1 Infinite-Dimensional Vector Spaces

Size: px
Start display at page:

Download "1 Infinite-Dimensional Vector Spaces"

Transcription

1 Theoretical Physics Notes 4: Linear Operators In this installment of the notes, we move from linear operators in a finitedimensional vector space (which can be represented as matrices) to linear operators in an infinite-dimensional vector space (which cannot be written as matrices). The utility of Dirac notation becomes evident here: unlike matrices, it can be used when the vector space is infinite (either with a discrete index like finite matrices have, or with a continuous one). 1 Infinite-Dimensional Vector Spaces Just like matrix multiplication is a linear operation on a finite-dimensional vector space, taking a derivative is also a linear operation: the derivative d/dx of a linear combination of functions αf(x)+βg(x) is just αdf/dx+βdg(x)/dx, if α and β are constants. Vector spaces of functions are infinite-dimensional, however, and so we can no longer use matrix notation (but we can and will continue to use Dirac notation). We can specify a function of x by simply giving its value at every point x. We can formalize this by introducing the basis vectors { x }, where there is one such vector for each point in the domain. It is convenient to think of these as being the eigenvectors of a position operator ˆX, so that for any specific point x 0 we will have ˆX x 0 = x 0 x 0. Since x is a continuous variable on the real line, we cannot run over all its values by using a summation symbol; instead, we replace summations by an integration over the continuous variable. We then express orthonormality by a Dirac delta function rather than a Kronecker delta symbol: for instance, orthonormality of the kets which are eigenkets of the pointlike position measurement operator is expressed as x x = δ(x x). Just like a Kronecker delta symbol produces 1 when summed over all values of a discrete index, a Dirac delta produces 1 when integrated over all values of a continuous index. Similarly, just like in the finite-dimensional case, completeness is written as an outer product of basis vectors and their canonically orthonormal dual basis vectors, using the same label for each and spanning over all possible labels. When the label is continuous, this becomes an integral: we write the identity operator Î = dx x x. This allows us to write a function, thought of as a ket vector in our space, by specifying its values at all positions using completeness: f = Î f = dx x x f. Much of this is familiar notation: the ordinary numbers x f = f(x) are here to be thought of the value of f at a specific point x though, rather than as the entire abstract function along the whole region where it is defined. The integration dx collects together all such values and so gives us the entire function, and the basis vectors x turn the whole expression into a ket vector (ready to be acted upon by a covector, or a linear operator). 1

2 1.1 Fourier Space We don t usually bother to write the basis vectors such as x, so why all the fuss and extra notation? One reason is that so we can seamlessly change the basis being used. For instance, for piecewise continuous functions it is an equally complete amount of information to give their Fourier transform. Instead of using the position basis x, we can use the wavenumber basis k: orthonormality becomes k 1 k 2 = δ(k 1 k 2 ), and completeness becomes dk k k = Î. The same ket function f can be expressed in Fourier space: f = Î f = dk k k f = dk k f(k). The abstract ket vector f need not have either basis specified in manipulations. Putting in completeness of x and completeness of k together in one expression shows us how to take the Fourier transform and how to take the inverse transform. Sometimes, an infinite-dimensional vector space can be specified by either a continuous index or a discrete index! Turning continuous indices into discrete ones is often loosely called quantization (which is really a misuse of the term it s more correctly used to mean applying the rules of quantum mechanics to a classical system, which does not always turn continuous indices into discrete ones). Quantization of parameters which label functions occurs when some definite boundary conditions are imposed upon the functions. A simple example is found in the functions which are kernels of the Fourier transform and the inverse Fourier transform, namely k x = N exp( ikx) and x k = N exp(ikx), respectively, where N is a normalization constant. If we move to the circle so that x becomes φ, we must impose periodic boundary conditions on the functions: exp( ikφ) must equal exp[ ik(φ + 2π)] for every φ. Thus exp[ ik(2π)] = 1, and so k becomes restricted to integer values (n) only, and so Fourier transforms become Fourier series. Similarly, an infintely long vibrating string can wiggle with any wavelengths, but if two points are clamped so they cannot vibrate, only discrete wavelengths are allowed between the points. On the real line we have the completeness measure in Fourier space, which is usuallydefinedas dk k k = Î. Thenormalizationconstantscanbechosenas therealnumbersn = N = 1 2π forthe k x, andwegetthefourierrepresentation of the Dirac delta function: x x = (2π) 1 dkexp[ik(x x )] = δ(x x ). On the circle, the same normalization constants work but our completeness relationinsteadlookslikeaninfinitesum: δ(φ φ ) = (2π) 1 m= exp[im(φ φ )]. Orthogonality of the Fourier modes is a Kronecker delta symbol instead of a delta function: m n = δ mn. Inserting completeness of the coordinate angle φ gives this as the integral (2π) 1 2π 0 dφexp[iφ(m n)] = δ mn, as is easy to check by direct integration. Functions on the circle can either be given in their continuous (φ) basis, or the discrete (m) basis, often called the angular momentum basis. In general, the same normalization constants (such as (2π) 1 above) which appear in the orthogonality relations also appear in the completeness relations. Different choices of these constants will naturally lead to different constants 2

