Homework 3 due Friday, April 26. A couple of examples where the averaging principle from last time can be done analytically.

Size: px
Start display at page:

Download "Homework 3 due Friday, April 26. A couple of examples where the averaging principle from last time can be done analytically."

Transcription

1 Stochastic Averaging Examples Tuesday, April 23, :01 PM Homework 3 due Friday, April 26. A couple of examples where the averaging principle from last time can be done analytically. Based on the alternative nondimensionalization of the Langevin equation (Klein- Kramers equation) from last time, we are set up for the averaging theorem through the following identification of variables: Now applying the averaging theorem, we first want to solve for the quasi-equilibrium distribution of the fast variable, given the slow variable: AppSDE13 Page 1

2 We note this is the same PDE that we've encountered before when we did the reduction to Smoluchowski dynamics; the solution is: The only difference is we can specify completely the function c(x') because we now have a conditional probability density for V', not a joint probability density. This quasi-equilibrium distribution should always be completely specified (no free constants). But what we see here, that is not always the case (see the next example), is that the quasi-equilibrium distribution for the fast variable V' is in fact independent of the slow variable X'. AppSDE13 Page 2

3 Now we average the drift coefficient in the slow equation against this quasiequilibrium probability density for the fast variable. So the averaging theory tells me that: This says that on this nondimensionalized time scale of order 1, the position isn't changing, to leading order. This is a classic symptom of a bad nondimensionalization choice. If one gets results that blow up in the perturbation theory, then probably the reference time scale was chosen too large, so that "the action was jumped over." If one gets boring or trivial results, then the reference time scale was likely chosen to be too short, so that the action didn't start yet. For our Langevin equation example: AppSDE13 Page 3

4 The ratio of the reference time scale in this alternative nondimensionalization to the reference time scale in the good nondimensionalization was The good nondimensionalization is therefore equivalent to rescaling time in the alternative nondimensionalization by That would put the equation in a form that isn't suitable for the averaging theorem. But there are other slow-fast theorems that you can find in Arnold, "Hasselmann's Program Revisited: The Analysis of Stochasticity in Deterministic Climate Models" E, Liu, and Vanden-Eijnden, "Analysis of Multiscale Methods for Stochastic Differential Equations" Liu, "Strong Convergence of Principle of Averaging for Multiscale Stochsatic Dynamical Systems" or compute a perturbation theory from scratch like we did. Let's consider a prototype model for overdamped stochastic dynamics (Smoluchowski dynamics) in a potential: These variables should be thought of as nondimensionalized. intelligently nondimensionalized potential energy The noise term on the slow variables could be thermal, but we've made it more general; noise coefficient AppSDE13 Page 4

5 The noise term on the slow variables could be thermal, but we've made it more general; noise coefficient The idea of this system is that one has taken a given complex system, identified "slow modes" and "fast modes," whose time scales are well separated (by a factor of Write differential equations for these slow and fast variables, nondimensionalize. For example, think in molecular dynamics of: Translation, rotation, large collective modes as slow Bond vibrations as fast Often one deals with systems where order parameters are invoked; these are typically what one thinks of as slow variables. Or one can think more simply of motion of a particle in a potential in multiple dimensions where the potential is steeper in some directions than others (before nondimensionalization.) First we solve the stationary Fokker-Planck equation for the fast variables to get the quasi-equilibrium distribution. Solve by integrating: We conclude: AppSDE13 Page 5

6 We conclude: Now one argues that in fact if the right hand size is not zero, one would not get a normalizable probability density. Easy to show for a constant right hand side. Wave hands about the absence of curl (appeal to some uniqueness theorem about elliptic operators on unbounded domains; I haven't found a precise reference yet) AppSDE13 Page 6

7 Normalization condition determines: In dimensional variables, this would appear as: This looks like a partition function in terms of the fast y variables, for a given value of the slow x variable. And we see that the conditional probability density for the y variable has the form of the canonical distribution with respect to the fast y variable, for a given value of the slow x variable. Now what is the averaged dynamics for the slow variables X? AppSDE13 Page 7

8 So our slow variable dynamics can (in nondimensional variables again) be approximated as follows: AppSDE13 Page 8

9 AppSDE13 Page 9 At least for overdamped, thermally forced physical systems, the effective (averaged) dynamics for slow variables, with the behavior of the coupled fast variables averaged out, is governed by a drift that is proportional to minus the gradient of the free energy (of the fast variables relative to the slow variables.) This kind of picture is common in theoretical physics, and we have simply showed how one can arrive at such descriptions (flow down the free energy) in terms of systematic averaging.

Homework 4 will be posted tonight, due Wednesday, May 8.

