Mathematical Foundations of Finite State Discrete Time Markov Chains

Size: px
Start display at page:

Download "Mathematical Foundations of Finite State Discrete Time Markov Chains"

Transcription

1 Mathematical Foundations of Finite State Discrete Time Markov Chains Friday, February 07, :04 PM Stochastic update rule for FSDT Markov Chain requires an initial condition. Most generally, this can be expressed through an initial probability distribution for the state of the system, expressed via: for This can be prescribed arbitrarily subject to the usual constraints on a probability distribution: An important special case of an initial probability distribution is when the initial condition is known precisely, i.e., with probability 1. Then the initial probability distribution is a discrete delta distribution: We always demand that is independent of the noise stream. An alternative (and in fact the most common) way to describe FSDT Markov chains is based on the Markov property, which we state, for now, for discrete-time stochastic processes. A discrete-time stochastic process property provided that: is said to have the Markov Stoch14 Page 1

2 for all A Markov process is a stochastic process with the Markov property, and intuitively, it means that the future evolution of the Markov process given the current state is independent of further information about the past. In other words, for computing statistics of the future, only the present state matters, not past information. A discrete-time, finite-state Markov process is called an FSDT Markov chain. In the homework you will see that there are two other equivalent ways of describing the Markov property, and you'll be asked to show it. Intuitively, it says the following: Stoch14 Page 2

3 In words, a Markov process is one for which the past is conditionally independent of the future, given the present. An important observation about this version of the Markov property is it shows that the Markov property is not directional in time. The Markov property tells us that to determine the evolution of a FSDT Markov chain, we only need to prescribe the following conditional probabilities: Therefore, to define a FSDT Markov chain model, we can prescribe: 1. Probability Transition Matrix (Matrices) for and A widely used simplification is a time-homogenous FSDT Markov chain, meaning that the statistics regarding the evolution of the FSDT Markov chain are invariant under time translation. Under this condition, we can simply write a single probability transition matrix: for all (analogous to concept of autonomous dynamical system) 2. Initial Probability Distribution But in this matrix formulation, it's convenient to encode the initial probability distribution as a vector: (not too fussy about row vs column vector). To specify a FSDT Markov chain model using this probability transition matrix framework, one needs to prescribe the probability transition matrices which can be arbitrary up to the conditions: Stoch14 Page 3

4 together with an initial probability distribution, encoded via the vector subject to the conditions: The rows of the probability transition matrix have important meaning: The ith row of is the probability distribution for the state of the system at the next epoch, given that Equivalence of Stochastic Update Rule and Probability Transition Matrix Representations First, we show that starting with a stochastic update rule description, the resulting stochastic process must satisfy the Markov property and show that the probability transition matrix can be described in terms of the stochastic update rule. Suppose we are given a stochastic update rule where the is a stream of iid random variables. And we're given some initial probability distribution for but this looks the same in both descriptions. Let's show that the Markov property holds. Stoch14 Page 4

5 Intuitively, using known information to simplify the unknown quantity, but you have to be careful in how you do this. Here is a valid rule for doing this: P(g(X,Y) = c X=x) = P(g(x,Y)=c X=x) with the caveat that if X is a continuous random variable, then g better be continuous as well, otherwise this might not work (Borel paradox). Note carefully that in making the substitution of known information, one should not erase the condition. This is one rule that's used to simplify complicated conditional probability expressions. Another key rule that's used to simplify such expressions is: P(g(Y)=c X=x) = P(g(Y)=c) if Y is independent of X. Both of these rules also work if X, Y are replaced by collections of random variables, i.e., random vectors. To use this rule that independence allows the forgetting of conditions, we'd want to show that is independent of The intuitive reason this is true is that is the new noise that enters at epoch n, and the past and current values have been determined before ever needed to be generated. To show this mathematically, just iterate the following argument: is independent of all so in particular with deterministic and since are independent of so is n>1), so is with deterministic and since are independent of (assuming Continue inductively up to so is with deterministic and since are independent of Stoch14 Page 5

6 We can therefore use this independence of the unknown variables to write: from the conditioned known This establishes the Markov property. So what's the probability transition matrix? By knowing the probability distribution for probability transition matrix. we can compute this Now we'll show that if we're given a FSDT Markov chain defined in terms of a probability transition matrix, then we can also derive a stochastic update rule description. The derivation of this property is the same idea as how one can simulate finite state random variables. Let's consider the "classical" situation where the given pseudorandom number generator generates uniformly distributed random variables on the unit interval. Stoch14 Page 6