3 appearing in formulas. For example, it is common to use momentum p rather than wavevector k as a variable, where p = k. The correct transition functions between position and momentum space then pick up an extra constant: x p = (1/ 2π )exp(ipx/ ). Note that this is different than simply substituting k = p/ in the corresponding wavevector formula x k = (1/ 2π)exp(ikx) by having an extra in the denominator. This allows us to write both dk k k = Î and dp p p = Î; the extra in the denominator is required for consistency to account for the fact that dk = dp/. 2 Differential Operators One of the main purposes for going to Fourier space is that derivative operators are diagonal in Fourier space: d/dx acting on e ikx simply returns an eigenvalue (ik) times the original function e ikx. In position space, this is definitely not true: a derivative acting on a general function f(x) returns f (x) which is generally a completely different function (and not just a number times the original function). This allows us to turn differential equations (involving d/dx) into algebraic ones (replacing d/dx by ik everywhere it appears) after transforming to Fourier space. We then solve the algebraic equation in Fourier space, and then transform back to position (x) space, to give the solution to the original problem. 2.1 Some Important Operations on Linear Operators Differential operators are linear, as mentioned at the beginning of these notes. We can manipulate linear operators to give other operators that are related to the original operator and which are useful in solving specific problems, in much the same fashion that we could manipulate matrices to give solutions of matrix problems (such as finding the matrix inverse, to solve a system of linear equations). Here we list a few of the important ones Powers Positive integral powers of a differential operator are simple to obtain in terms of the original operator: to square the operator, you simply apply it twice (e.g. (d/dx) 2 is just d/dx once and then again). They are again differential operators. Mathematically they are very nice in the sense that they are local, meaning we only need to know the function s values in the neighborhood of some point to know its derivatives at that point. In contrast, negative integral powers of a differential operator are nonlocal: one usually needs to know the value of the function at remote points as well as local points to construct them. This should make perfect sense: to undo a derivative, we have to do an integral! The value of the integral of a function depends upon all values of the function between the endpoint where you begin the integral and the point where you want to know the value of the integral, not just on the behavior of the function nearby. 3

