Physics 562: Statistical Mechanics Spring 2003, James P. Sethna Homework 5, due Wednesday, April 2 Latest revision: April 4, 2003, 8:53 am

Size: px
Start display at page:

Download "Physics 562: Statistical Mechanics Spring 2003, James P. Sethna Homework 5, due Wednesday, April 2 Latest revision: April 4, 2003, 8:53 am"

Transcription

1 Physics 562: Statistical Mechanics Spring 2003, James P. Sethna Homework 5, due Wednesday, April 2 Latest revision: April 4, 2003, 8:53 am Reading David Chandler, Introduction to Modern Statistical Mechanics, chapter 8. Problems (5.1) Pollen and Hard Squares. Q B b Square pollen grain in fluid of oriented square molecules, next to a wall. The thin lines represents the exclusion region around the pollen grain and away from the wall. We model the entropic attraction between a pollen grain and a wall using a two-dimensional ideal gas of classical indistinguishable particles as the fluid. For convenience, we imagine that the pollen grain and the fluid are formed from square particles lined up with the axes of the box, of length B and b, respectively. We assume no interaction between the ideal gas molecules (unlike in problem set 1); the potential energy is infinite, though, if the gas molecules overlap with the pollen grain or with the wall. The container as a whole has one pollen grain, N gas molecules, and total area L L. Assume the pollen grain is close to only one wall. Let the distance from the surface of the wall to the closest face of the pollen grain be Q. (A similar square-particle problem with interacting small molecules was studied by D. Frenkel and A. A. Louis, Phase separation in a binary hard-core mixture. An exact result, Phys.Rev.Lett.68, 3363 (1992).) 1

2 (a) What is the area A(Q 0) available for the gas molecules, in units of (length) 2, when the pollen grain is far from the wall? What is the overlap of the excluded regions, A(0) A( ), when the pollen grain touches the wall, Q = 0? Give formulas for A(Q) as a function of Q for the two relevant regions, Q<band Q>b. (b) What is the configuration-space volume Ω(Q) for the gas, in units of (length) 2N? What is the configurational entropy of the ideal gas, S(Q)? (Write your answers here in terms of A(Q) to simplify grading.) Your answers to part (b) can be viewed as giving a free energy for the pollen grain after integrating over the gas degrees of freedom (also known as a partial trace, or coarse-grained free energy). (c) What is the resulting coarse-grained free energy of the pollen grain, F(Q) = E TS(Q), in the two regions Q>band Q<b?UseF(Q) to calculate the force on the pollen grain for Q<b. Is the force positive (away from the wall) or negative? Why? (d) Directly calculate the force due to the ideal-gas pressure on the far side of the pollen grain, in terms of A(Q). Compare it to the force from the partial trace in part (c). Why is there no balancing force from the other side? Effectively how long is the far side of the pollen grain? 2

3 (5.2) Entropy Increases: Diffusion. We saw that entropy technically doesn t increase for a closed system, for any Hamiltonian, either classical or quantum. However, we can show that entropy increases for most of the coarse-grained effective theories that we use in practice: when we integrate out degrees of freedom, we provide a means for the information about the initial condition to be destroyed. Here you ll show that entropy increases for the diffusion equation. Diffusion Equation Entropy. Let ρ(x, t) obey the one-dimensional diffusion equation ρ/ t = D 2 ρ/ x 2. Assume that the density ρ and all its gradients die away rapidly at x = ±. Derive a formula for the time derivative of the entropy S = k B ρ(x)logρ(x) dx and show that it strictly increases in time. (Hint: integrate by parts. You should get an integral of a positive definite quantity.) (5.3) Solving the Diffusion Equation. (Optional: for those for whom Fourier and Greens function methods are unfamiliar.) If needed: Matthews and Walker, Mathematical Methods of Physics, Chapter 8.4 p (Diffusion Equation). Consider a one-dimensional diffusion equation ρ/ t = D 2 ρ/ x 2, with initial condition periodic in space with period L, consisting of a δ function at every x n = nl: ρ(x, 0) = n= δ(x nl). (a) Using the Greens function method, give an approximate expression for the the density, valid at short times and for L/2 <x<l/2, involving only one term (not an infinite sum). (Hint: how many of the Gaussians are important in this region at early times?) (b) Using the Fourier method, give an approximate expression for the density, valid at long times, involving only two terms (not an infinite sum). (Hint: how many of the wavelengths are important at late times?) (c) Give a characteristic time τ in terms of L and D, such that your answer in (a) is valid for t τ and your answer in (b) is valid for t τ. Also, you may assume n ρ/ x n log ρ goes to zero at x = ±, even though log ρ goes to. If you use a Fourier transform of ρ(x, 0), you ll need to sum over n to get δ-function contributions at discrete values of k = 2πm/L. If you use a Fourier series, you ll need to unfold the sum over n of partial Gaussians into a single integral over an unbounded Gaussian. 3