Homework 4 will be posted tonight, due Wednesday, May 8. Multiscale Computing and Escape Problems Friday, April 26, 2013 2:01 PM Homework 4 will be posted tonight, due Wednesday, May 8. Multiscale computation is a way to use the ideas of asymptotic reductions

More information

Continuum Limit of Forward Kolmogorov Equation Friday, March 06, :04 PM

Continuum Limit of Forward Kolmogorov Equation Friday, March 06, :04 PM Continuum Limit of Forward Kolmogorov Equation Friday, March 06, 2015 2:04 PM Please note that one of the equations (for ordinary Brownian motion) in Problem 1 was corrected on Wednesday night. And actually

More information

First Passage Time Calculations

First Passage Time Calculations First Passage Time Calculations Friday, April 24, 2015 2:01 PM Homework 4 will be posted over the weekend; due Wednesday, May 13 at 5 PM. We'll now develop some framework for calculating properties of

More information

Langevin Equation Model for Brownian Motion

Langevin Equation Model for Brownian Motion Langevin Equation Model for Brownian Motion Friday, March 13, 2015 2:04 PM Reading: Gardiner Sec. 1.2 Homework 2 due Tuesday, March 17 at 2 PM. The friction constant shape of the particle. depends on the

More information

Let's transfer our results for conditional probability for events into conditional probabilities for random variables.

Let's transfer our results for conditional probability for events into conditional probabilities for random variables. Kolmogorov/Smoluchowski equation approach to Brownian motion Tuesday, February 12, 2013 1:53 PM Readings: Gardiner, Secs. 1.2, 3.8.1, 3.8.2 Einstein Homework 1 due February 22. Conditional probability

More information

Eulerian (Probability-Based) Approach

Eulerian (Probability-Based) Approach Eulerian (Probability-Based) Approach Tuesday, March 03, 2015 1:59 PM Office hours for Wednesday, March 4 shifted to 5:30-6:30 PM. Homework 2 posted, due Tuesday, March 17 at 2 PM. correction: the drifts

More information

NPTEL

NPTEL NPTEL Syllabus Nonequilibrium Statistical Mechanics - Video course COURSE OUTLINE Thermal fluctuations, Langevin dynamics, Brownian motion and diffusion, Fokker-Planck equations, linear response theory,

More information

Stochastic Integration (Simple Version)

Stochastic Integration (Simple Version) Stochastic Integration (Simple Version) Tuesday, March 17, 2015 2:03 PM Reading: Gardiner Secs. 4.1-4.3, 4.4.4 But there are boundary issues when (if ) so we can't apply the standard delta function integration

More information

Homework 3 due Monday, November 19 at 5 PM. Hint added to Problem 2.2.

Homework 3 due Monday, November 19 at 5 PM. Hint added to Problem 2.2. advprobnotes111607b Page 1 Covariance and conditional probability Friday, November 16, 2007 1:59 PM Homework 3 due Monday, November 19 at 5 PM. Hint added to Problem 2.2. If we have two random variables

More information

FDST Markov Chain Models

FDST Markov Chain Models FDST Markov Chain Models Tuesday, February 11, 2014 2:01 PM Homework 1 due Friday, February 21 at 2 PM. Reading: Karlin and Taylor, Sections 2.1-2.3 Almost all of our Markov chain models will be time-homogenous,

More information

Examples of Countable State Markov Chains Thursday, October 16, :12 PM

Examples of Countable State Markov Chains Thursday, October 16, :12 PM stochnotes101608 Page 1 Examples of Countable State Markov Chains Thursday, October 16, 2008 12:12 PM Homework 2 solutions will be posted later today. A couple of quick examples. Queueing model (without

More information

Handbook of Stochastic Methods

Handbook of Stochastic Methods C. W. Gardiner Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences Third Edition With 30 Figures Springer Contents 1. A Historical Introduction 1 1.1 Motivation I 1.2 Some Historical

More information

Mathematical Framework for Stochastic Processes

Mathematical Framework for Stochastic Processes Mathematical Foundations of Discrete-Time Markov Chains Tuesday, February 04, 2014 2:04 PM Homework 1 posted, due Friday, February 21. Reading: Lawler, Ch. 1 Mathematical Framework for Stochastic Processes

More information

Introduction to asymptotic techniques for stochastic systems with multiple time-scales

Introduction to asymptotic techniques for stochastic systems with multiple time-scales Introduction to asymptotic techniques for stochastic systems with multiple time-scales Eric Vanden-Eijnden Courant Institute Motivating examples Consider the ODE {Ẋ = Y 3 + sin(πt) + cos( 2πt) X() = x