4 We can even formally construct fractional powers of a differential operator, by diagonalizing the operator! For instance, (d/dx) p becomes simply (ik) p after transforming to Fourier space, where p is an arbitrary number (even complex!). There is, of course, the usual difficulty with multivaluedness to contend with when doing so (e.g., (z) has two values everywhere except at z = 0). Negative and fractional powers of differential operators are usually called pseudodifferential operators by mathematicians Exponential Any analytic function of a linear operator may be defined by its Taylor series, so if we know how to do positive integral powers, we can do arbitrary analytic functions (e.g. exp, sin, cosh) of the operator as well. In practice, the most common one of these which shows up in physics equations is the exponential. A hopefully familiar example is the time-dependent Schrödinger equation: i ψ = Ĥ ψ t where Ĥ is a differential operator. If wh is independent of time, then the solution is formally given by an exponential: ψ(t) = exp( iĥt/ ) ψ(t = 0) where ψ(t) may be expressed in any basis (such as x or k), so we have suppressed that variable in the notation. (If Ĥ depends upon time, then Ĥt above needs to be replaced by Ĥdt, and we also need to define the time-ordered exponential since Ĥ may not commute with itself at different times.) The operator Û(t) exp( iĥt/ ) is extremely important in non-relativistic quantum mechanics; it is called the non-relativistic propagator. Note that it is unitary provided that Ĥ is Hermitian. For the free particle, the Hamiltonian in position space involves the Laplacian, but in k space it is simply ( k) 2 /(2m). This allows us to formally write Ĥ = dk k ( k) 2 /(2m) k (diagonal in k space!), so the propagator (in operator notation) is Û(t) = dk k exp [ i k 2 t/(2m) ] k. Written in this form, it is ready to operate on an arbitrary wavefunction ψ ; the product k ψ signifies that we will be finding ψ in Fourier space. The free propagator in position space will not be diagonal, since taking a derivative of a function gives a different function (not just a constant times the original function). To find it, we insert completeness on both sides of the equation, with a dx x x on one side, and dx x x on the other (with a different dummy variable of integration!). This gives a Gaussian integral over k which is simple to evaluate; we will do so later in the course. 4

5 2.1.3 Green Functions A Green Function of a linear operator is simply the inverse to the operator, provided that it exists (operators with eigenvalues of zero have no inverse). So it s really only a very special case of the powers defined above, but is important enough to get its own name. The Green function of a differential operator will always be used inside an integral, since inverses to derivatives are integrals. They can (and usually do) therefore have singular behavior, similar to Dirac delta functions (which are also used in integrals). An example which will take up many weeks of this course is the Green function for the Laplacian, which is used to solve Poisson s equation (the inhomogeneous version of Laplace s equation). It arises naturally in electrostatics by combining Coulomb s Law with E = Φ: 2 Φ(x) = ρ(x)/ǫ 0, where ρ is the (known) charge density in the region and Φ is the (unknown) potential (= voltage ). The solution is given by the integral Φ(x) = 1 d 3 x G(x;x )ρ(x ) ǫ 0 where the Green function G(x;x ) satisfies the equation 2 G = δ 3 (x x ), with boundary conditions on G appropriate to the boundary conditions imposed on the potential Φ in the region. In this way, we are constructing the solution to all such equations at once: one for any charge density ρ given in the region. The delta function allows us to solve the equation independently of the specific ρ given. Formally, we can write that G = Î/ 2. There are many ways to construct Green functions, and we shall explore enough of them that a separate handout on Green functions will be given later. In addition to that for the negative Laplacian, the Green function for the wave operator will also be very useful to us in this course Resolvent Closely related to the Green function of an operator Ĥ is its resolvent operator, which depends upon both the operator and an additional complex variable z. It is defined formally as R(Ĥ,z) = Î/(Ĥ zî), so for any fixed value of z it is simply the Green function of Ĥ zî. It is important for many reasons; foremost amongst these is that it will possess simple poles at locations wherever z is an isolated eigenvalue of Ĥ. So if the resolvent is known, we can use the Cauchy integral formula to construct projection operators onto the eigenspaces with any particular eigenvalues: if Ĥ n = λ n n, then P n = n n = 1 2πi R(Ĥ,z)dz where C is a counterclockwise contour which goes around z = λ n but no other eigenvalues of Ĥ (and a C which goes around many eigenvalues will produce the sum of projection operators onto each eigenspace). The negative sign is needed because we have Ĥ z rather than z Ĥ in the denominator; using instead a clockwise contour would eliminate the minus sign. C 5