4 (5.4) Coarse-Grained Magnetic Dynamics. If needed: Matthews and Walker, Mathematical Methods of Physics, Section 4.2 (Fourier Transforms) and Chapter 12 (Calculus of Variations). A one-dimensional classical magnet above its critical point is described by a free energy density F[M] =(C/2)( M) 2 +(B/2)M 2 (5.4.1) where M(x) is the variation of the magnetization with position along the single coordinate x. The average magnetization is zero, and the total free energy of the configuration M(x) is F [M] = F[M]dx. The methods we developed in class to find the correlation functions and susceptibilities for the diffusion equation can be applied with small modifications to this (mathematically more challenging) magnetic system. Assume for simplicity that the magnet is of length L, and that it has periodic boundary conditions. We can then write M(x) in a Fourier series M(x) = n= M n exp(ik n x) (5.4.2) with k n =2πn/L and L M n =(1/L) 0 M(x)exp( ik n x). (5.4.3) (a) Show that (as always, for linear systems with translation invariance) the free energy F [M], when written in terms of Mn, becomes an independent sum over modes, with a quadratic energy in each mode. What is M n 2, by equipartition? Argue that M m Mn = k B T L(Ck 2 n + B) δ mn (5.4.4) (b) Calculate the equal-time correlation function for the magnetization in equilibrium, C(x, 0) = M(x, 0)M(0, 0). (First, find the formula for the magnet of length L, in terms of a sum over n. Then convert the sum to an integral: dk k δk = 2π/L k.) You ll want to know that the Fourier transform e ikx /(1 + a 2 k 2 ) dk =(π/a)exp( x /a). Assume the magnetic order parameter is not conserved, and is overdamped, so the time derivative of M is given by the mobility γ times the variational derivative of the free I d call them harmonic oscillators, except that we don t have any kinetic energy in our model, so they don t really oscillate. 4

5 energy: M / t = γδf/δm. M evolves in the direction of the total force on it. The average M is over all future evolutions given the initial condition. The term δf/δm is the variational derivative: δf = F [M + δm] F [M] = F[M + δm] F[M] dx = (δf/δm)δm dx. (5.4.5) (c) Calculate δf/δm. As in the derivation of the Euler-Lagrange equations, you ll need to integrate one term by parts to pull things out of the integral. (d) From your answer to part (c), calculate the Greens function for M, G(x, t) giving the time evolution of an initial condition M(x, 0) = G(x, 0) = δ(x). (Hint: You can solve this with Fourier transforms.) The Onsager regression hypothesis tells us that the time evolution of a spontaneous fluctuation (like those giving C(r, 0) in part (b)) is given by the same formula as the evolution of an imposed initial condition (given by the Greens function of part (d)). C(x, t) = M(x, t)m(0, 0) = M(x, 0)G(x x,t) dx M(0, 0) = C(x, 0)G(x x,t) dx. (5.4.6) (e) Using the Onsager regression hypothesis calculate the space-time correlation function C(x, t) = M(x, t)m(0, 0). (This part is a challenge: your answer will involve the error function.) If it s convenient, plot it for short times and for long times: does it look like exp( y ) in one limit and exp( y 2 ) in another? The fluctuation dissipation theorem can be used to relate the susceptibility χ(x, t) to ta time dependent impulse to the correlation function C(x, t) (see Chandler, p. 257). (f) Calculate the susceptibility χ(x, t) from C(x, t). Start by giving the abstract formula (so we can grade it), and then plug in your answer from part (e). This formula is analogous to taking the gradient of a scalar function of a vector, f( y + δ) f( y) f δ, with the dot product for vector gradient replaced by the integral over x for derivative in function space. 5

6 (5.5) The Ising Model: Correlations, Response, and the Fluctuation-Dissipation Theorem. This problem again uses the program ising, downloadable from This time we ll consider the Ising Hamiltonian in a time-dependent external field H(t), H = J S i S j H(t) ij i S i, 3.7.1, and look at the fluctuations and response of the time-dependent magnetization M(t) = i S i(t). Our Ising model simulation outputs both the time-dependent magnetization per spin m(t) =(1/N ) i S i and the time-time correlation function of the magnetization per spin, g(t) = (m(0) m )(m(t) m ). (5.5.1) (select autocorrelation in the menu above the plot). We ll be working above T c,so m 0. Note, as before, that most of our formulas in class are in terms of the total magnetization M = Nm and its correlation function G = N 2 g. The time-time correlation function will start non-zero, and should die to zero over time. Suppose we start with a non-zero small external field, and turn it off at t =0: H(t) = H 0 Θ( t)? The magnetization M(t) will be non-zero at t = 0, but will decrease to zero over time. By the Onsager regression hypothesis, these two time decays should look the same. Run the Ising model, changing the size to Equilibrate at T = 3 and H = 0, reset, do a good measurement of the time-time autocorrelation function, and copy graph. Rescale the graph using configure to focus on the short times where things are interesting. Now equilibrate at T =3,H =0.05, set H =0andreset, and run for a short time. (a) Does the shape and the time-scale of the magnetization decay look the same as that of the autocorrelation function? Note down the values for g(0), G(0), m(0), and M(0). Response Functions and the Fluctuation-Dissipation Theorem. The response function χ(t) gives the change in magnetization due to an infinitesimal impulse in the external field H. By superposition, we can use χ(t) to generate the linear response to any external perturbation. If we impose a small time-dependent external field H(t), the average magnetization M(t) M = t dt χ(t t )H(t ), (5.5.2) where M is the equilibrium magnetization without the extra field H(t) (zero for us, above T c ). (b) Using equation (5.5.2), write M(t) for the step down H(t) =H 0 Θ( t), in terms of χ(t). 6