7 How would one be able to use this "built-in" random number generator to simulate random variables on a finite state space {1,..,M} with probabilities. Mathematically, one write this as: This is a special case of what's known as the Inverse Transform Method which says that you can use the CDF to define a function g that will map a uniform random variable U to the random variable with that CDF. Another ingredient we will need for our derivation is the concept of an Indicator Function This is a binary random variable defined as follows: So now we're ready for the derivation. We are given the probability transition matrices for and the initial probability distribution, but again the initial probability distribution looks the same in both formulations. We just need to show that we can define a stochastic update rule, and how it's derived from these probability transition matrices. Stoch14 Page 7

8 We'll construct the stochastic update rule that gets the job done. Declare a sequence of iid random variables to all be. Next define the function: Then the stochastic update rule generates a stochastic process with probability transition matrix given. Stoch14 Page 8

Note special lecture series by Emmanuel Candes on compressed sensing Monday and Tuesday 4-5 PM (room information on rpinfo)

Note special lecture series by Emmanuel Candes on compressed sensing Monday and Tuesday 4-5 PM (room information on rpinfo) Formulation of Finite State Markov Chains Friday, September 23, 2011 2:04 PM Note special lecture series by Emmanuel Candes on compressed sensing Monday and Tuesday 4-5 PM (room information on rpinfo)

More information

Let's contemplate a continuous-time limit of the Bernoulli process:

Let's contemplate a continuous-time limit of the Bernoulli process: Mathematical Foundations of Markov Chains Thursday, September 17, 2015 2:04 PM Reading: Lawler Ch. 1 Homework 1 due Friday, October 2 at 5 PM. Office hours today are moved to 6-7 PM. Let's revisit the

More information

No class on Thursday, October 1. No office hours on Tuesday, September 29 and Thursday, October 1.

No class on Thursday, October 1. No office hours on Tuesday, September 29 and Thursday, October 1. Stationary Distributions Monday, September 28, 2015 2:02 PM No class on Thursday, October 1. No office hours on Tuesday, September 29 and Thursday, October 1. Homework 1 due Friday, October 2 at 5 PM strongly

More information

Finite-Horizon Statistics for Markov chains

Finite-Horizon Statistics for Markov chains Analyzing FSDT Markov chains Friday, September 30, 2011 2:03 PM Simulating FSDT Markov chains, as we have said is very straightforward, either by using probability transition matrix or stochastic update

More information

Mathematical Framework for Stochastic Processes

Mathematical Framework for Stochastic Processes Mathematical Foundations of Discrete-Time Markov Chains Tuesday, February 04, 2014 2:04 PM Homework 1 posted, due Friday, February 21. Reading: Lawler, Ch. 1 Mathematical Framework for Stochastic Processes

More information

Countable state discrete time Markov Chains

Countable state discrete time Markov Chains Countable state discrete time Markov Chains Tuesday, March 18, 2014 2:12 PM Readings: Lawler Ch. 2 Karlin & Taylor Chs. 2 & 3 Resnick Ch. 1 Countably infinite state spaces are of practical utility in situations

More information

Eulerian (Probability-Based) Approach

Eulerian (Probability-Based) Approach Eulerian (Probability-Based) Approach Tuesday, March 03, 2015 1:59 PM Office hours for Wednesday, March 4 shifted to 5:30-6:30 PM. Homework 2 posted, due Tuesday, March 17 at 2 PM. correction: the drifts

More information

FDST Markov Chain Models

FDST Markov Chain Models FDST Markov Chain Models Tuesday, February 11, 2014 2:01 PM Homework 1 due Friday, February 21 at 2 PM. Reading: Karlin and Taylor, Sections 2.1-2.3 Almost all of our Markov chain models will be time-homogenous,

More information

Classification of Countable State Markov Chains

Classification of Countable State Markov Chains Classification of Countable State Markov Chains Friday, March 21, 2014 2:01 PM How can we determine whether a communication class in a countable state Markov chain is: transient null recurrent positive

More information

The cost/reward formula has two specific widely used applications:

The cost/reward formula has two specific widely used applications: Applications of Absorption Probability and Accumulated Cost/Reward Formulas for FDMC Friday, October 21, 2011 2:28 PM No class next week. No office hours either. Next class will be 11/01. The cost/reward

More information

Let's transfer our results for conditional probability for events into conditional probabilities for random variables.