6 2.1.5 Heat Kernel Another exponential operator (which is defined for elliptic differential operators with positive eigenvalues, such as minus the Laplacian) which is closely related to the propagator is the heat kernel. The heat kernel of such an operator Ĥ is formally written as K(Ĥ,t) = exp( Ĥt), where t is an auxiliary nonnegative real number (often called a Schwinger Parameter ). The heat kernel is the solution of the differential equation t K +ĤK = 0 with the initial condition (in position basis) x K(Ĥ,t = 0) x = δ(x x ). The parameter t looks formally similar to time in the heat (diffusion) equation when Ĥ is the negative Laplacian, but is really just an auxiliary parameter that may have nothing to do with actual physical time. (The restriction to Ĥ with positive eigenvalues only is so that K converges as t ; if Ĥ has any negative eigenvalues then expressions for K will generally diverge. This is the reason why we use the negative Laplacian; the positive Laplacian has negative eigenvalues.) The heat kernel can itself be used to construct other associated operators. For instance, the Green function of Ĥ is given by the integral G = K(Ĥ,t)dt. (To verify this, evaluate it using as a basis the eigenvectors 0 of Ĥ.) This is the fastest way to find the Green function of the negative Laplacian in spaces of arbitrary dimensions. We can also construct other powers of Ĥ by inserting various powers of t into the integral (if the expression converges). The resolvent and heat kernel of an operator are intimately related; the resolvent is the Laplace transform of the heat kernel (with z as the argument of the transform: 1/(Ĥ z) = exp( Ĥt+zt)dt. We will not explore the 0 resolvent and heat kernel much in this class, but they are useful enough that you should know about them. 6

The quantum state as a vector

The quantum state as a vector The quantum state as a vector February 6, 27 Wave mechanics In our review of the development of wave mechanics, we have established several basic properties of the quantum description of nature:. A particle

More information

1 Mathematical preliminaries

1 Mathematical preliminaries 1 Mathematical preliminaries The mathematical language of quantum mechanics is that of vector spaces and linear algebra. In this preliminary section, we will collect the various definitions and mathematical

More information

MP463 QUANTUM MECHANICS

MP463 QUANTUM MECHANICS MP463 QUANTUM MECHANICS Introduction Quantum theory of angular momentum Quantum theory of a particle in a central potential - Hydrogen atom - Three-dimensional isotropic harmonic oscillator (a model of

More information

Linear Algebra in Hilbert Space

Linear Algebra in Hilbert Space Physics 342 Lecture 16 Linear Algebra in Hilbert Space Lecture 16 Physics 342 Quantum Mechanics I Monday, March 1st, 2010 We have seen the importance of the plane wave solutions to the potentialfree Schrödinger

More information

Page 684. Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02

Page 684. Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02 Page 684 Lecture 40: Coordinate Transformations: Time Transformations Date Revised: 2009/02/02 Date Given: 2009/02/02 Time Transformations Section 12.5 Symmetries: Time Transformations Page 685 Time Translation

More information

1 Dirac Notation for Vector Spaces

1 Dirac Notation for Vector Spaces Theoretical Physics Notes 2: Dirac Notation This installment of the notes covers Dirac notation, which proves to be very useful in many ways. For example, it gives a convenient way of expressing amplitudes

More information

2. As we shall see, we choose to write in terms of σ x because ( X ) 2 = σ 2 x.

2. As we shall see, we choose to write in terms of σ x because ( X ) 2 = σ 2 x. Section 5.1 Simple One-Dimensional Problems: The Free Particle Page 9 The Free Particle Gaussian Wave Packets The Gaussian wave packet initial state is one of the few states for which both the { x } and

More information

Mathematical Introduction

Mathematical Introduction Chapter 1 Mathematical Introduction HW #1: 164, 165, 166, 181, 182, 183, 1811, 1812, 114 11 Linear Vector Spaces: Basics 111 Field A collection F of elements a,b etc (also called numbers or scalars) with

More information

PLEASE LET ME KNOW IF YOU FIND TYPOS (send to

PLEASE LET ME KNOW IF YOU FIND TYPOS (send  to Teoretisk Fysik KTH Advanced QM (SI2380), Lecture 2 (Summary of concepts) 1 PLEASE LET ME KNOW IF YOU FIND TYPOS (send email to langmann@kth.se) The laws of QM 1. I now discuss the laws of QM and their

More information

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle Peter Woit Department of Mathematics, Columbia University woit@math.columbia.edu November 28, 2012 We ll now turn to

More information

C/CS/Phys 191 Quantum Mechanics in a Nutshell I 10/04/05 Fall 2005 Lecture 11

C/CS/Phys 191 Quantum Mechanics in a Nutshell I 10/04/05 Fall 2005 Lecture 11 C/CS/Phys 191 Quantum Mechanics in a Nutshell I 10/04/05 Fall 2005 Lecture 11 In this and the next lecture we summarize the essential physical and mathematical aspects of quantum mechanics relevant to