7 The fluctuation-dissipation theorem states that this response χ(t) = βdg(t)/dt. (5.5.3) where G(t) = (M(0) M )(M(t) M ) is the time-time correlation function for the total magnetization. (c) Use equation (5.5.3) and your answer to part (b) to predict the relationship between the demagnetization M(t) and the correlation G(t) you measured in part (a). How does your analytical ratio compare with the t =0ratioyounoteddowninpart(a)? 7

Physics 562: Statistical Mechanics Spring 2002, James P. Sethna Prelim, due Wednesday, March 13 Latest revision: March 22, 2002, 10:9

Physics 562: Statistical Mechanics Spring 2002, James P. Sethna Prelim, due Wednesday, March 13 Latest revision: March 22, 2002, 10:9 Physics 562: Statistical Mechanics Spring 2002, James P. Sethna Prelim, due Wednesday, March 13 Latest revision: March 22, 2002, 10:9 Open Book Exam Work on your own for this exam. You may consult your

More information

In-class exercises Day 1

In-class exercises Day 1 Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 11 Exercises due Mon Apr 16 Last correction at April 16, 2018, 11:19 am c 2018, James Sethna,

More information

Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics

Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics Time-Dependent Statistical Mechanics 5. The classical atomic fluid, classical mechanics, and classical equilibrium statistical mechanics c Hans C. Andersen October 1, 2009 While we know that in principle

More information

VIII.B Equilibrium Dynamics of a Field

VIII.B Equilibrium Dynamics of a Field VIII.B Equilibrium Dynamics of a Field The next step is to generalize the Langevin formalism to a collection of degrees of freedom, most conveniently described by a continuous field. Let us consider the

More information

Physics 4488/6562: Statistical Mechanics Material for Week 2 Exercises due Monday Feb 5 Last

Physics 4488/6562: Statistical Mechanics   Material for Week 2 Exercises due Monday Feb 5 Last Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 2 Exercises due Monday Feb 5 Last correction at January 26, 218, 11:5 am c 217, James Sethna,

More information

Linear Response and Onsager Reciprocal Relations

Linear Response and Onsager Reciprocal Relations Linear Response and Onsager Reciprocal Relations Amir Bar January 1, 013 Based on Kittel, Elementary statistical physics, chapters 33-34; Kubo,Toda and Hashitsume, Statistical Physics II, chapter 1; and

More information

Physics 218: Waves and Thermodynamics Fall 2003, James P. Sethna Homework 11, due Monday Nov. 24 Latest revision: November 16, 2003, 9:56

Physics 218: Waves and Thermodynamics Fall 2003, James P. Sethna Homework 11, due Monday Nov. 24 Latest revision: November 16, 2003, 9:56 Physics 218: Waves and Thermodynamics Fall 2003, James P. Sethna Homework 11, due Monday Nov. 24 Latest revision: November 16, 2003, 9:56 Reading Feynman, I.39 The Kinetic Theory of Gases, I.40 Principles

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Phase transitions and critical phenomena

Phase transitions and critical phenomena Phase transitions and critical phenomena Classification of phase transitions. Discontinous (st order) transitions Summary week -5 st derivatives of thermodynamic potentials jump discontinously, e.g. (

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 5, April 14, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics 1 Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 5, April 14, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/

More information

Physics 127b: Statistical Mechanics. Landau Theory of Second Order Phase Transitions. Order Parameter

Physics 127b: Statistical Mechanics. Landau Theory of Second Order Phase Transitions. Order Parameter Physics 127b: Statistical Mechanics Landau Theory of Second Order Phase Transitions Order Parameter Second order phase transitions occur when a new state of reduced symmetry develops continuously from

More information

J10M.1 - Rod on a Rail (M93M.2)

J10M.1 - Rod on a Rail (M93M.2) Part I - Mechanics J10M.1 - Rod on a Rail (M93M.2) J10M.1 - Rod on a Rail (M93M.2) s α l θ g z x A uniform rod of length l and mass m moves in the x-z plane. One end of the rod is suspended from a straight

More information

= k, (2) p = h λ. x o = f1/2 o a. +vt (4)

= k, (2) p = h λ. x o = f1/2 o a. +vt (4) Traveling Functions, Traveling Waves, and the Uncertainty Principle R.M. Suter Department of Physics, Carnegie Mellon University Experimental observations have indicated that all quanta have a wave-like

More information

PHYSICS 219 Homework 2 Due in class, Wednesday May 3. Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235.