Let's transfer our results for conditional probability for events into conditional probabilities for random variables. Kolmogorov/Smoluchowski equation approach to Brownian motion Tuesday, February 12, 2013 1:53 PM Readings: Gardiner, Secs. 1.2, 3.8.1, 3.8.2 Einstein Homework 1 due February 22. Conditional probability

More information

Langevin Equation Model for Brownian Motion

Langevin Equation Model for Brownian Motion Langevin Equation Model for Brownian Motion Friday, March 13, 2015 2:04 PM Reading: Gardiner Sec. 1.2 Homework 2 due Tuesday, March 17 at 2 PM. The friction constant shape of the particle. depends on the

More information

I will post Homework 1 soon, probably over the weekend, due Friday, September 30.

I will post Homework 1 soon, probably over the weekend, due Friday, September 30. Random Variables Friday, September 09, 2011 2:02 PM I will post Homework 1 soon, probably over the weekend, due Friday, September 30. No class or office hours next week. Next class is on Tuesday, September

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Simulated Annealing Barnabás Póczos & Ryan Tibshirani Andrey Markov Markov Chains 2 Markov Chains Markov chain: Homogen Markov chain: 3 Markov Chains Assume that the state

More information

Homework 2 will be posted by tomorrow morning, due Friday, October 16 at 5 PM.

Homework 2 will be posted by tomorrow morning, due Friday, October 16 at 5 PM. Stationary Distributions: Application Monday, October 05, 2015 2:04 PM Homework 2 will be posted by tomorrow morning, due Friday, October 16 at 5 PM. To prepare to describe the conditions under which the

More information

Poisson Point Processes

Poisson Point Processes Poisson Point Processes Tuesday, April 22, 2014 2:00 PM Homework 4 posted; due Wednesday, May 7. We'll begin with Poisson point processes in one dimension which actually are an example of both a Poisson

More information

Birth-death chain models (countable state)

Birth-death chain models (countable state) Countable State Birth-Death Chains and Branching Processes Tuesday, March 25, 2014 1:59 PM Homework 3 posted, due Friday, April 18. Birth-death chain models (countable state) S = We'll characterize the

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

Discrete and Continuous Random Variables

Discrete and Continuous Random Variables Discrete and Continuous Random Variables Friday, January 31, 2014 2:03 PM Homework 1 will be posted over the weekend; due in a couple of weeks. Important examples of random variables on discrete state

More information

Homework 3 posted, due Tuesday, November 29.

Homework 3 posted, due Tuesday, November 29. Classification of Birth-Death Chains Tuesday, November 08, 2011 2:02 PM Homework 3 posted, due Tuesday, November 29. Continuing with our classification of birth-death chains on nonnegative integers. Last

More information

Alternative Characterizations of Markov Processes

Alternative Characterizations of Markov Processes Chapter 10 Alternative Characterizations of Markov Processes This lecture introduces two ways of characterizing Markov processes other than through their transition probabilities. Section 10.1 describes

More information

This is now an algebraic equation that can be solved simply:

This is now an algebraic equation that can be solved simply: Simulation of CTMC Monday, November 23, 2015 1:55 PM Homework 4 will be posted by tomorrow morning, due Friday, December 11 at 5 PM. Let's solve the Kolmogorov forward equation for the Poisson counting

More information

Markov Decision Processes

Markov Decision Processes Markov Decision Processes Lecture notes for the course Games on Graphs B. Srivathsan Chennai Mathematical Institute, India 1 Markov Chains We will define Markov chains in a manner that will be useful to

More information

Alternate Characterizations of Markov Processes

Alternate Characterizations of Markov Processes Chapter 10 Alternate Characterizations of Markov Processes This lecture introduces two ways of characterizing Markov processes other than through their transition probabilities. Section 10.1 addresses

More information

Inventory Model (Karlin and Taylor, Sec. 2.3)

Inventory Model (Karlin and Taylor, Sec. 2.3) stochnotes091108 Page 1 Markov Chain Models and Basic Computations Thursday, September 11, 2008 11:50 AM Homework 1 is posted, due Monday, September 22. Two more examples. Inventory Model (Karlin and Taylor,

More information

Section 9.2 introduces the description of Markov processes in terms of their transition probabilities and proves the existence of such processes.