More information

PHYS Handout 6

PHYS Handout 6 PHYS 060 Handout 6 Handout Contents Golden Equations for Lectures 8 to Answers to examples on Handout 5 Tricks of the Quantum trade (revision hints) Golden Equations (Lectures 8 to ) ψ Â φ ψ (x)âφ(x)dxn

More information

Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics. EE270 Fall 2017

Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics. EE270 Fall 2017 Supplementary information I Hilbert Space, Dirac Notation, and Matrix Mechanics Properties of Vector Spaces Unit vectors ~xi form a basis which spans the space and which are orthonormal ( if i = j ~xi

More information

Statistical Interpretation

Statistical Interpretation Physics 342 Lecture 15 Statistical Interpretation Lecture 15 Physics 342 Quantum Mechanics I Friday, February 29th, 2008 Quantum mechanics is a theory of probability densities given that we now have an

More information

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19 Page 404 Lecture : Simple Harmonic Oscillator: Energy Basis Date Given: 008/11/19 Date Revised: 008/11/19 Coordinate Basis Section 6. The One-Dimensional Simple Harmonic Oscillator: Coordinate Basis Page

More information

1 Planck-Einstein Relation E = hν

1 Planck-Einstein Relation E = hν C/CS/Phys C191 Representations and Wavefunctions 09/30/08 Fall 2008 Lecture 8 1 Planck-Einstein Relation E = hν This is the equation relating energy to frequency. It was the earliest equation of quantum

More information

The Particle in a Box

The Particle in a Box Page 324 Lecture 17: Relation of Particle in a Box Eigenstates to Position and Momentum Eigenstates General Considerations on Bound States and Quantization Continuity Equation for Probability Date Given:

More information

Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras

Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Quantum Mechanics- I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 4 Postulates of Quantum Mechanics I In today s lecture I will essentially be talking

More information

Recitation 1 (Sep. 15, 2017)

Recitation 1 (Sep. 15, 2017) Lecture 1 8.321 Quantum Theory I, Fall 2017 1 Recitation 1 (Sep. 15, 2017) 1.1 Simultaneous Diagonalization In the last lecture, we discussed the situations in which two operators can be simultaneously

More information

Chapter 2 The Group U(1) and its Representations

Chapter 2 The Group U(1) and its Representations Chapter 2 The Group U(1) and its Representations The simplest example of a Lie group is the group of rotations of the plane, with elements parametrized by a single number, the angle of rotation θ. It is

More information

Quantum Theory and Group Representations

Quantum Theory and Group Representations Quantum Theory and Group Representations Peter Woit Columbia University LaGuardia Community College, November 1, 2017 Queensborough Community College, November 15, 2017 Peter Woit (Columbia University)

More information

1 Quantum fields in Minkowski spacetime

1 Quantum fields in Minkowski spacetime 1 Quantum fields in Minkowski spacetime The theory of quantum fields in curved spacetime is a generalization of the well-established theory of quantum fields in Minkowski spacetime. To a great extent,

More information

1 Measurement and expectation values

1 Measurement and expectation values C/CS/Phys 191 Measurement and expectation values, Intro to Spin 2/15/05 Spring 2005 Lecture 9 1 Measurement and expectation values Last time we discussed how useful it is to work in the basis of energy

More information

Harmonic Oscillator. Robert B. Griffiths Version of 5 December Notation 1. 3 Position and Momentum Representations of Number Eigenstates 2

Harmonic Oscillator. Robert B. Griffiths Version of 5 December Notation 1. 3 Position and Momentum Representations of Number Eigenstates 2 qmd5 Harmonic Oscillator Robert B. Griffiths Version of 5 December 0 Contents Notation Eigenstates of the Number Operator N 3 Position and Momentum Representations of Number Eigenstates 4 Coherent States

More information

PHYS-454 The position and momentum representations

PHYS-454 The position and momentum representations PHYS-454 The position and momentum representations 1 Τhe continuous spectrum-a n So far we have seen problems where the involved operators have a discrete spectrum of eigenfunctions and eigenvalues.! n