PHYSICS 219 Homework 2 Due in class, Wednesday May 3. Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235. PHYSICS 219 Homework 2 Due in class, Wednesday May 3 Note: Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235. No lecture: May 8 (I m away at a meeting) and May 29 (holiday).

More information

Explanations of animations

Explanations of animations Explanations of animations This directory has a number of animations in MPEG4 format showing the time evolutions of various starting wave functions for the particle-in-a-box, the free particle, and the

More information

theory, which can be quite useful in more complex systems.

theory, which can be quite useful in more complex systems. Physics 7653: Statistical Physics http://www.physics.cornell.edu/sethna/teaching/653/ In Class Exercises Last correction at August 30, 2018, 11:55 am c 2017, James Sethna, all rights reserved 9.5 Landau

More information

Lecture 1: The Equilibrium Green Function Method

Lecture 1: The Equilibrium Green Function Method Lecture 1: The Equilibrium Green Function Method Mark Jarrell April 27, 2011 Contents 1 Why Green functions? 2 2 Different types of Green functions 4 2.1 Retarded, advanced, time ordered and Matsubara

More information

Ginzburg-Landau length scales

Ginzburg-Landau length scales 597 Lecture 6. Ginzburg-Landau length scales This lecture begins to apply the G-L free energy when the fields are varying in space, but static in time hence a mechanical equilibrium). Thus, we will be

More information

P3317 HW from Lecture and Recitation 10

P3317 HW from Lecture and Recitation 10 P3317 HW from Lecture 18+19 and Recitation 10 Due Nov 6, 2018 Problem 1. Equipartition Note: This is a problem from classical statistical mechanics. We will need the answer for the next few problems, and

More information

Brownian Motion and Langevin Equations

Brownian Motion and Langevin Equations 1 Brownian Motion and Langevin Equations 1.1 Langevin Equation and the Fluctuation- Dissipation Theorem The theory of Brownian motion is perhaps the simplest approximate way to treat the dynamics of nonequilibrium

More information

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008 Problem Set 1 Due: Friday, Aug 29th, 2008 Course page: http://www.physics.wustl.edu/~alford/p217/ Review of complex numbers. See appendix K of the textbook. 1. Consider complex numbers z = 1.5 + 0.5i and

More information

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0.

C. Show your answer in part B agrees with your answer in part A in the limit that the constant c 0. Problem #1 A. A projectile of mass m is shot vertically in the gravitational field. Its initial velocity is v o. Assuming there is no air resistance, how high does m go? B. Now assume the projectile is

More information

I. Collective Behavior, From Particles to Fields

I. Collective Behavior, From Particles to Fields I. Collective Behavior, From Particles to Fields I.A Introduction The object of the first part of this course was to introduce the principles of statistical mechanics which provide a bridge between the

More information

(a) What are the probabilities associated with finding the different allowed values of the z-component of the spin after time T?

(a) What are the probabilities associated with finding the different allowed values of the z-component of the spin after time T? 1. Quantum Mechanics (Fall 2002) A Stern-Gerlach apparatus is adjusted so that the z-component of the spin of an electron (spin-1/2) transmitted through it is /2. A uniform magnetic field in the x-direction

More information

Section B. Electromagnetism

Section B. Electromagnetism Prelims EM Spring 2014 1 Section B. Electromagnetism Problem 0, Page 1. An infinite cylinder of radius R oriented parallel to the z-axis has uniform magnetization parallel to the x-axis, M = m 0ˆx. Calculate

More information

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University

Taylor Polynomials. James K. Peterson. Department of Biological Sciences and Department of Mathematical Sciences Clemson University James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 24, 2013 Outline 1 First Order Approximation s Second Order Approximations 2 Approximation

More information

Kinetic Theory 1 / Probabilities

Kinetic Theory 1 / Probabilities Kinetic Theory 1 / Probabilities 1. Motivations: statistical mechanics and fluctuations 2. Probabilities 3. Central limit theorem 1 Reading check Main concept introduced in first half of this chapter A)Temperature

More information

Lecture 11: Long-wavelength expansion in the Neel state Energetic terms

Lecture 11: Long-wavelength expansion in the Neel state Energetic terms Lecture 11: Long-wavelength expansion in the Neel state Energetic terms In the last class we derived the low energy effective Hamiltonian for a Mott insulator. This derivation is an example of the kind

More information

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight MATHEMATICAL TRIPOS Part III Friday 31 May 00 9 to 1 PAPER 71 COSMOLOGY Attempt THREE questions There are seven questions in total The questions carry equal weight You may make free use of the information

More information

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end.

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. Math 307, Midterm 2 Winter 2013 Name: Instructions. DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. There

More information

4. The Green Kubo Relations

4. The Green Kubo Relations 4. The Green Kubo Relations 4.1 The Langevin Equation In 1828 the botanist Robert Brown observed the motion of pollen grains suspended in a fluid. Although the system was allowed to come to equilibrium,

More information

Copyright 2001 University of Cambridge. Not to be quoted or copied without permission.

