achieve intelligence Professor Daniel Leeds dleeds@fordham.edu JMH

More information

Computing with inter-spike interval codes in networks ofintegrate and fire neurons

Computing with inter-spike interval codes in networks ofintegrate and fire neurons Neurocomputing 65 66 (2005) 415 420 www.elsevier.com/locate/neucom Computing with inter-spike interval codes in networks ofintegrate and fire neurons Dileep George a,b,, Friedrich T. Sommer b a Department

More information

A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback

A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback Robert Legenstein, Dejan Pecevski, Wolfgang Maass Institute for Theoretical Computer Science Graz

More information

STDP Learning of Image Patches with Convolutional Spiking Neural Networks

STDP Learning of Image Patches with Convolutional Spiking Neural Networks STDP Learning of Image Patches with Convolutional Spiking Neural Networks Daniel J. Saunders, Hava T. Siegelmann, Robert Kozma College of Information and Computer Sciences University of Massachusetts Amherst

More information

Causality and communities in neural networks

Causality and communities in neural networks Causality and communities in neural networks Leonardo Angelini, Daniele Marinazzo, Mario Pellicoro, Sebastiano Stramaglia TIRES-Center for Signal Detection and Processing - Università di Bari, Bari, Italy

More information

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience An Introductory Course in Computational Neuroscience Contents Series Foreword Acknowledgments Preface 1 Preliminary Material 1.1. Introduction 1.1.1 The Cell, the Circuit, and the Brain 1.1.2 Physics of

More information

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring. Elementary neuron models -- conductance based -- modelers alternatives

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring. Elementary neuron models -- conductance based -- modelers alternatives Computing in carbon Basic elements of neuroelectronics -- membranes -- ion channels -- wiring Elementary neuron models -- conductance based -- modelers alternatives Wiring neurons together -- synapses

More information

Decoding. How well can we learn what the stimulus is by looking at the neural responses?

Decoding. How well can we learn what the stimulus is by looking at the neural responses? Decoding How well can we learn what the stimulus is by looking at the neural responses? Two approaches: devise explicit algorithms for extracting a stimulus estimate directly quantify the relationship

More information

On the Computational Complexity of Networks of Spiking Neurons

On the Computational Complexity of Networks of Spiking Neurons On the Computational Complexity of Networks of Spiking Neurons (Extended Abstract) Wolfgang Maass Institute for Theoretical Computer Science Technische Universitaet Graz A-80lO Graz, Austria e-mail: maass@igi.tu-graz.ac.at

More information

Methods for Estimating the Computational Power and Generalization Capability of Neural Microcircuits

Methods for Estimating the Computational Power and Generalization Capability of Neural Microcircuits Methods for Estimating the Computational Power and Generalization Capability of Neural Microcircuits Wolfgang Maass, Robert Legenstein, Nils Bertschinger Institute for Theoretical Computer Science Technische

More information

An alternate burst analysis for detecting intra-burst rings based on inter-burst periods

An alternate burst analysis for detecting intra-burst rings based on inter-burst periods Neurocomputing 44 46 (2002) 1155 1159 www.elsevier.com/locate/neucom An alternate burst analysis for detecting intra-burst rings based on inter-burst periods David C. Tam Deptartment of Biological Sciences,

More information

Consider the following spike trains from two different neurons N1 and N2:

Consider the following spike trains from two different neurons N1 and N2: About synchrony and oscillations So far, our discussions have assumed that we are either observing a single neuron at a, or that neurons fire independent of each other. This assumption may be correct in

More information

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals

Control and Integration. Nervous System Organization: Bilateral Symmetric Animals. Nervous System Organization: Radial Symmetric Animals Control and Integration Neurophysiology Chapters 10-12 Nervous system composed of nervous tissue cells designed to conduct electrical impulses rapid communication to specific cells or groups of cells Endocrine

More information

Topological target patterns and population oscillations in a network with random gap junctional coupling