More information

Appendix B: The Transfer Matrix Method

Appendix B: The Transfer Matrix Method Y D Chong (218) PH441: Quantum Mechanics III Appendix B: The Transfer Matrix Method The transfer matrix method is a numerical method for solving the 1D Schrödinger equation, and other similar equations

More information

G : Quantum Mechanics II

G : Quantum Mechanics II G5.666: Quantum Mechanics II Notes for Lecture 5 I. REPRESENTING STATES IN THE FULL HILBERT SPACE Given a representation of the states that span the spin Hilbert space, we now need to consider the problem

More information

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics

Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics Physics 221A Fall 1996 Notes 12 Orbital Angular Momentum and Spherical Harmonics We now consider the spatial degrees of freedom of a particle moving in 3-dimensional space, which of course is an important

More information

1 Fundamental physical postulates. C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12

1 Fundamental physical postulates. C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12 C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12 In this and the next lecture we summarize the essential physical and mathematical aspects of quantum mechanics relevant to

More information

The Simple Harmonic Oscillator

The Simple Harmonic Oscillator The Simple Harmonic Oscillator Asaf Pe er 1 November 4, 215 This part of the course is based on Refs [1] [3] 1 Introduction We return now to the study of a 1-d stationary problem: that of the simple harmonic

More information

Q U A N T U M M E C H A N I C S : L E C T U R E 5

Q U A N T U M M E C H A N I C S : L E C T U R E 5 Q U A N T U M M E C H A N I C S : L E C T U R E 5 salwa al saleh Abstract This lecture discusses the formal solution of Schrödinger s equation for a free particle. Including the separation of variables

More information

Angular Momentum in Quantum Mechanics.

Angular Momentum in Quantum Mechanics. Angular Momentum in Quantum Mechanics. R. C. Johnson March 10, 2015 1 Brief review of the language and concepts of Quantum Mechanics. We begin with a review of the basic concepts involved in the quantum

More information

November 18, 2013 ANALYTIC FUNCTIONAL CALCULUS

November 18, 2013 ANALYTIC FUNCTIONAL CALCULUS November 8, 203 ANALYTIC FUNCTIONAL CALCULUS RODICA D. COSTIN Contents. The spectral projection theorem. Functional calculus 2.. The spectral projection theorem for self-adjoint matrices 2.2. The spectral

More information

1 The postulates of quantum mechanics

1 The postulates of quantum mechanics 1 The postulates of quantum mechanics The postulates of quantum mechanics were derived after a long process of trial and error. These postulates provide a connection between the physical world and the

More information

Preliminaries: what you need to know

Preliminaries: what you need to know January 7, 2014 Preliminaries: what you need to know Asaf Pe er 1 Quantum field theory (QFT) is the theoretical framework that forms the basis for the modern description of sub-atomic particles and their

More information

The Schroedinger equation

The Schroedinger equation The Schroedinger equation After Planck, Einstein, Bohr, de Broglie, and many others (but before Born), the time was ripe for a complete theory that could be applied to any problem involving nano-scale

More information

PY 351 Modern Physics - Lecture notes, 3

PY 351 Modern Physics - Lecture notes, 3 PY 351 Modern Physics - Lecture notes, 3 Copyright by Claudio Rebbi, Boston University, October 2016. These notes cannot be duplicated and distributed without explicit permission of the author. Time dependence

More information

Physics 221A Fall 1996 Notes 14 Coupling of Angular Momenta

Physics 221A Fall 1996 Notes 14 Coupling of Angular Momenta Physics 1A Fall 1996 Notes 14 Coupling of Angular Momenta In these notes we will discuss the problem of the coupling or addition of angular momenta. It is assumed that you have all had experience with

More information

Quantum Physics II (8.05) Fall 2004 Assignment 3

Quantum Physics II (8.05) Fall 2004 Assignment 3 Quantum Physics II (8.5) Fall 24 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 3, 24 September 23, 24 7:pm This week we continue to study the basic principles of quantum

More information

4 Power Series Solutions: Frobenius Method

4 Power Series Solutions: Frobenius Method 4 Power Series Solutions: Frobenius Method Now the ODE adventure takes us to series solutions for ODEs, a technique A & W, that is often viable, valuable and informative. These can be readily applied Sec.