More information

Numerical methods in molecular dynamics and multiscale problems

Numerical methods in molecular dynamics and multiscale problems Numerical methods in molecular dynamics and multiscale problems Two examples T. Lelièvre CERMICS - Ecole des Ponts ParisTech & MicMac project-team - INRIA Horizon Maths December 2012 Introduction The aim

More information

STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY

STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY Third edition N.G. VAN KAMPEN Institute for Theoretical Physics of the University at Utrecht ELSEVIER Amsterdam Boston Heidelberg London New York Oxford Paris

More information

Multiscale Analysis of Many Particle Systems with Dynamical Control

Multiscale Analysis of Many Particle Systems with Dynamical Control Michael Herrmann Multiscale Analysis of Many Particle Systems with Dynamical Control joint work with Barbara Niethammer and Juan J.L. Velázquez Kinetic description of multiscale phenomena Archimedes Center

More information

Transience: Whereas a finite closed communication class must be recurrent, an infinite closed communication class can be transient:

Transience: Whereas a finite closed communication class must be recurrent, an infinite closed communication class can be transient: Stochastic2010 Page 1 Long-Time Properties of Countable-State Markov Chains Tuesday, March 23, 2010 2:14 PM Homework 2: if you turn it in by 5 PM on 03/25, I'll grade it by 03/26, but you can turn it in

More information

Weierstrass Products and More on Analytic Continuation

Weierstrass Products and More on Analytic Continuation Weierstrass Products and More on Analytic Continuation Thursday, December 05, 2013 1:58 PM Hard deadline for Homework 4: Wednesday, December 11 at 5 PM. rapid grading on or after Friday, December 6 Final

More information

Handbook of Stochastic Methods

Handbook of Stochastic Methods Springer Series in Synergetics 13 Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences von Crispin W Gardiner Neuausgabe Handbook of Stochastic Methods Gardiner schnell und portofrei

More information

Nested Stochastic Simulation Algorithm for Chemical Kinetic Systems with Disparate Rates. Abstract

Nested Stochastic Simulation Algorithm for Chemical Kinetic Systems with Disparate Rates. Abstract Nested Stochastic Simulation Algorithm for Chemical Kinetic Systems with Disparate Rates Weinan E Department of Mathematics and PACM, Princeton University, Princeton, NJ 08544, USA Di Liu and Eric Vanden-Eijnden

More information

So in terms of conditional probability densities, we have by differentiating this relationship:

So in terms of conditional probability densities, we have by differentiating this relationship: Modeling with Finite State Markov Chains Tuesday, September 27, 2011 1:54 PM Homework 1 due Friday, September 30 at 2 PM. Office hours on 09/28: Only 11 AM-12 PM (not at 3 PM) Important side remark about

More information

5 Applying the Fokker-Planck equation

5 Applying the Fokker-Planck equation 5 Applying the Fokker-Planck equation We begin with one-dimensional examples, keeping g = constant. Recall: the FPE for the Langevin equation with η(t 1 )η(t ) = κδ(t 1 t ) is = f(x) + g(x)η(t) t = x [f(x)p

More information

Different approaches to model wind speed based on stochastic differential equations

Different approaches to model wind speed based on stochastic differential equations 1 Universidad de Castilla La Mancha Different approaches to model wind speed based on stochastic differential equations Rafael Zárate-Miñano Escuela de Ingeniería Minera e Industrial de Almadén Universidad

More information

The Smoluchowski-Kramers Approximation: What model describes a Brownian particle?

The Smoluchowski-Kramers Approximation: What model describes a Brownian particle? The Smoluchowski-Kramers Approximation: What model describes a Brownian particle? Scott Hottovy shottovy@math.arizona.edu University of Arizona Applied Mathematics October 7, 2011 Brown observes a particle

More information

Birth-death chain models (countable state)

Birth-death chain models (countable state) Countable State Birth-Death Chains and Branching Processes Tuesday, March 25, 2014 1:59 PM Homework 3 posted, due Friday, April 18. Birth-death chain models (countable state) S = We'll characterize the

More information

SOME ISSUES OF TURBULENCE

SOME ISSUES OF TURBULENCE ACTA MECHANICA SINICA, Vol.ll, No.2, May 1995 Science Press, Beijing, China Allerton Press, INC., New York, U.S.A. ISSN 0567-7718 SOME ISSUES OF TURBULENCE STATISTICS* Qian Jian (J. Qian r (Dept. of Phys.,

More information

Fokker-Planck Equation with Detailed Balance

Fokker-Planck Equation with Detailed Balance Appendix E Fokker-Planck Equation with Detailed Balance A stochastic process is simply a function of two variables, one is the time, the other is a stochastic variable X, defined by specifying: a: the

More information

Effective dynamics for the (overdamped) Langevin equation

Effective dynamics for the (overdamped) Langevin equation Effective dynamics for the (overdamped) Langevin equation Frédéric Legoll ENPC and INRIA joint work with T. Lelièvre (ENPC and INRIA) Enumath conference, MS Numerical methods for molecular dynamics EnuMath

More information

Energy is always partitioned into the maximum number of states possible.