Section 9.2 introduces the description of Markov processes in terms of their transition probabilities and proves the existence of such processes. Chapter 9 Markov Processes This lecture begins our study of Markov processes. Section 9.1 is mainly ideological : it formally defines the Markov property for one-parameter processes, and explains why it

More information

Reading: Karlin and Taylor Ch. 5 Resnick Ch. 3. A renewal process is a generalization of the Poisson point process.

Reading: Karlin and Taylor Ch. 5 Resnick Ch. 3. A renewal process is a generalization of the Poisson point process. Renewal Processes Wednesday, December 16, 2015 1:02 PM Reading: Karlin and Taylor Ch. 5 Resnick Ch. 3 A renewal process is a generalization of the Poisson point process. The Poisson point process is completely

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos Contents Markov Chain Monte Carlo Methods Sampling Rejection Importance Hastings-Metropolis Gibbs Markov Chains

More information

The Inductive Proof Template

The Inductive Proof Template CS103 Handout 24 Winter 2016 February 5, 2016 Guide to Inductive Proofs Induction gives a new way to prove results about natural numbers and discrete structures like games, puzzles, and graphs. All of

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

, and rewards and transition matrices as shown below:

, and rewards and transition matrices as shown below: CSE 50a. Assignment 7 Out: Tue Nov Due: Thu Dec Reading: Sutton & Barto, Chapters -. 7. Policy improvement Consider the Markov decision process (MDP) with two states s {0, }, two actions a {0, }, discount

More information

ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER. The Kalman Filter. We will be concerned with state space systems of the form

ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER. The Kalman Filter. We will be concerned with state space systems of the form ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER KRISTOFFER P. NIMARK The Kalman Filter We will be concerned with state space systems of the form X t = A t X t 1 + C t u t 0.1 Z t

More information

Lecture 5. If we interpret the index n 0 as time, then a Markov chain simply requires that the future depends only on the present and not on the past.

Lecture 5. If we interpret the index n 0 as time, then a Markov chain simply requires that the future depends only on the present and not on the past. 1 Markov chain: definition Lecture 5 Definition 1.1 Markov chain] A sequence of random variables (X n ) n 0 taking values in a measurable state space (S, S) is called a (discrete time) Markov chain, if

More information

6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011

6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011 6196 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 9, SEPTEMBER 2011 On the Structure of Real-Time Encoding and Decoding Functions in a Multiterminal Communication System Ashutosh Nayyar, Student

More information

1 Maintaining a Dictionary

1 Maintaining a Dictionary 15-451/651: Design & Analysis of Algorithms February 1, 2016 Lecture #7: Hashing last changed: January 29, 2016 Hashing is a great practical tool, with an interesting and subtle theory too. In addition

More information

Any live cell with less than 2 live neighbours dies. Any live cell with 2 or 3 live neighbours lives on to the next step.

Any live cell with less than 2 live neighbours dies. Any live cell with 2 or 3 live neighbours lives on to the next step. 2. Cellular automata, and the SIRS model In this Section we consider an important set of models used in computer simulations, which are called cellular automata (these are very similar to the so-called

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods Prof. Daniel Cremers 11. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Representation of Markov chains. Stochastic stability AIMS 2014

Representation of Markov chains. Stochastic stability AIMS 2014 Markov chain model Joint with J. Jost and M. Kell Max Planck Institute for Mathematics in the Sciences Leipzig 0th July 204 AIMS 204 We consider f : M! M to be C r for r 0 and a small perturbation parameter

More information

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm

Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Markov Chain Monte Carlo The Metropolis-Hastings Algorithm Anthony Trubiano April 11th, 2018 1 Introduction Markov Chain Monte Carlo (MCMC) methods are a class of algorithms for sampling from a probability

More information

Stochastic process. X, a series of random variables indexed by t

Stochastic process. X, a series of random variables indexed by t Stochastic process X, a series of random variables indexed by t X={X(t), t 0} is a continuous time stochastic process X={X(t), t=0,1, } is a discrete time stochastic process X(t) is the state at time t,

More information

18.440: Lecture 33 Markov Chains

18.440: Lecture 33 Markov Chains 18.440: Lecture 33 Markov Chains Scott Sheffield MIT 1 Outline Markov chains Examples Ergodicity and stationarity 2 Outline Markov chains Examples Ergodicity and stationarity 3 Markov chains Consider a

More information

Math 131, Lecture 20: The Chain Rule, continued

Math 131, Lecture 20: The Chain Rule, continued Math 131, Lecture 20: The Chain Rule, continued Charles Staats Friday, 11 November 2011 1 A couple notes on quizzes I have a couple more notes inspired by the quizzes. 1.1 Concerning δ-ε proofs First,

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts 1 Simulation Where real stuff starts ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3 What is a simulation?