Topological target patterns and population oscillations in a network with random gap junctional coupling 0 0 0 0 Neurocomputing }0 (00) } Topological target patterns and population oscillations in a network with random gap junctional coupling Timothy J. Lewis*, John Rinzel Center for Neural Science and Courant

More information

Biological Modeling of Neural Networks

Biological Modeling of Neural Networks Week 4 part 2: More Detail compartmental models Biological Modeling of Neural Networks Week 4 Reducing detail - Adding detail 4.2. Adding detail - apse -cable equat Wulfram Gerstner EPFL, Lausanne, Switzerland

More information

Linking non-binned spike train kernels to several existing spike train metrics

Linking non-binned spike train kernels to several existing spike train metrics Linking non-binned spike train kernels to several existing spike train metrics Benjamin Schrauwen Jan Van Campenhout ELIS, Ghent University, Belgium Benjamin.Schrauwen@UGent.be Abstract. This work presents

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

How do biological neurons learn? Insights from computational modelling of

How do biological neurons learn? Insights from computational modelling of How do biological neurons learn? Insights from computational modelling of neurobiological experiments Lubica Benuskova Department of Computer Science University of Otago, New Zealand Brain is comprised

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/319/5869/1543/dc1 Supporting Online Material for Synaptic Theory of Working Memory Gianluigi Mongillo, Omri Barak, Misha Tsodyks* *To whom correspondence should be addressed.

More information

Probabilistic Models in Theoretical Neuroscience

Probabilistic Models in Theoretical Neuroscience Probabilistic Models in Theoretical Neuroscience visible unit Boltzmann machine semi-restricted Boltzmann machine restricted Boltzmann machine hidden unit Neural models of probabilistic sampling: introduction

More information

Processing of Time Series by Neural Circuits with Biologically Realistic Synaptic Dynamics

Processing of Time Series by Neural Circuits with Biologically Realistic Synaptic Dynamics Processing of Time Series by Neural Circuits with iologically Realistic Synaptic Dynamics Thomas Natschläger & Wolfgang Maass Institute for Theoretical Computer Science Technische Universität Graz, ustria

More information

Dynamical Constraints on Computing with Spike Timing in the Cortex

Dynamical Constraints on Computing with Spike Timing in the Cortex Appears in Advances in Neural Information Processing Systems, 15 (NIPS 00) Dynamical Constraints on Computing with Spike Timing in the Cortex Arunava Banerjee and Alexandre Pouget Department of Brain and

More information

Activity Driven Adaptive Stochastic. Resonance. Gregor Wenning and Klaus Obermayer. Technical University of Berlin.

Activity Driven Adaptive Stochastic. Resonance. Gregor Wenning and Klaus Obermayer. Technical University of Berlin. Activity Driven Adaptive Stochastic Resonance Gregor Wenning and Klaus Obermayer Department of Electrical Engineering and Computer Science Technical University of Berlin Franklinstr. 8/9, 187 Berlin fgrewe,obyg@cs.tu-berlin.de

More information

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon Neuron Detector Model 1 The detector model. 2 Biological properties of the neuron. 3 The computational unit. Each neuron is detecting some set of conditions (e.g., smoke detector). Representation is what

More information

The Spike Response Model: A Framework to Predict Neuronal Spike Trains

The Spike Response Model: A Framework to Predict Neuronal Spike Trains The Spike Response Model: A Framework to Predict Neuronal Spike Trains Renaud Jolivet, Timothy J. Lewis 2, and Wulfram Gerstner Laboratory of Computational Neuroscience, Swiss Federal Institute of Technology

More information

Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten. Lecture 2a. The Neuron - overview of structure. From Anderson (1995)

Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten. Lecture 2a. The Neuron - overview of structure. From Anderson (1995) Introduction to Neural Networks U. Minn. Psy 5038 Spring, 1999 Daniel Kersten Lecture 2a The Neuron - overview of structure From Anderson (1995) 2 Lect_2a_Mathematica.nb Basic Structure Information flow:

More information

Modeling Synaptic Plasticity in Conjunction with the Timing of Pre- and Postsynaptic Action Potentials

Modeling Synaptic Plasticity in Conjunction with the Timing of Pre- and Postsynaptic Action Potentials LETTER Communicated by Misha Tsodyks Modeling Synaptic Plasticity in Conjunction with the Timing of Pre- and Postsynaptic Action Potentials Werner M. Kistler J. Leo van Hemmen Physik Department der TU

More information

Sampling-based probabilistic inference through neural and synaptic dynamics

Sampling-based probabilistic inference through neural and synaptic dynamics Sampling-based probabilistic inference through neural and synaptic dynamics Wolfgang Maass for Robert Legenstein Institute for Theoretical Computer Science Graz University of Technology, Austria Institute

More information

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring Computing in carbon Basic elements of neuroelectronics -- membranes -- ion channels -- wiring Elementary neuron models -- conductance based -- modelers alternatives Wires -- signal propagation -- processing

More information

3 Detector vs. Computer

3 Detector vs. Computer 1 Neurons 1. The detector model. Also keep in mind this material gets elaborated w/the simulations, and the earliest material is often hardest for those w/primarily psych background. 2. Biological properties

More information

Lecture 11 : Simple Neuron Models. Dr Eileen Nugent

Lecture 11 : Simple Neuron Models. Dr Eileen Nugent Lecture 11 : Simple Neuron Models Dr Eileen Nugent Reading List Nelson, Biological Physics, Chapter 12 Phillips, PBoC, Chapter 17 Gerstner, Neuronal Dynamics: from single neurons to networks and models

More information

Detection of spike patterns using pattern ltering, with applications to sleep replay in birdsong

Detection of spike patterns using pattern ltering, with applications to sleep replay in birdsong Neurocomputing 52 54 (2003) 19 24 www.elsevier.com/locate/neucom Detection of spike patterns using pattern ltering, with applications to sleep replay in birdsong Zhiyi Chi a;, Peter L. Rauske b, Daniel

More information

An Efficient Method for Computing Synaptic Conductances Based on a Kinetic Model of Receptor Binding

An Efficient Method for Computing Synaptic Conductances Based on a Kinetic Model of Receptor Binding NOTE Communicated by Michael Hines An Efficient Method for Computing Synaptic Conductances Based on a Kinetic Model of Receptor Binding A. Destexhe Z. F. Mainen T. J. Sejnowski The Howard Hughes Medical

More information

Neurophysiology. Danil Hammoudi.MD

Neurophysiology. Danil Hammoudi.MD Neurophysiology Danil Hammoudi.MD ACTION POTENTIAL An action potential is a wave of electrical discharge that travels along the membrane of a cell. Action potentials are an essential feature of animal

More information

Nervous Systems: Neuron Structure and Function

Nervous Systems: Neuron Structure and Function Nervous Systems: Neuron Structure and Function Integration An animal needs to function like a coherent organism, not like a loose collection of cells. Integration = refers to processes such as summation

More information

arxiv: v1 [cs.ne] 19 Sep 2015

arxiv: v1 [cs.ne] 19 Sep 2015 An objective function for STDP arxiv:1509.05936v1 [cs.ne] 19 Sep 2015 Yoshua Bengio 1, Thomas Mesnard, Asja Fischer, Saizheng Zhang and Yuhuai Wu Montreal Institute for Learning Algorithms, University

More information

Fast and exact simulation methods applied on a broad range of neuron models

Fast and exact simulation methods applied on a broad range of neuron models Fast and exact simulation methods applied on a broad range of neuron models Michiel D Haene michiel.dhaene@ugent.be Benjamin Schrauwen benjamin.schrauwen@ugent.be Ghent University, Electronics and Information

More information

Temporal Pattern Analysis

Temporal Pattern Analysis LIACS Leiden Institute of Advanced Computer Science Master s Thesis June 17, 29 Temporal Pattern Analysis Using Reservoir Computing Author: Ron Vink Supervisor: Dr. Walter Kosters 1 Contents 1 Introduction