Energy is always partitioned into the maximum number of states possible. ENTROPY Entropy is another important aspect of thermodynamics. Enthalpy has something to do with the energetic content of a system or a molecule. Entropy has something to do with how that energy is stored.

More information

Homogenization with stochastic differential equations

Homogenization with stochastic differential equations Homogenization with stochastic differential equations Scott Hottovy shottovy@math.arizona.edu University of Arizona Program in Applied Mathematics October 12, 2011 Modeling with SDE Use SDE to model system

More information

Effective dynamics of many-particle systems with dynamical constraint

Effective dynamics of many-particle systems with dynamical constraint Michael Herrmann Effective dnamics of man-particle sstems with dnamical constraint joint work with Barbara Niethammer and Juan J.L. Velázquez Workshop From particle sstems to differential equations WIAS

More information

Table of Contents [ntc]

Table of Contents [ntc] Table of Contents [ntc] 1. Introduction: Contents and Maps Table of contents [ntc] Equilibrium thermodynamics overview [nln6] Thermal equilibrium and nonequilibrium [nln1] Levels of description in statistical

More information

Local vs. Nonlocal Diffusions A Tale of Two Laplacians

Local vs. Nonlocal Diffusions A Tale of Two Laplacians Local vs. Nonlocal Diffusions A Tale of Two Laplacians Jinqiao Duan Dept of Applied Mathematics Illinois Institute of Technology Chicago duan@iit.edu Outline 1 Einstein & Wiener: The Local diffusion 2

More information

MITOCW ocw feb k

MITOCW ocw feb k MITOCW ocw-18-086-24feb2006-220k NARRATOR: The following content is provided by MIT OpenCourseWare under a Creative Commons license. Additional information about our license and MIT OpenCourseWare in general

More information

Once Upon A Time, There Was A Certain Ludwig

Once Upon A Time, There Was A Certain Ludwig Once Upon A Time, There Was A Certain Ludwig Statistical Mechanics: Ensembles, Distributions, Entropy and Thermostatting Srinivas Mushnoori Chemical & Biochemical Engineering Rutgers, The State University

More information

Homework 2 due Friday, October 11 at 5 PM.

Homework 2 due Friday, October 11 at 5 PM. Complex Riemann Surfaces Monday, October 07, 2013 2:01 PM Homework 2 due Friday, October 11 at 5 PM. How should one choose the specific branches to define the Riemann surface? It is a subjective choice,

More information

18.02SC Multivariable Calculus, Fall 2010 Transcript Recitation 34, Integration in Polar Coordinates

18.02SC Multivariable Calculus, Fall 2010 Transcript Recitation 34, Integration in Polar Coordinates 18.02SC Multivariable Calculus, Fall 2010 Transcript Recitation 34, Integration in Polar Coordinates DAVID JORDAN: Hello, and welcome back to recitation. So today I want to practice doing some computings

More information

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

Control Theory in Physics and other Fields of Science

Control Theory in Physics and other Fields of Science Michael Schulz Control Theory in Physics and other Fields of Science Concepts, Tools, and Applications With 46 Figures Sprin ger 1 Introduction 1 1.1 The Aim of Control Theory 1 1.2 Dynamic State of Classical

More information

Classification of Countable State Markov Chains

Classification of Countable State Markov Chains Classification of Countable State Markov Chains Friday, March 21, 2014 2:01 PM How can we determine whether a communication class in a countable state Markov chain is: transient null recurrent positive

More information

Lecture 12: Detailed balance and Eigenfunction methods

Lecture 12: Detailed balance and Eigenfunction methods Lecture 12: Detailed balance and Eigenfunction methods Readings Recommended: Pavliotis [2014] 4.5-4.7 (eigenfunction methods and reversibility), 4.2-4.4 (explicit examples of eigenfunction methods) Gardiner

More information

EQUATION LANGEVIN. Physics, Chemistry and Electrical Engineering. World Scientific. With Applications to Stochastic Problems in. William T.