More information

IITM-CS6845: Theory Toolkit February 3, 2012

IITM-CS6845: Theory Toolkit February 3, 2012 IITM-CS6845: Theory Toolkit February 3, 2012 Lecture 4 : Derandomizing the logspace algorithm for s-t connectivity Lecturer: N S Narayanaswamy Scribe: Mrinal Kumar Lecture Plan:In this lecture, we will

More information

Decentralized Stochastic Control with Partial Sharing Information Structures: A Common Information Approach

Decentralized Stochastic Control with Partial Sharing Information Structures: A Common Information Approach Decentralized Stochastic Control with Partial Sharing Information Structures: A Common Information Approach 1 Ashutosh Nayyar, Aditya Mahajan and Demosthenis Teneketzis Abstract A general model of decentralized

More information

Markov Chains. CS70 Summer Lecture 6B. David Dinh 26 July UC Berkeley

Markov Chains. CS70 Summer Lecture 6B. David Dinh 26 July UC Berkeley Markov Chains CS70 Summer 2016 - Lecture 6B David Dinh 26 July 2016 UC Berkeley Agenda Quiz is out! Due: Friday at noon. What are Markov Chains? State machine and matrix representations. Hitting Time 1

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technolog Transformations Fall 207 Universit of Teas at Austin CS 354R Game Technolog S. Abraham Transformations What are the? Wh should we care? Universit of Teas at Austin CS 354R

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST Information Theory Lecture 5 Entropy rate and Markov sources STEFAN HÖST Universal Source Coding Huffman coding is optimal, what is the problem? In the previous coding schemes (Huffman and Shannon-Fano)it

More information

And, even if it is square, we may not be able to use EROs to get to the identity matrix. Consider

And, even if it is square, we may not be able to use EROs to get to the identity matrix. Consider .2. Echelon Form and Reduced Row Echelon Form In this section, we address what we are trying to achieve by doing EROs. We are trying to turn any linear system into a simpler one. But what does simpler

More information

16 : Markov Chain Monte Carlo (MCMC)

16 : Markov Chain Monte Carlo (MCMC) 10-708: Probabilistic Graphical Models 10-708, Spring 2014 16 : Markov Chain Monte Carlo MCMC Lecturer: Matthew Gormley Scribes: Yining Wang, Renato Negrinho 1 Sampling from low-dimensional distributions

More information

First Passage Time Calculations

First Passage Time Calculations First Passage Time Calculations Friday, April 24, 2015 2:01 PM Homework 4 will be posted over the weekend; due Wednesday, May 13 at 5 PM. We'll now develop some framework for calculating properties of

More information

1.3 Convergence of Regular Markov Chains

1.3 Convergence of Regular Markov Chains Markov Chains and Random Walks on Graphs 3 Applying the same argument to A T, which has the same λ 0 as A, yields the row sum bounds Corollary 0 Let P 0 be the transition matrix of a regular Markov chain

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Describe and use algorithms for integer operations based on their expansions Relate algorithms for integer

More information

So in terms of conditional probability densities, we have by differentiating this relationship:

So in terms of conditional probability densities, we have by differentiating this relationship: Modeling with Finite State Markov Chains Tuesday, September 27, 2011 1:54 PM Homework 1 due Friday, September 30 at 2 PM. Office hours on 09/28: Only 11 AM-12 PM (not at 3 PM) Important side remark about

More information

6.837 LECTURE 8. Lecture 8 Outline Fall '01. Lecture Fall '01

6.837 LECTURE 8. Lecture 8 Outline Fall '01. Lecture Fall '01 6.837 LECTURE 8 1. 3D Transforms; Part I - Priciples 2. Geometric Data Types 3. Vector Spaces 4. Basis Vectors 5. Linear Transformations 6. Use of Matrix Operators 7. How to Read a Matrix Expression 8.