More information

Math in systems neuroscience. Quan Wen

Math in systems neuroscience. Quan Wen Math in systems neuroscience Quan Wen Human brain is perhaps the most complex subject in the universe 1 kg brain 10 11 neurons 180,000 km nerve fiber 10 15 synapses 10 18 synaptic proteins Multiscale

More information

Artificial Neural Network and Fuzzy Logic

Artificial Neural Network and Fuzzy Logic Artificial Neural Network and Fuzzy Logic 1 Syllabus 2 Syllabus 3 Books 1. Artificial Neural Networks by B. Yagnanarayan, PHI - (Cover Topologies part of unit 1 and All part of Unit 2) 2. Neural Networks

More information

Dendritic computation

Dendritic computation Dendritic computation Dendrites as computational elements: Passive contributions to computation Active contributions to computation Examples Geometry matters: the isopotential cell Injecting current I

More information

DEVS Simulation of Spiking Neural Networks

DEVS Simulation of Spiking Neural Networks DEVS Simulation of Spiking Neural Networks Rene Mayrhofer, Michael Affenzeller, Herbert Prähofer, Gerhard Höfer, Alexander Fried Institute of Systems Science Systems Theory and Information Technology Johannes

More information

Outline. NIP: Hebbian Learning. Overview. Types of Learning. Neural Information Processing. Amos Storkey

Outline. NIP: Hebbian Learning. Overview. Types of Learning. Neural Information Processing. Amos Storkey Outline NIP: Hebbian Learning Neural Information Processing Amos Storkey 1/36 Overview 2/36 Types of Learning Types of learning, learning strategies Neurophysiology, LTP/LTD Basic Hebb rule, covariance

More information

Mechanistic modeling of the retinogeniculate circuit in cat

Mechanistic modeling of the retinogeniculate circuit in cat Neurocomputing 44 46 (2002) 973 978 www.elsevier.com/locate/neucom Mechanistic modeling of the retinogeniculate circuit in cat Hans E. Plesser a;, Gaute T. Einevoll a, Paul Heggelund b a Physics Section=ITF,

More information

Computational Explorations in Cognitive Neuroscience Chapter 2

Computational Explorations in Cognitive Neuroscience Chapter 2 Computational Explorations in Cognitive Neuroscience Chapter 2 2.4 The Electrophysiology of the Neuron Some basic principles of electricity are useful for understanding the function of neurons. This is

More information

Time-Skew Hebb Rule in a Nonisopotential Neuron

Time-Skew Hebb Rule in a Nonisopotential Neuron Time-Skew Hebb Rule in a Nonisopotential Neuron Barak A. Pearlmutter To appear (1995) in Neural Computation, 7(4) 76 712 Abstract In an isopotential neuron with rapid response, it has been shown that the

More information

(a) (b) (c) Time Time. Time

(a) (b) (c) Time Time. Time Baltzer Journals Stochastic Neurodynamics and the System Size Expansion Toru Ohira and Jack D. Cowan 2 Sony Computer Science Laboratory 3-4-3 Higashi-gotanda, Shinagawa, Tokyo 4, Japan E-mail: ohiracsl.sony.co.jp

More information

Two dimensional synaptically generated traveling waves in a theta-neuron neuralnetwork

Two dimensional synaptically generated traveling waves in a theta-neuron neuralnetwork Neurocomputing 38}40 (2001) 789}795 Two dimensional synaptically generated traveling waves in a theta-neuron neuralnetwork Remus Osan*, Bard Ermentrout Department of Mathematics, University of Pittsburgh,

More information

Mathematical Models of Dynamic Behavior of Individual Neural Networks of Central Nervous System