EQUATION LANGEVIN. Physics, Chemistry and Electrical Engineering. World Scientific. With Applications to Stochastic Problems in. William T. SHANGHAI HONG WorlrfScientific Series krtonttimfjorary Chemical Physics-Vol. 27 THE LANGEVIN EQUATION With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering Third Edition

More information

M4A42 APPLIED STOCHASTIC PROCESSES

M4A42 APPLIED STOCHASTIC PROCESSES M4A42 APPLIED STOCHASTIC PROCESSES G.A. Pavliotis Department of Mathematics Imperial College London, UK LECTURE 1 12/10/2009 Lectures: Mondays 09:00-11:00, Huxley 139, Tuesdays 09:00-10:00, Huxley 144.

More information

Dynamics of a mass-spring-pendulum system with vastly different frequencies

Dynamics of a mass-spring-pendulum system with vastly different frequencies Dynamics of a mass-spring-pendulum system with vastly different frequencies Hiba Sheheitli, hs497@cornell.edu Richard H. Rand, rhr2@cornell.edu Cornell University, Ithaca, NY, USA Abstract. We investigate

More information

Discrete solid-on-solid models

Discrete solid-on-solid models Discrete solid-on-solid models University of Alberta 2018 COSy, University of Manitoba - June 7 Discrete processes, stochastic PDEs, deterministic PDEs Table: Deterministic PDEs Heat-diffusion equation

More information

EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical

EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical EFT Beyond the Horizon: Stochastic Inflation and How Primordial Quantum Fluctuations Go Classical C. P. Burgess, R.H., Gianmassimo Tasinato, Matt Williams, arxiv:1408.5002 Status and Future of Inflation

More information

Functional RG for disordered elastic systems: what is it? what is it useful for?

Functional RG for disordered elastic systems: what is it? what is it useful for? Functional RG for disordered elastic systems: what is it? what is it useful for? tests and applications model: elastic manifolds statics Functional RG measuring R(u) depinning transition activated dynamics

More information

Lecture 12: Detailed balance and Eigenfunction methods

Lecture 12: Detailed balance and Eigenfunction methods Miranda Holmes-Cerfon Applied Stochastic Analysis, Spring 2015 Lecture 12: Detailed balance and Eigenfunction methods Readings Recommended: Pavliotis [2014] 4.5-4.7 (eigenfunction methods and reversibility),

More information

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Noise is often considered as some disturbing component of the system. In particular physical situations, noise becomes

More information

The correlation between stochastic resonance and the average phase-synchronization time of a bistable system driven by colour-correlated noises

The correlation between stochastic resonance and the average phase-synchronization time of a bistable system driven by colour-correlated noises Chin. Phys. B Vol. 19, No. 1 (010) 01050 The correlation between stochastic resonance and the average phase-synchronization time of a bistable system driven by colour-correlated noises Dong Xiao-Juan(

More information

Mathematical Foundations of Finite State Discrete Time Markov Chains

Mathematical Foundations of Finite State Discrete Time Markov Chains Mathematical Foundations of Finite State Discrete Time Markov Chains Friday, February 07, 2014 2:04 PM Stochastic update rule for FSDT Markov Chain requires an initial condition. Most generally, this can

More information

Finite temperature analysis of stochastic networks

Finite temperature analysis of stochastic networks Finite temperature analysis of stochastic networks Maria Cameron University of Maryland USA Stochastic networks with detailed balance * The generator matrix L = ( L ij ), i, j S L ij 0, i, j S, i j j S

More information

PHYS 352. Noise. Noise. fluctuations in voltage (or current) about zero average voltage = 0 average V 2 is not zero

PHYS 352. Noise. Noise. fluctuations in voltage (or current) about zero average voltage = 0 average V 2 is not zero PHYS 352 Noise Noise fluctuations in voltage (or current) about zero average voltage = 0 average V 2 is not zero so, we talk about rms voltage for noise V=0 1 Sources of Intrinsic Noise sometimes noise

More information

Stochastic differential equations in neuroscience

Stochastic differential equations in neuroscience Stochastic differential equations in neuroscience Nils Berglund MAPMO, Orléans (CNRS, UMR 6628) http://www.univ-orleans.fr/mapmo/membres/berglund/ Barbara Gentz, Universität Bielefeld Damien Landon, MAPMO-Orléans

More information

Study of Pre-equilibrium Fission Based on Diffusion Model

Study of Pre-equilibrium Fission Based on Diffusion Model Commun. Theor. Phys. (Beijing, China) 45 (2006) pp. 325 331 c International Academic Publishers Vol. 45, No. 2, February 15, 2006 Study of Pre-equilibrium Fission Based on Diffusion Model SUN Xiao-Jun

More information

Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: Hydrodynamics of SP Hard Rods

Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: Hydrodynamics of SP Hard Rods Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: of SP Hard Rods M. Cristina Marchetti Syracuse University Baskaran & MCM, PRE 77 (2008);

More information

As you enter... (Write down the learning objective, the question and your answer.) What do you think it means for a reaction to occur spontaneously?