Copyright 2001 University of Cambridge. Not to be quoted or copied without permission. Course MP3 Lecture 4 13/11/2006 Monte Carlo method I An introduction to the use of the Monte Carlo method in materials modelling Dr James Elliott 4.1 Why Monte Carlo? The name derives from the association

More information

2.3 Damping, phases and all that

2.3 Damping, phases and all that 2.3. DAMPING, PHASES AND ALL THAT 107 2.3 Damping, phases and all that If we imagine taking our idealized mass on a spring and dunking it in water or, more dramatically, in molasses), then there will be

More information

Major Concepts Lecture #11 Rigoberto Hernandez. TST & Transport 1

Major Concepts Lecture #11 Rigoberto Hernandez. TST & Transport 1 Major Concepts Onsager s Regression Hypothesis Relaxation of a perturbation Regression of fluctuations Fluctuation-Dissipation Theorem Proof of FDT & relation to Onsager s Regression Hypothesis Response

More information

16 Singular perturbations

16 Singular perturbations 18.354J Nonlinear Dynamics II: Continuum Systems Lecture 1 6 Spring 2015 16 Singular perturbations The singular perturbation is the bogeyman of applied mathematics. The fundamental problem is to ask: when

More information

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad Fundamentals of Dynamical Systems / Discrete-Time Models Dr. Dylan McNamara people.uncw.edu/ mcnamarad Dynamical systems theory Considers how systems autonomously change along time Ranges from Newtonian

More information

Problem 1: Lagrangians and Conserved Quantities. Consider the following action for a particle of mass m moving in one dimension

Problem 1: Lagrangians and Conserved Quantities. Consider the following action for a particle of mass m moving in one dimension 105A Practice Final Solutions March 13, 01 William Kelly Problem 1: Lagrangians and Conserved Quantities Consider the following action for a particle of mass m moving in one dimension S = dtl = mc dt 1

More information

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky

MD Thermodynamics. Lecture 12 3/26/18. Harvard SEAS AP 275 Atomistic Modeling of Materials Boris Kozinsky MD Thermodynamics Lecture 1 3/6/18 1 Molecular dynamics The force depends on positions only (not velocities) Total energy is conserved (micro canonical evolution) Newton s equations of motion (second order

More information

G : Statistical Mechanics

G : Statistical Mechanics G25.2651: Statistical Mechanics Notes for Lecture 15 Consider Hamilton s equations in the form I. CLASSICAL LINEAR RESPONSE THEORY q i = H p i ṗ i = H q i We noted early in the course that an ensemble

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements 1 Historical introduction The Schrödinger equation for one-particle problems 3 Mathematical tools for quantum chemistry 4 The postulates of quantum mechanics 5 Atoms and the periodic table of chemical

More information

Collective behavior, from particles to fields

Collective behavior, from particles to fields 978-0-51-87341-3 - Statistical Physics of Fields 1 Collective behavior, from particles to fields 1.1 Introduction One of the most successful aspects of physics in the twentieth century was revealing the

More information

Mechanics IV: Oscillations

Mechanics IV: Oscillations Mechanics IV: Oscillations Chapter 4 of Morin covers oscillations, including damped and driven oscillators in detail. Also see chapter 10 of Kleppner and Kolenkow. For more on normal modes, see any book

More information

Path integrals and the classical approximation 1 D. E. Soper 2 University of Oregon 14 November 2011

Path integrals and the classical approximation 1 D. E. Soper 2 University of Oregon 14 November 2011 Path integrals and the classical approximation D. E. Soper University of Oregon 4 November 0 I offer here some background for Sections.5 and.6 of J. J. Sakurai, Modern Quantum Mechanics. Introduction There

More information

Convolution and Linear Systems

Convolution and Linear Systems CS 450: Introduction to Digital Signal and Image Processing Bryan Morse BYU Computer Science Introduction Analyzing Systems Goal: analyze a device that turns one signal into another. Notation: f (t) g(t)

More information

Symmetry of the Dielectric Tensor

Symmetry of the Dielectric Tensor Symmetry of the Dielectric Tensor Curtis R. Menyuk June 11, 2010 In this note, I derive the symmetry of the dielectric tensor in two ways. The derivations are taken from Landau and Lifshitz s Statistical

More information

Bound and Scattering Solutions for a Delta Potential

Bound and Scattering Solutions for a Delta Potential Physics 342 Lecture 11 Bound and Scattering Solutions for a Delta Potential Lecture 11 Physics 342 Quantum Mechanics I Wednesday, February 20th, 2008 We understand that free particle solutions are meant

More information

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Mesoscale Simulation Methods Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Outline What is mesoscale? Mesoscale statics and dynamics through coarse-graining. Coarse-grained equations