Mathematical Models of Dynamic Behavior of Individual Neural Networks of Central Nervous System Mathematical Models of Dynamic Behavior of Individual Neural Networks of Central Nervous System Dimitra Despoina Pagania 1, Adam Adamopoulos 1,2 and Spiridon D. Likothanassis 1 1 Pattern Recognition Laboratory,

More information

Model of a Biological Neuron as a Temporal Neural Network

Model of a Biological Neuron as a Temporal Neural Network Model of a Biological Neuron as a Temporal Neural Network Sean D. Murphy and Edward W. Kairiss Interdepartmental Neuroscience Program, Department of Psychology, and The Center for Theoretical and Applied

More information

Learning at the edge of chaos : Temporal Coupling of Spiking Neurons Controller for Autonomous Robotic

Learning at the edge of chaos : Temporal Coupling of Spiking Neurons Controller for Autonomous Robotic Learning at the edge of chaos : Temporal Coupling of Spiking Neurons Controller for Autonomous Robotic Hédi Soula and Aravind Alwan and Guillaume Beslon ALAB Team of Prisma Lab Computer Science Dept National

More information

Branch-Specific Plasticity Enables Self-Organization of Nonlinear Computation in Single Neurons

Branch-Specific Plasticity Enables Self-Organization of Nonlinear Computation in Single Neurons The Journal of Neuroscience, July 27, 2011 31(30):10787 10802 10787 Development/Plasticity/Repair Branch-Specific Plasticity Enables Self-Organization of Nonlinear Computation in Single Neurons Robert

More information

Spiking Neural Network Training Using Evolutionary Algorithms

Spiking Neural Network Training Using Evolutionary Algorithms Spiking Neural Network Training Using Evolutionary Algorithms N.G. Pavlidis 1,2, D.K. Tasoulis 1,2,V.P.Plagianakos 1,2, G. Nikiforidis 3,4 and M.N. Vrahatis 1,2 1 Department of Mathematics, University

More information

applications to neuroscience

applications to neuroscience UNIVERSITÀ DEGLI STUDI DI TORINO DIPARTIMENTO DI MATEMATICA GIUSEPPE PEANO SCUOLA DI SCIENZE DELLA NATURA Corso di Laurea Magistrale in Matematica Tesi di Laurea Magistrale Comparative correlation analyses

More information

Deconstructing Actual Neurons

Deconstructing Actual Neurons 1 Deconstructing Actual Neurons Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 Reference: The many ionic

More information

arxiv: v1 [cs.ne] 30 Mar 2013

arxiv: v1 [cs.ne] 30 Mar 2013 A Neuromorphic VLSI Design for Spike Timing and Rate Based Synaptic Plasticity Mostafa Rahimi Azghadi a,, Said Al-Sarawi a,, Derek Abbott a, Nicolangelo Iannella a, a School of Electrical and Electronic

More information

INTRODUCTION TO NEURAL NETWORKS

INTRODUCTION TO NEURAL NETWORKS INTRODUCTION TO NEURAL NETWORKS R. Beale & T.Jackson: Neural Computing, an Introduction. Adam Hilger Ed., Bristol, Philadelphia and New York, 990. THE STRUCTURE OF THE BRAIN The brain consists of about

More information

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses

Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Neural Coding: Integrate-and-Fire Models of Single and Multi-Neuron Responses Jonathan Pillow HHMI and NYU http://www.cns.nyu.edu/~pillow Oct 5, Course lecture: Computational Modeling of Neuronal Systems

More information

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation

Nervous Tissue. Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation Nervous Tissue Neurons Electrochemical Gradient Propagation & Transduction Neurotransmitters Temporal & Spatial Summation What is the function of nervous tissue? Maintain homeostasis & respond to stimuli

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

Biosciences in the 21st century

Biosciences in the 21st century Biosciences in the 21st century Lecture 1: Neurons, Synapses, and Signaling Dr. Michael Burger Outline: 1. Why neuroscience? 2. The neuron 3. Action potentials 4. Synapses 5. Organization of the nervous