As you enter... (Write down the learning objective, the question and your answer.) What do you think it means for a reaction to occur spontaneously? Monday, March 23rd Learning objective 5.13: The student is able to predict whether or not a physical or chemical process is thermodynamically favored by determination of (either quantitatively or qualitatively)

More information

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th Department of Mathematics, University of Wisconsin Madison Venue: van Vleck Hall 911 Monday,

More information

Representation of Markov chains. Stochastic stability AIMS 2014

Representation of Markov chains. Stochastic stability AIMS 2014 Markov chain model Joint with J. Jost and M. Kell Max Planck Institute for Mathematics in the Sciences Leipzig 0th July 204 AIMS 204 We consider f : M! M to be C r for r 0 and a small perturbation parameter

More information

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes

General Physics - E&M (PHY 1308) - Lecture Notes. General Physics - E&M (PHY 1308) Lecture Notes General Physics - E&M (PHY 1308) Lecture Notes Lecture 013: Batteries and Circuit Analysis SteveSekula, 7 March 2011 (created 2 March 2011) Ideal and Real Batteries no tags Let's take a moment to talk

More information

MITOCW 6. Standing Waves Part I

MITOCW 6. Standing Waves Part I MITOCW 6. Standing Waves Part I The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012

Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012 Introduction to Computer Simulations of Soft Matter Methodologies and Applications Boulder July, 19-20, 2012 K. Kremer Max Planck Institute for Polymer Research, Mainz Overview Simulations, general considerations

More information

2012 NCTS Workshop on Dynamical Systems

2012 NCTS Workshop on Dynamical Systems Barbara Gentz gentz@math.uni-bielefeld.de http://www.math.uni-bielefeld.de/ gentz 2012 NCTS Workshop on Dynamical Systems National Center for Theoretical Sciences, National Tsing-Hua University Hsinchu,

More information

Appendix C extra - Concepts of statistical physics Cextra1-1

Appendix C extra - Concepts of statistical physics Cextra1-1 Appendix C extra - Concepts of statistical physics Cextra1-1 Appendix C extra - Concepts of statistical physics A conventional introductory course in physics concentrates on one-body motion: the change

More information

Physics 562: Statistical Mechanics Spring 2003, James P. Sethna Homework 5, due Wednesday, April 2 Latest revision: April 4, 2003, 8:53 am

Physics 562: Statistical Mechanics Spring 2003, James P. Sethna Homework 5, due Wednesday, April 2 Latest revision: April 4, 2003, 8:53 am Physics 562: Statistical Mechanics Spring 2003, James P. Sethna Homework 5, due Wednesday, April 2 Latest revision: April 4, 2003, 8:53 am Reading David Chandler, Introduction to Modern Statistical Mechanics,

More information

Note that. No office hours on Monday October 15 or Wednesday October 17. No class Tuesday October 16

Note that. No office hours on Monday October 15 or Wednesday October 17. No class Tuesday October 16 advprobnotes101207b Page 1 CDFS and coping with random variables that are not purely discrete nor absolutely continuouss Friday, October 12, 2007 2:10 PM Note that No office hours on Monday October 15

More information

MITOCW ocw f99-lec09_300k

MITOCW ocw f99-lec09_300k MITOCW ocw-18.06-f99-lec09_300k OK, this is linear algebra lecture nine. And this is a key lecture, this is where we get these ideas of linear independence, when a bunch of vectors are independent -- or

More information

CSE 559A: Computer Vision

CSE 559A: Computer Vision CSE 559A: Computer Vision Fall 208: T-R: :30-pm @ Lopata 0 Instructor: Ayan Chakrabarti (ayan@wustl.edu). Course Staff: Zhihao ia, Charlie Wu, Han Liu http://www.cse.wustl.edu/~ayan/courses/cse559a/ Sep

More information

Statistical Mechanics

Statistical Mechanics Franz Schwabl Statistical Mechanics Translated by William Brewer Second Edition With 202 Figures, 26 Tables, and 195 Problems 4u Springer Table of Contents 1. Basic Principles 1 1.1 Introduction 1 1.2

More information

Beams III -- Shear Stress: 1

Beams III -- Shear Stress: 1 Beams III -- Shear Stress: 1 Internal Shear Force Shear Stress Formula for Beams The First Area Moment, Q Shear Stresses in Beam Flanges Shear Distribution on an I Beam 1 2 In this stack we will derive

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

I will post Homework 1 soon, probably over the weekend, due Friday, September 30.