More information

Modelling in Systems Biology

Modelling in Systems Biology Modelling in Systems Biology Maria Grazia Vigliotti thanks to my students Anton Stefanek, Ahmed Guecioueur Imperial College Formal representation of chemical reactions precise qualitative and quantitative

More information

IEOR 6711: Stochastic Models I. Solutions to Homework Assignment 9

IEOR 6711: Stochastic Models I. Solutions to Homework Assignment 9 IEOR 67: Stochastic Models I Solutions to Homework Assignment 9 Problem 4. Let D n be the random demand of time period n. Clearly D n is i.i.d. and independent of all X k for k < n. Then we can represent

More information

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes?

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes? IEOR 3106: Introduction to Operations Research: Stochastic Models Fall 2006, Professor Whitt SOLUTIONS to Final Exam Chapters 4-7 and 10 in Ross, Tuesday, December 19, 4:10pm-7:00pm Open Book: but only

More information

Analysis of Clocked Sequential Circuits

Analysis of Clocked Sequential Circuits Objectives Analysis of Clocked Sequential Circuits The objectives of this lesson are as follows: Analysis of clocked sequential circuits with an example State Reduction with an example State assignment

More information

Homework set 2 - Solutions

Homework set 2 - Solutions Homework set 2 - Solutions Math 495 Renato Feres Simulating a Markov chain in R Generating sample sequences of a finite state Markov chain. The following is a simple program for generating sample sequences

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

18.600: Lecture 32 Markov Chains

18.600: Lecture 32 Markov Chains 18.600: Lecture 32 Markov Chains Scott Sheffield MIT Outline Markov chains Examples Ergodicity and stationarity Outline Markov chains Examples Ergodicity and stationarity Markov chains Consider a sequence

More information

Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of. F s F t

Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of. F s F t 2.2 Filtrations Let (Ω, F) be a measureable space. A filtration in discrete time is a sequence of σ algebras {F t } such that F t F and F t F t+1 for all t = 0, 1,.... In continuous time, the second condition

More information

Lecture 2: Exchangeable networks and the Aldous-Hoover representation theorem

Lecture 2: Exchangeable networks and the Aldous-Hoover representation theorem Lecture 2: Exchangeable networks and the Aldous-Hoover representation theorem Contents 36-781: Advanced Statistical Network Models Mini-semester II, Fall 2016 Instructor: Cosma Shalizi Scribe: Momin M.

More information

1 Using standard errors when comparing estimated values

1 Using standard errors when comparing estimated values MLPR Assignment Part : General comments Below are comments on some recurring issues I came across when marking the second part of the assignment, which I thought it would help to explain in more detail

More information

CS 378: Computer Game Technology

CS 378: Computer Game Technology CS 378: Computer Game Technolog 3D Engines and Scene Graphs Spring 202 Universit of Teas at Austin CS 378 Game Technolog Don Fussell Representation! We can represent a point, p =,), in the plane! as a

More information

Random Number Generators

Random Number Generators 1/18 Random Number Generators Professor Karl Sigman Columbia University Department of IEOR New York City USA 2/18 Introduction Your computer generates" numbers U 1, U 2, U 3,... that are considered independent

More information

http://www.math.uah.edu/stat/markov/.xhtml 1 of 9 7/16/2009 7:20 AM Virtual Laboratories > 16. Markov Chains > 1 2 3 4 5 6 7 8 9 10 11 12 1. A Markov process is a random process in which the future is

More information

Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information

Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information 204 IEEE International Symposium on Information Theory Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information Omur Ozel, Kaya Tutuncuoglu 2, Sennur Ulukus, and Aylin Yener

More information

Continuum Limit of Forward Kolmogorov Equation Friday, March 06, :04 PM

Continuum Limit of Forward Kolmogorov Equation Friday, March 06, :04 PM Continuum Limit of Forward Kolmogorov Equation Friday, March 06, 2015 2:04 PM Please note that one of the equations (for ordinary Brownian motion) in Problem 1 was corrected on Wednesday night. And actually

More information

Transience: Whereas a finite closed communication class must be recurrent, an infinite closed communication class can be transient:

Transience: Whereas a finite closed communication class must be recurrent, an infinite closed communication class can be transient: Stochastic2010 Page 1 Long-Time Properties of Countable-State Markov Chains Tuesday, March 23, 2010 2:14 PM Homework 2: if you turn it in by 5 PM on 03/25, I'll grade it by 03/26, but you can turn it in

More information

26 : Spectral GMs. Lecturer: Eric P. Xing Scribes: Guillermo A Cidre, Abelino Jimenez G.