More information

Reducing the Variability of Neural Responses: A Computational Theory of Spike-Timing-Dependent Plasticity

Reducing the Variability of Neural Responses: A Computational Theory of Spike-Timing-Dependent Plasticity LETTER Communicated by Gal Chechik Reducing the Variability of Neural Responses: A Computational Theory of Spike-Timing-Dependent Plasticity Sander M. Bohte sbohte@cwi.nl Netherlands Centre for Mathematics

More information

Neurons and Nervous Systems

Neurons and Nervous Systems 34 Neurons and Nervous Systems Concept 34.1 Nervous Systems Consist of Neurons and Glia Nervous systems have two categories of cells: Neurons, or nerve cells, are excitable they generate and transmit electrical

More information

DISCRETE EVENT SIMULATION IN THE NEURON ENVIRONMENT

DISCRETE EVENT SIMULATION IN THE NEURON ENVIRONMENT Hines and Carnevale: Discrete event simulation in the NEURON environment Page 1 Preprint of a manuscript that will be published in Neurocomputing. DISCRETE EVENT SIMULATION IN THE NEURON ENVIRONMENT Abstract

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

Lecture 4: Feed Forward Neural Networks

Lecture 4: Feed Forward Neural Networks Lecture 4: Feed Forward Neural Networks Dr. Roman V Belavkin Middlesex University BIS4435 Biological neurons and the brain A Model of A Single Neuron Neurons as data-driven models Neural Networks Training

More information

Layer 3 patchy recurrent excitatory connections may determine the spatial organization of sustained activity in the primate prefrontal cortex

Layer 3 patchy recurrent excitatory connections may determine the spatial organization of sustained activity in the primate prefrontal cortex Neurocomputing 32}33 (2000) 391}400 Layer 3 patchy recurrent excitatory connections may determine the spatial organization of sustained activity in the primate prefrontal cortex Boris S. Gutkin *, G. Bard

More information

Modeling of Retinal Ganglion Cell Responses to Electrical Stimulation with Multiple Electrodes L.A. Hruby Salk Institute for Biological Studies

Modeling of Retinal Ganglion Cell Responses to Electrical Stimulation with Multiple Electrodes L.A. Hruby Salk Institute for Biological Studies Modeling of Retinal Ganglion Cell Responses to Electrical Stimulation with Multiple Electrodes L.A. Hruby Salk Institute for Biological Studies Introduction Since work on epiretinal electrical stimulation

More information

Neuromorphic Network Based on Carbon Nanotube/Polymer Composites

Neuromorphic Network Based on Carbon Nanotube/Polymer Composites Neuromorphic Network Based on Carbon Nanotube/Polymer Composites Andrew Tudor, Kyunghyun Kim, Alex Ming Shen, Chris Shaffer, Dongwon Lee, Cameron D. Danesh, and Yong Chen Department of Mechanical & Aerospace

More information

1 Introduction Tasks like voice or face recognition are quite dicult to realize with conventional computer systems, even for the most powerful of them

1 Introduction Tasks like voice or face recognition are quite dicult to realize with conventional computer systems, even for the most powerful of them Information Storage Capacity of Incompletely Connected Associative Memories Holger Bosch Departement de Mathematiques et d'informatique Ecole Normale Superieure de Lyon Lyon, France Franz Kurfess Department

More information

Neuron Structure. Why? Model 1 Parts of a Neuron. What are the essential structures that make up a neuron?