I will post Homework 1 soon, probably over the weekend, due Friday, September 30. Random Variables Friday, September 09, 2011 2:02 PM I will post Homework 1 soon, probably over the weekend, due Friday, September 30. No class or office hours next week. Next class is on Tuesday, September

More information

Childrens game Up The River. Each player has three boats; throw a non-standard die, choose one boat to advance. At end of round, every boat is moved

Childrens game Up The River. Each player has three boats; throw a non-standard die, choose one boat to advance. At end of round, every boat is moved Childrens game Up The River. Each player has three boats; throw a non-standard die, choose one boat to advance. At end of round, every boat is moved backwards one step; boats at last step are lost.. 1

More information

Physics 111. Lecture 39 (Walker: 17.6, 18.2) Latent Heat Internal Energy First Law of Thermodynamics May 8, Latent Heats

Physics 111. Lecture 39 (Walker: 17.6, 18.2) Latent Heat Internal Energy First Law of Thermodynamics May 8, Latent Heats Physics 111 Lecture 39 (Walker: 17.6, 18.2) Latent Heat Internal Energy First Law of Thermodynamics May 8, 2009 Lecture 39 1/26 Latent Heats The heat required to convert from one phase to another is called

More information

CSE 559A: Computer Vision Tomorrow Zhihao's Office Hours back in Jolley 309: 10:30am-Noon

CSE 559A: Computer Vision Tomorrow Zhihao's Office Hours back in Jolley 309: 10:30am-Noon CSE 559A: Computer Vision ADMINISTRIVIA Tomorrow Zhihao's Office Hours back in Jolley 309: 0:30am-Noon Fall 08: T-R: :30-pm @ Lopata 0 This Friday: Regular Office Hours Net Friday: Recitation for PSET

More information

Diffusion in the cell

Diffusion in the cell Diffusion in the cell Single particle (random walk) Microscopic view Macroscopic view Measuring diffusion Diffusion occurs via Brownian motion (passive) Ex.: D = 100 μm 2 /s for typical protein in water

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

Linear Response and Onsager Reciprocal Relations

Linear Response and Onsager Reciprocal Relations Linear Response and Onsager Reciprocal Relations Amir Bar January 1, 013 Based on Kittel, Elementary statistical physics, chapters 33-34; Kubo,Toda and Hashitsume, Statistical Physics II, chapter 1; and

More information

Lecture 14: Advanced Conformational Sampling

Lecture 14: Advanced Conformational Sampling Lecture 14: Advanced Conformational Sampling Dr. Ronald M. Levy ronlevy@temple.edu Multidimensional Rough Energy Landscapes MD ~ ns, conformational motion in macromolecules ~µs to sec Interconversions

More information

New Physical Principle for Monte-Carlo simulations

New Physical Principle for Monte-Carlo simulations EJTP 6, No. 21 (2009) 9 20 Electronic Journal of Theoretical Physics New Physical Principle for Monte-Carlo simulations Michail Zak Jet Propulsion Laboratory California Institute of Technology, Advance

More information

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is 1 I. BROWNIAN MOTION The dynamics of small particles whose size is roughly 1 µmt or smaller, in a fluid at room temperature, is extremely erratic, and is called Brownian motion. The velocity of such particles

More information

Der SPP 1167-PQP und die stochastische Wettervorhersage

Der SPP 1167-PQP und die stochastische Wettervorhersage Der SPP 1167-PQP und die stochastische Wettervorhersage Andreas Hense 9. November 2007 Overview The priority program SPP1167: mission and structure The stochastic weather forecasting Introduction, Probabilities

More information

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany Langevin Methods Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 1 D 55128 Mainz Germany Motivation Original idea: Fast and slow degrees of freedom Example: Brownian motion Replace

More information

Sliding Modes in Control and Optimization

Sliding Modes in Control and Optimization Vadim I. Utkin Sliding Modes in Control and Optimization With 24 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest Contents Parti. Mathematical Tools 1

More information

Chemistry 451. Prerequisites: CHEM 013, MATH 141, PHYS 202 or PHYS 212. Prof. Mueller/Sykes Chemistry 451 Spring 2004 Lecture 1-1

Chemistry 451. Prerequisites: CHEM 013, MATH 141, PHYS 202 or PHYS 212. Prof. Mueller/Sykes Chemistry 451 Spring 2004 Lecture 1-1 Chemistry 451 CHEM 451 PHYSICAL CHEMISTRY ( 3 credits) Introduction to chemical principles, including properties of matter and fundamentals of chemical thermodynamics. Prerequisites: CHEM 013, MATH 141,