More information

Classical Statistical Mechanics: Part 1

Classical Statistical Mechanics: Part 1 Classical Statistical Mechanics: Part 1 January 16, 2013 Classical Mechanics 1-Dimensional system with 1 particle of mass m Newton s equations of motion for position x(t) and momentum p(t): ẋ(t) dx p =

More information

Metropolis, 2D Ising model

Metropolis, 2D Ising model Metropolis, 2D Ising model You can get visual understanding from the java applets available, like: http://physics.ucsc.edu/~peter/ising/ising.html Average value of spin is magnetization. Abs of this as

More information

Continuum Limit and Fourier Series

Continuum Limit and Fourier Series Chapter 6 Continuum Limit and Fourier Series Continuous is in the eye of the beholder Most systems that we think of as continuous are actually made up of discrete pieces In this chapter, we show that a

More information

Solutions 2: Simple Harmonic Oscillator and General Oscillations

Solutions 2: Simple Harmonic Oscillator and General Oscillations Massachusetts Institute of Technology MITES 2017 Physics III Solutions 2: Simple Harmonic Oscillator and General Oscillations Due Wednesday June 21, at 9AM under Rene García s door Preface: This problem

More information

Quantum Mechanics II

Quantum Mechanics II Quantum Mechanics II Prof. Boris Altshuler April, 20 Lecture 2. Scattering Theory Reviewed Remember what we have covered so far for scattering theory. We separated the Hamiltonian similar to the way in

More information

Non-equilibrium phenomena and fluctuation relations

Non-equilibrium phenomena and fluctuation relations Non-equilibrium phenomena and fluctuation relations Lamberto Rondoni Politecnico di Torino Beijing 16 March 2012 http://www.rarenoise.lnl.infn.it/ Outline 1 Background: Local Thermodyamic Equilibrium 2

More information

Linear second-order differential equations with constant coefficients and nonzero right-hand side

Linear second-order differential equations with constant coefficients and nonzero right-hand side Linear second-order differential equations with constant coefficients and nonzero right-hand side We return to the damped, driven simple harmonic oscillator d 2 y dy + 2b dt2 dt + ω2 0y = F sin ωt We note

More information

Noise, AFMs, and Nanomechanical Biosensors

Noise, AFMs, and Nanomechanical Biosensors Noise, AFMs, and Nanomechanical Biosensors: Lancaster University, November, 2005 1 Noise, AFMs, and Nanomechanical Biosensors with Mark Paul (Virginia Tech), and the Caltech BioNEMS Collaboration Support:

More information

F(t) equilibrium under H 0

F(t) equilibrium under H 0 Physics 17b: Statistical Mechanics Linear Response Theory Useful references are Callen and Greene [1], and Chandler [], chapter 16. Task To calculate the change in a measurement B t) due to the application

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

Quantum Field Theory III

Quantum Field Theory III Quantum Field Theory III Prof. Erick Weinberg March 9, 0 Lecture 5 Let s say something about SO(0. We know that in SU(5 the standard model fits into 5 0(. In SO(0 we know that it contains SU(5, in two

More information

Potentially useful reading Sakurai and Napolitano, sections 1.5 (Rotation), Schumacher & Westmoreland chapter 2

Potentially useful reading Sakurai and Napolitano, sections 1.5 (Rotation), Schumacher & Westmoreland chapter 2 Problem Set 2: Interferometers & Random Matrices Graduate Quantum I Physics 6572 James Sethna Due Friday Sept. 5 Last correction at August 28, 2014, 8:32 pm Potentially useful reading Sakurai and Napolitano,

More information

SOLUTIONS for Homework #2. 1. The given wave function can be normalized to the total probability equal to 1, ψ(x) = Ne λ x.

SOLUTIONS for Homework #2. 1. The given wave function can be normalized to the total probability equal to 1, ψ(x) = Ne λ x. SOLUTIONS for Homework #. The given wave function can be normalized to the total probability equal to, ψ(x) = Ne λ x. () To get we choose dx ψ(x) = N dx e λx =, () 0 N = λ. (3) This state corresponds to

More information

t = no of steps of length s

t = no of steps of length s s t = no of steps of length s Figure : Schematic of the path of a diffusing molecule, for example, one in a gas or a liquid. The particle is moving in steps of length s. For a molecule in a liquid the

More information

1 Infinite-Dimensional Vector Spaces

1 Infinite-Dimensional Vector Spaces Theoretical Physics Notes 4: Linear Operators In this installment of the notes, we move from linear operators in a finitedimensional vector space (which can be represented as matrices) to linear operators

More information

PH4211 Statistical Mechanics Brian Cowan

PH4211 Statistical Mechanics Brian Cowan PH4211 Statistical Mechanics Brian Cowan Contents 1 The Methodology of Statistical Mechanics 1.1 Terminology and Methodology 1.1.1 Approaches to the subject 1.1.2 Description of states 1.1.3 Extensivity

More information

QUANTUM MECHANICS I PHYS 516. Solutions to Problem Set # 5

QUANTUM MECHANICS I PHYS 516. Solutions to Problem Set # 5 QUANTUM MECHANICS I PHYS 56 Solutions to Problem Set # 5. Crossed E and B fields: A hydrogen atom in the N 2 level is subject to crossed electric and magnetic fields. Choose your coordinate axes to make