Neuron Structure. Why? Model 1 Parts of a Neuron. What are the essential structures that make up a neuron? Why? Neuron Structure What are the essential structures that make up a neuron? Cells are specialized for different functions in multicellular organisms. In animals, one unique kind of cell helps organisms

More information

Shigetaka Fujita. Rokkodai, Nada, Kobe 657, Japan. Haruhiko Nishimura. Yashiro-cho, Kato-gun, Hyogo , Japan. Abstract

Shigetaka Fujita. Rokkodai, Nada, Kobe 657, Japan. Haruhiko Nishimura. Yashiro-cho, Kato-gun, Hyogo , Japan. Abstract KOBE-TH-94-07 HUIS-94-03 November 1994 An Evolutionary Approach to Associative Memory in Recurrent Neural Networks Shigetaka Fujita Graduate School of Science and Technology Kobe University Rokkodai, Nada,

More information

Reducing Spike Train Variability: A Computational Theory Of Spike-Timing Dependent Plasticity

Reducing Spike Train Variability: A Computational Theory Of Spike-Timing Dependent Plasticity Reducing Spike Train Variability: A Computational Theory Of Spike-Timing Dependent Plasticity Sander M. Bohte a Michael C. Mozer b a CWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands b Dept. of Computer

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES

Physiology Unit 2. MEMBRANE POTENTIALS and SYNAPSES Physiology Unit 2 MEMBRANE POTENTIALS and SYNAPSES Neuron Communication Neurons are stimulated by receptors on dendrites and cell bodies (soma) Ligand gated ion channels GPCR s Neurons stimulate cells

More information

Chapter 9. Nerve Signals and Homeostasis

Chapter 9. Nerve Signals and Homeostasis Chapter 9 Nerve Signals and Homeostasis A neuron is a specialized nerve cell that is the functional unit of the nervous system. Neural signaling communication by neurons is the process by which an animal

More information

Biological Modeling of Neural Networks:

Biological Modeling of Neural Networks: Week 14 Dynamics and Plasticity 14.1 Reservoir computing - Review:Random Networks - Computing with rich dynamics Biological Modeling of Neural Networks: 14.2 Random Networks - stationary state - chaos

More information

Dendrites - receives information from other neuron cells - input receivers.

Dendrites - receives information from other neuron cells - input receivers. The Nerve Tissue Neuron - the nerve cell Dendrites - receives information from other neuron cells - input receivers. Cell body - includes usual parts of the organelles of a cell (nucleus, mitochondria)

More information

Chapter 48 Neurons, Synapses, and Signaling

Chapter 48 Neurons, Synapses, and Signaling Chapter 48 Neurons, Synapses, and Signaling Concept 48.1 Neuron organization and structure reflect function in information transfer Neurons are nerve cells that transfer information within the body Neurons

More information

Lecture 14 Population dynamics and associative memory; stable learning

Lecture 14 Population dynamics and associative memory; stable learning Lecture 14 Population dynamics and associative memory; stable learning -Introduction -Associative Memory -Dense networks (mean-ield) -Population dynamics and Associative Memory -Discussion Systems or computing

More information

Implementing Synaptic Plasticity in a VLSI Spiking Neural Network Model

Implementing Synaptic Plasticity in a VLSI Spiking Neural Network Model Implementing Synaptic Plasticity in a VLSI Spiking Neural Network Model Johannes Schemmel, Andreas Grübl, Karlheinz Meier and Eilif Mueller Abstract This paper describes an area-efficient mixed-signal

More information

Neural Modeling and Computational Neuroscience. Claudio Gallicchio

Neural Modeling and Computational Neuroscience. Claudio Gallicchio Neural Modeling and Computational Neuroscience Claudio Gallicchio 1 Neuroscience modeling 2 Introduction to basic aspects of brain computation Introduction to neurophysiology Neural modeling: Elements

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

Integration of synaptic inputs in dendritic trees

Integration of synaptic inputs in dendritic trees Integration of synaptic inputs in dendritic trees Theoretical Neuroscience Fabrizio Gabbiani Division of Neuroscience Baylor College of Medicine One Baylor Plaza Houston, TX 77030 e-mail:gabbiani@bcm.tmc.edu

More information

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks

Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized Critical Model Based on Neural Networks Commun. Theor. Phys. (Beijing, China) 42 (2004) pp. 121 125 c International Academic Publishers Vol. 42, No. 1, July 15, 2004 Effects of Interactive Function Forms and Refractoryperiod in a Self-Organized

More information