More information

Instructor (Brad Osgood)

Instructor (Brad Osgood) TheFourierTransformAndItsApplications-Lecture26 Instructor (Brad Osgood): Relax, but no, no, no, the TV is on. It's time to hit the road. Time to rock and roll. We're going to now turn to our last topic

More information

Brief review of Quantum Mechanics (QM)

Brief review of Quantum Mechanics (QM) Brief review of Quantum Mechanics (QM) Note: This is a collection of several formulae and facts that we will use throughout the course. It is by no means a complete discussion of QM, nor will I attempt

More information

February 20, Week 6. Homework #4, Due tonight. Mastering Physics: 9 problems from chapters 1 and 3 Written Question: 3.56

February 20, Week 6. Homework #4, Due tonight. Mastering Physics: 9 problems from chapters 1 and 3 Written Question: 3.56 February 20, Week 6 Today: Chapter 5, Applying Newton s Laws Homework #4, Due tonight. Mastering Physics: 9 problems from chapters 1 and 3 Written Question: 3.56 Exam #2, Next Friday, February 24 Review

More information

Computational Physics. J. M. Thijssen

Computational Physics. J. M. Thijssen Computational Physics J. M. Thijssen Delft University of Technology CAMBRIDGE UNIVERSITY PRESS Contents Preface xi 1 Introduction 1 1.1 Physics and computational physics 1 1.2 Classical mechanics and statistical

More information

COARSE-GRAINING AND THERMODYNAMICS IN FAR-FROM-EQUILIBRIUM SYSTEMS

COARSE-GRAINING AND THERMODYNAMICS IN FAR-FROM-EQUILIBRIUM SYSTEMS Vol. 44 (2013) ACTA PHYSICA POLONICA B No 5 COARSE-GRAINING AND THERMODYNAMICS IN FAR-FROM-EQUILIBRIUM SYSTEMS J. Miguel Rubí, A. Pérez-Madrid Departament de Física Fonamental, Facultat de Física, Universitat

More information

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics Rate Theory (overview) macroscopic view (phenomenological) rate of reactions experiments thermodynamics Van t Hoff & Arrhenius equation microscopic view (atomistic) statistical mechanics transition state

More information

Stochastic2010 Page 1

Stochastic2010 Page 1 Stochastic2010 Page 1 Extinction Probability for Branching Processes Friday, April 02, 2010 2:03 PM Long-time properties for branching processes Clearly state 0 is an absorbing state, forming its own recurrent

More information

16. Working with the Langevin and Fokker-Planck equations

16. Working with the Langevin and Fokker-Planck equations 16. Working with the Langevin and Fokker-Planck equations In the preceding Lecture, we have shown that given a Langevin equation (LE), it is possible to write down an equivalent Fokker-Planck equation

More information

Introduction to Stochastic SIR Model

Introduction to Stochastic SIR Model Introduction to Stochastic R Model Chiu- Yu Yang (Alex), Yi Yang R model is used to model the infection of diseases. It is short for Susceptible- Infected- Recovered. It is important to address that R

More information

Cellular Systems Biology or Biological Network Analysis

Cellular Systems Biology or Biological Network Analysis Cellular Systems Biology or Biological Network Analysis Joel S. Bader Department of Biomedical Engineering Johns Hopkins University (c) 2012 December 4, 2012 1 Preface Cells are systems. Standard engineering

More information

Lecture 2. When we studied dimensional analysis in the last lecture, I defined speed. The average speed for a traveling object is quite simply

Lecture 2. When we studied dimensional analysis in the last lecture, I defined speed. The average speed for a traveling object is quite simply Lecture 2 Speed Displacement Average velocity Instantaneous velocity Cutnell+Johnson: chapter 2.1-2.2 Most physics classes start by studying the laws describing how things move around. This study goes

More information

if we factor non-zero factors out of rows, we factor the same factors out of the determinants.

if we factor non-zero factors out of rows, we factor the same factors out of the determinants. Theorem: Let A n n. Then A 1 exists if and only if det A 0. proof: We already know that A 1 exists if and only if the reduced row echelon form of A is the identity matrix. Now, consider reducing A to its

More information

MITOCW watch?v=fxlzy2l1-4w

MITOCW watch?v=fxlzy2l1-4w MITOCW watch?v=fxlzy2l1-4w PROFESSOR: We spoke about the hydrogen atom. And in the hydrogen atom, we drew the spectrum, so the table, the data of spectrum of a quantum system. So this is a question that

More information