More information

Group Representations

Group Representations Group Representations Alex Alemi November 5, 2012 Group Theory You ve been using it this whole time. Things I hope to cover And Introduction to Groups Representation theory Crystallagraphic Groups Continuous

More information

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations,

Curves in the configuration space Q or in the velocity phase space Ω satisfying the Euler-Lagrange (EL) equations, Physics 6010, Fall 2010 Hamiltonian Formalism: Hamilton s equations. Conservation laws. Reduction. Poisson Brackets. Relevant Sections in Text: 8.1 8.3, 9.5 The Hamiltonian Formalism We now return to formal

More information

Onsager theory: overview

Onsager theory: overview Onsager theory: overview Pearu Peterson December 18, 2006 1 Introduction Our aim is to study matter that consists of large number of molecules. A complete mechanical description of such a system is practically

More information

Homework Hint. Last Time

Homework Hint. Last Time Homework Hint Problem 3.3 Geometric series: ωs τ ħ e s= 0 =? a n ar = For 0< r < 1 n= 0 1 r ωs τ ħ e s= 0 1 = 1 e ħω τ Last Time Boltzmann factor Partition Function Heat Capacity The magic of the partition

More information

Fig. 1 Cluster flip: before. The region inside the dotted line is flipped in one Wolff move. Let this configuration be A.

Fig. 1 Cluster flip: before. The region inside the dotted line is flipped in one Wolff move. Let this configuration be A. Physics 6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ In Class Exercises Last correction at March 25, 2017, 1:37 pm c 2017, James Sethna, all rights reserved 1. Detailed

More information

Kinetic Theory 1 / Probabilities

Kinetic Theory 1 / Probabilities Kinetic Theory 1 / Probabilities 1. Motivations: statistical mechanics and fluctuations 2. Probabilities 3. Central limit theorem 1 The need for statistical mechanics 2 How to describe large systems In

More information

From Particles to Fields

From Particles to Fields From Particles to Fields Tien-Tsan Shieh Institute of Mathematics Academic Sinica July 25, 2011 Tien-Tsan Shieh (Institute of MathematicsAcademic Sinica) From Particles to Fields July 25, 2011 1 / 24 Hamiltonian

More information

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours.

8.05 Quantum Physics II, Fall 2011 FINAL EXAM Thursday December 22, 9:00 am -12:00 You have 3 hours. 8.05 Quantum Physics II, Fall 0 FINAL EXAM Thursday December, 9:00 am -:00 You have 3 hours. Answer all problems in the white books provided. Write YOUR NAME and YOUR SECTION on your white books. There

More information

P3317 HW from Lecture 15 and Recitation 8

P3317 HW from Lecture 15 and Recitation 8 P3317 HW from Lecture 15 and Recitation 8 Due Oct 23, 218 Problem 1. Variational Energy of Helium Here we will estimate the ground state energy of Helium. Helium has two electrons circling around a nucleus

More information

First-Order Differential Equations

First-Order Differential Equations CHAPTER 1 First-Order Differential Equations 1. Diff Eqns and Math Models Know what it means for a function to be a solution to a differential equation. In order to figure out if y = y(x) is a solution

More information

l=0 The expansion coefficients can be determined, for example, by finding the potential on the z-axis and expanding that result in z.

l=0 The expansion coefficients can be determined, for example, by finding the potential on the z-axis and expanding that result in z. Electrodynamics I Exam - Part A - Closed Book KSU 15/11/6 Name Electrodynamic Score = 14 / 14 points Instructions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 7, February 1, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 7, February 1, 2006 Chem 350/450 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 006 Christopher J. Cramer ecture 7, February 1, 006 Solved Homework We are given that A is a Hermitian operator such that

More information

Identical Particles in Quantum Mechanics

Identical Particles in Quantum Mechanics Identical Particles in Quantum Mechanics Chapter 20 P. J. Grandinetti Chem. 4300 Nov 17, 2017 P. J. Grandinetti (Chem. 4300) Identical Particles in Quantum Mechanics Nov 17, 2017 1 / 20 Wolfgang Pauli

More information

Brownian motion and the Central Limit Theorem

Brownian motion and the Central Limit Theorem Brownian motion and the Central Limit Theorem Amir Bar January 4, 3 Based on Shang-Keng Ma, Statistical Mechanics, sections.,.7 and the course s notes section 6. Introduction In this tutorial we shall

More information

Lecture 8: Ch Sept 2018

Lecture 8: Ch Sept 2018 University of Alabama Department of Physics and Astronomy PH 301 / LeClair Fall 2018 Lecture 8: Ch. 4.5-7 12 Sept 2018 1 Time-dependent potential energy Sometimes we need to consider time-dependent forces,