26 : Spectral GMs. Lecturer: Eric P. Xing Scribes: Guillermo A Cidre, Abelino Jimenez G. 10-708: Probabilistic Graphical Models, Spring 2015 26 : Spectral GMs Lecturer: Eric P. Xing Scribes: Guillermo A Cidre, Abelino Jimenez G. 1 Introduction A common task in machine learning is to work with

More information

Stochastic Processes

Stochastic Processes qmc082.tex. Version of 30 September 2010. Lecture Notes on Quantum Mechanics No. 8 R. B. Griffiths References: Stochastic Processes CQT = R. B. Griffiths, Consistent Quantum Theory (Cambridge, 2002) DeGroot

More information

REVIEW FOR EXAM III SIMILARITY AND DIAGONALIZATION

REVIEW FOR EXAM III SIMILARITY AND DIAGONALIZATION REVIEW FOR EXAM III The exam covers sections 4.4, the portions of 4. on systems of differential equations and on Markov chains, and..4. SIMILARITY AND DIAGONALIZATION. Two matrices A and B are similar

More information

Systems of distinct representatives/1

Systems of distinct representatives/1 Systems of distinct representatives 1 SDRs and Hall s Theorem Let (X 1,...,X n ) be a family of subsets of a set A, indexed by the first n natural numbers. (We allow some of the sets to be equal.) A system

More information

Mathematics for Decision Making: An Introduction. Lecture 8

Mathematics for Decision Making: An Introduction. Lecture 8 Mathematics for Decision Making: An Introduction Lecture 8 Matthias Köppe UC Davis, Mathematics January 29, 2009 8 1 Shortest Paths and Feasible Potentials Feasible Potentials Suppose for all v V, there

More information

The Matrix Vector Product and the Matrix Product

The Matrix Vector Product and the Matrix Product The Matrix Vector Product and the Matrix Product As we have seen a matrix is just a rectangular array of scalars (real numbers) The size of a matrix indicates its number of rows and columns A matrix with

More information

The Boundary Problem: Markov Chain Solution

The Boundary Problem: Markov Chain Solution MATH 529 The Boundary Problem: Markov Chain Solution Consider a random walk X that starts at positive height j, and on each independent step, moves upward a units with probability p, moves downward b units

More information

A 2. =... = c c N. 's arise from the three types of elementary row operations. If rref A = I its determinant is 1, and A = c 1

A 2. =... = c c N. 's arise from the three types of elementary row operations. If rref A = I its determinant is 1, and A = c 1 Theorem: Let A n n Then A 1 exists if and only if det A 0 proof: We already know that A 1 exists if and only if the reduced row echelon form of A is the identity matrix Now, consider reducing A to its

More information

Stochastic2010 Page 1

Stochastic2010 Page 1 Stochastic2010 Page 1 Extinction Probability for Branching Processes Friday, April 02, 2010 2:03 PM Long-time properties for branching processes Clearly state 0 is an absorbing state, forming its own recurrent

More information

Lecture 17 Brownian motion as a Markov process

Lecture 17 Brownian motion as a Markov process Lecture 17: Brownian motion as a Markov process 1 of 14 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 17 Brownian motion as a Markov process Brownian motion is

More information

Lecture 11: Continuous-valued signals and differential entropy

Lecture 11: Continuous-valued signals and differential entropy Lecture 11: Continuous-valued signals and differential entropy Biology 429 Carl Bergstrom September 20, 2008 Sources: Parts of today s lecture follow Chapter 8 from Cover and Thomas (2007). Some components

More information

16 : Approximate Inference: Markov Chain Monte Carlo

16 : Approximate Inference: Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models 10-708, Spring 2017 16 : Approximate Inference: Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Yuan Yang, Chao-Ming Yen 1 Introduction As the target distribution

More information

ITCT Lecture IV.3: Markov Processes and Sources with Memory

ITCT Lecture IV.3: Markov Processes and Sources with Memory ITCT Lecture IV.3: Markov Processes and Sources with Memory 4. Markov Processes Thus far, we have been occupied with memoryless sources and channels. We must now turn our attention to sources with memory.