More information

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2

in terms of the classical frequency, ω = , puts the classical Hamiltonian in the form H = p2 2m + mω2 x 2 One of the most important problems in quantum mechanics is the simple harmonic oscillator, in part because its properties are directly applicable to field theory. The treatment in Dirac notation is particularly

More information

Physics 200 Lecture 4. Integration. Lecture 4. Physics 200 Laboratory

Physics 200 Lecture 4. Integration. Lecture 4. Physics 200 Laboratory Physics 2 Lecture 4 Integration Lecture 4 Physics 2 Laboratory Monday, February 21st, 211 Integration is the flip-side of differentiation in fact, it is often possible to write a differential equation

More information

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I

Physics 342 Lecture 17. Midterm I Recap. Lecture 17. Physics 342 Quantum Mechanics I Physics 342 Lecture 17 Midterm I Recap Lecture 17 Physics 342 Quantum Mechanics I Monday, March 1th, 28 17.1 Introduction In the context of the first midterm, there are a few points I d like to make about

More information

Separation of Variables in Linear PDE: One-Dimensional Problems

Separation of Variables in Linear PDE: One-Dimensional Problems Separation of Variables in Linear PDE: One-Dimensional Problems Now we apply the theory of Hilbert spaces to linear differential equations with partial derivatives (PDE). We start with a particular example,

More information

Properties of Commutators and Schroedinger Operators and Applications to Quantum Computing

Properties of Commutators and Schroedinger Operators and Applications to Quantum Computing International Journal of Engineering and Advanced Research Technology (IJEART) Properties of Commutators and Schroedinger Operators and Applications to Quantum Computing N. B. Okelo Abstract In this paper

More information

Continuous quantum states, Particle on a line and Uncertainty relations

Continuous quantum states, Particle on a line and Uncertainty relations Continuous quantum states, Particle on a line and Uncertainty relations So far we have considered k-level (discrete) quantum systems. Now we turn our attention to continuous quantum systems, such as a

More information

The Postulates of Quantum Mechanics

The Postulates of Quantum Mechanics p. 1/23 The Postulates of Quantum Mechanics We have reviewed the mathematics (complex linear algebra) necessary to understand quantum mechanics. We will now see how the physics of quantum mechanics fits

More information

Harmonic Oscillator I

Harmonic Oscillator I Physics 34 Lecture 7 Harmonic Oscillator I Lecture 7 Physics 34 Quantum Mechanics I Monday, February th, 008 We can manipulate operators, to a certain extent, as we would algebraic expressions. By considering

More information

The following definition is fundamental.

The following definition is fundamental. 1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic

More information

The Hamiltonian and the Schrödinger equation Consider time evolution from t to t + ɛ. As before, we expand in powers of ɛ; we have. H(t) + O(ɛ 2 ).

The Hamiltonian and the Schrödinger equation Consider time evolution from t to t + ɛ. As before, we expand in powers of ɛ; we have. H(t) + O(ɛ 2 ). Lecture 12 Relevant sections in text: 2.1 The Hamiltonian and the Schrödinger equation Consider time evolution from t to t + ɛ. As before, we expand in powers of ɛ; we have U(t + ɛ, t) = I + ɛ ( īh ) H(t)

More information

Many Body Quantum Mechanics

Many Body Quantum Mechanics Many Body Quantum Mechanics In this section, we set up the many body formalism for quantum systems. This is useful in any problem involving identical particles. For example, it automatically takes care

More information

-state problems and an application to the free particle

-state problems and an application to the free particle -state problems and an application to the free particle Sourendu Gupta TIFR, Mumbai, India Quantum Mechanics 1 2013 3 September, 2013 Outline 1 Outline 2 The Hilbert space 3 A free particle 4 Keywords

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

Classical field theory 2012 (NS-364B) Feynman propagator

Classical field theory 2012 (NS-364B) Feynman propagator Classical field theory 212 (NS-364B Feynman propagator 1. Introduction States in quantum mechanics in Schrödinger picture evolve as ( Ψt = Û(t,t Ψt, Û(t,t = T exp ı t dt Ĥ(t, (1 t where Û(t,t denotes the