More information

Lecture 2. Turbulent Flow

Lecture 2. Turbulent Flow Lecture 2. Turbulent Flow Note the diverse scales of eddy motion and self-similar appearance at different lengthscales of this turbulent water jet. If L is the size of the largest eddies, only very small

More information

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION. January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS

PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION. January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS PHYSICS DEPARTMENT, PRINCETON UNIVERSITY PHYSICS 301 FINAL EXAMINATION January 13, 2005, 7:30 10:30pm, Jadwin A10 SOLUTIONS This exam contains five problems. Work any three of the five problems. All problems

More information

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets! Qualifying Exam Aug. 2015 Part II Please use blank paper for your work do not write on problems sheets! Solve only one problem from each of the four sections Mechanics, Quantum Mechanics, Statistical Physics

More information

Classical mechanics of particles and fields

Classical mechanics of particles and fields Classical mechanics of particles and fields D.V. Skryabin Department of Physics, University of Bath PACS numbers: The concise and transparent exposition of many topics covered in this unit can be found

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

14 Renormalization 1: Basics

14 Renormalization 1: Basics 4 Renormalization : Basics 4. Introduction Functional integrals over fields have been mentioned briefly in Part I devoted to path integrals. In brief, time ordering properties and Gaussian properties generalize

More information

Chemical diffusion in a cuboidal cell

Chemical diffusion in a cuboidal cell Chemical diffusion in a cuboidal cell Chris Rycroft Department of Mathematics, MIT March 14, 28 1 Overview This article provides a short analysis of a chemical diffusion problem in a thin cuboidal cell

More information

Physics 351, Spring 2017, Homework #3. Due at start of class, Friday, February 3, 2017

Physics 351, Spring 2017, Homework #3. Due at start of class, Friday, February 3, 2017 Physics 351, Spring 2017, Homework #3. Due at start of class, Friday, February 3, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page at

More information

A few principles of classical and quantum mechanics

A few principles of classical and quantum mechanics A few principles of classical and quantum mechanics The classical approach: In classical mechanics, we usually (but not exclusively) solve Newton s nd law of motion relating the acceleration a of the system

More information

Harmonic Motion. Mass on a Spring. Physics 231: General Physics I Lab 6 Mar. 11, Goals:

Harmonic Motion. Mass on a Spring. Physics 231: General Physics I Lab 6 Mar. 11, Goals: Physics 231: General Physics I Lab 6 Mar. 11, 2004 Names: Harmonic Motion Goals: 1. To learn about the basic characteristics of periodic motion period, frequency, and amplitude 2. To study what affects

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

Principles of Equilibrium Statistical Mechanics

Principles of Equilibrium Statistical Mechanics Debashish Chowdhury, Dietrich Stauffer Principles of Equilibrium Statistical Mechanics WILEY-VCH Weinheim New York Chichester Brisbane Singapore Toronto Table of Contents Part I: THERMOSTATICS 1 1 BASIC

More information

Linear excitations and domain walls

Linear excitations and domain walls and domain walls Alessandro Vindigni Laboratorium für Festkörperphysik, ETH Zürich ETH November 26, 2012 Lecture plan Real systems Lecture plan 1. Atomic magnetism (Pescia) 2. Magnetism in solids (Pescia)

More information

Lecture 20: Effective field theory for the Bose- Hubbard model

Lecture 20: Effective field theory for the Bose- Hubbard model Lecture 20: Effective field theory for the Bose- Hubbard model In the previous lecture, we have sketched the expected phase diagram of the Bose-Hubbard model, and introduced a mean-field treatment that

More information

QM1 - Tutorial 2 Schrodinger Equation, Hamiltonian and Free Particle

QM1 - Tutorial 2 Schrodinger Equation, Hamiltonian and Free Particle QM - Tutorial Schrodinger Equation, Hamiltonian and Free Particle Yaakov Yuin November 07 Contents Hamiltonian. Denition...................................................... Example: Hamiltonian of a

More information

Physics 212: Statistical mechanics II Lecture XI

Physics 212: Statistical mechanics II Lecture XI Physics 212: Statistical mechanics II Lecture XI The main result of the last lecture was a calculation of the averaged magnetization in mean-field theory in Fourier space when the spin at the origin is

More information

What if the characteristic equation has a double root?

What if the characteristic equation has a double root? MA 360 Lecture 17 - Summary of Recurrence Relations Friday, November 30, 018. Objectives: Prove basic facts about basic recurrence relations. Last time, we looked at the relational formula for a sequence

More information

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism

Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism Benjamin Hornberger 1/26/1 Phy 55, Classical Electrodynamics, Prof. Goldhaber Lecture notes from Oct. 26, 21 Lecture held by Prof. Weisberger

More information

Sketchy Notes on Lagrangian and Hamiltonian Mechanics

Sketchy Notes on Lagrangian and Hamiltonian Mechanics Sketchy Notes on Lagrangian and Hamiltonian Mechanics Robert Jones Generalized Coordinates Suppose we have some physical system, like a free particle, a pendulum suspended from another pendulum, or a field

More information