More information

Examples of Countable State Markov Chains Thursday, October 16, :12 PM

Examples of Countable State Markov Chains Thursday, October 16, :12 PM stochnotes101608 Page 1 Examples of Countable State Markov Chains Thursday, October 16, 2008 12:12 PM Homework 2 solutions will be posted later today. A couple of quick examples. Queueing model (without

More information

Math 416, Spring 2010 Gram-Schmidt, the QR-factorization, Orthogonal Matrices March 4, 2010 GRAM-SCHMIDT, THE QR-FACTORIZATION, ORTHOGONAL MATRICES

Math 416, Spring 2010 Gram-Schmidt, the QR-factorization, Orthogonal Matrices March 4, 2010 GRAM-SCHMIDT, THE QR-FACTORIZATION, ORTHOGONAL MATRICES Math 46, Spring 00 Gram-Schmidt, the QR-factorization, Orthogonal Matrices March 4, 00 GRAM-SCHMIDT, THE QR-FACTORIZATION, ORTHOGONAL MATRICES Recap Yesterday we talked about several new, important concepts

More information

Operations Research Letters. Instability of FIFO in a simple queueing system with arbitrarily low loads

Operations Research Letters. Instability of FIFO in a simple queueing system with arbitrarily low loads Operations Research Letters 37 (2009) 312 316 Contents lists available at ScienceDirect Operations Research Letters journal homepage: www.elsevier.com/locate/orl Instability of FIFO in a simple queueing

More information

Markov Chains and Stochastic Sampling

Markov Chains and Stochastic Sampling Part I Markov Chains and Stochastic Sampling 1 Markov Chains and Random Walks on Graphs 1.1 Structure of Finite Markov Chains We shall only consider Markov chains with a finite, but usually very large,

More information

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Lecture - 27 Multilayer Feedforward Neural networks with Sigmoidal

More information

Entropy Rate of Stochastic Processes

Entropy Rate of Stochastic Processes Entropy Rate of Stochastic Processes Timo Mulder tmamulder@gmail.com Jorn Peters jornpeters@gmail.com February 8, 205 The entropy rate of independent and identically distributed events can on average be

More information

Lectures on Probability and Statistical Models

Lectures on Probability and Statistical Models Lectures on Probability and Statistical Models Phil Pollett Professor of Mathematics The University of Queensland c These materials can be used for any educational purpose provided they are are not altered

More information

6.5.3 An NP-complete domino game

6.5.3 An NP-complete domino game 26 Chapter 6. Complexity Theory 3SAT NP. We know from Theorem 6.5.7 that this is true. A P 3SAT, for every language A NP. Hence, we have to show this for languages A such as kcolor, HC, SOS, NPrim, KS,

More information

Model Counting for Logical Theories

Model Counting for Logical Theories Model Counting for Logical Theories Wednesday Dmitry Chistikov Rayna Dimitrova Department of Computer Science University of Oxford, UK Max Planck Institute for Software Systems (MPI-SWS) Kaiserslautern

More information

Multimedia Communications. Mathematical Preliminaries for Lossless Compression

Multimedia Communications. Mathematical Preliminaries for Lossless Compression Multimedia Communications Mathematical Preliminaries for Lossless Compression What we will see in this chapter Definition of information and entropy Modeling a data source Definition of coding and when

More information

Section 1.1: Logical Form and Logical Equivalence

Section 1.1: Logical Form and Logical Equivalence Section 1.1: Logical Form and Logical Equivalence An argument is a sequence of statements aimed at demonstrating the truth of an assertion. The assertion at the end of an argument is called the conclusion,

More information

Part I Stochastic variables and Markov chains

Part I Stochastic variables and Markov chains Part I Stochastic variables and Markov chains Random variables describe the behaviour of a phenomenon independent of any specific sample space Distribution function (cdf, cumulative distribution function)

More information

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18.

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18. IEOR 6711: Stochastic Models I, Fall 23, Professor Whitt Solutions to Final Exam: Thursday, December 18. Below are six questions with several parts. Do as much as you can. Show your work. 1. Two-Pump Gas

More information

CSC 446 Notes: Lecture 13

CSC 446 Notes: Lecture 13 CSC 446 Notes: Lecture 3 The Problem We have already studied how to calculate the probability of a variable or variables using the message passing method. However, there are some times when the structure

More information

Simulation. Where real stuff starts

Simulation. Where real stuff starts Simulation Where real stuff starts March 2019 1 ToC 1. What is a simulation? 2. Accuracy of output 3. Random Number Generators 4. How to sample 5. Monte Carlo 6. Bootstrap 2 1. What is a simulation? 3

More information