More information

C/CS/Phys C191 Quantum Mechanics in a Nutshell 10/06/07 Fall 2009 Lecture 12

C/CS/Phys C191 Quantum Mechanics in a Nutshell 10/06/07 Fall 2009 Lecture 12 C/CS/Phys C191 Quantum Mechanics in a Nutshell 10/06/07 Fall 2009 Lecture 12 In this lecture we summarize the essential physical and mathematical aspects of quantum mechanics relevant to this course. Topics

More information

Chapter III. Quantum Computation. Mathematical preliminaries. A.1 Complex numbers. A.2 Linear algebra review

Chapter III. Quantum Computation. Mathematical preliminaries. A.1 Complex numbers. A.2 Linear algebra review Chapter III Quantum Computation These lecture notes are exclusively for the use of students in Prof. MacLennan s Unconventional Computation course. c 2017, B. J. MacLennan, EECS, University of Tennessee,

More information

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ.

d 1 µ 2 Θ = 0. (4.1) consider first the case of m = 0 where there is no azimuthal dependence on the angle φ. 4 Legendre Functions In order to investigate the solutions of Legendre s differential equation d ( µ ) dθ ] ] + l(l + ) m dµ dµ µ Θ = 0. (4.) consider first the case of m = 0 where there is no azimuthal

More information

Quantum Dynamics. March 10, 2017

Quantum Dynamics. March 10, 2017 Quantum Dynamics March 0, 07 As in classical mechanics, time is a parameter in quantum mechanics. It is distinct from space in the sense that, while we have Hermitian operators, X, for position and therefore

More information

B = 0. E = 1 c. E = 4πρ

B = 0. E = 1 c. E = 4πρ Photons In this section, we will treat the electromagnetic field quantum mechanically. We start by recording the Maxwell equations. As usual, we expect these equations to hold both classically and quantum

More information

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values

Lecture 6. Four postulates of quantum mechanics. The eigenvalue equation. Momentum and energy operators. Dirac delta function. Expectation values Lecture 6 Four postulates of quantum mechanics The eigenvalue equation Momentum and energy operators Dirac delta function Expectation values Objectives Learn about eigenvalue equations and operators. Learn

More information

Page 712. Lecture 42: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 2009/02/04 Date Given: 2009/02/04

Page 712. Lecture 42: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 2009/02/04 Date Given: 2009/02/04 Page 71 Lecture 4: Rotations and Orbital Angular Momentum in Two Dimensions Date Revised: 009/0/04 Date Given: 009/0/04 Plan of Attack Section 14.1 Rotations and Orbital Angular Momentum: Plan of Attack

More information

Notes on Fourier Series and Integrals Fourier Series

Notes on Fourier Series and Integrals Fourier Series Notes on Fourier Series and Integrals Fourier Series et f(x) be a piecewise linear function on [, ] (This means that f(x) may possess a finite number of finite discontinuities on the interval). Then f(x)

More information

Path integrals in quantum mechanics

Path integrals in quantum mechanics Path integrals in quantum mechanics Phys V3500/G8099 handout #1 References: there s a nice discussion of this material in the first chapter of L.S. Schulman, Techniques and applications of path integration.

More information

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization: The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free theory:

More information

An operator is a transformation that takes a function as an input and produces another function (usually).

An operator is a transformation that takes a function as an input and produces another function (usually). Formalism of Quantum Mechanics Operators Engel 3.2 An operator is a transformation that takes a function as an input and produces another function (usually). Example: In QM, most operators are linear:

More information

Quantum mechanics in one hour

Quantum mechanics in one hour Chapter 2 Quantum mechanics in one hour 2.1 Introduction The purpose of this chapter is to refresh your knowledge of quantum mechanics and to establish notation. Depending on your background you might

More information

QM and Angular Momentum

QM and Angular Momentum Chapter 5 QM and Angular Momentum 5. Angular Momentum Operators In your Introductory Quantum Mechanics (QM) course you learned about the basic properties of low spin systems. Here we want to review that

More information

The Schrodinger Wave Equation (Engel 2.4) In QM, the behavior of a particle is described by its wave function Ψ(x,t) which we get by solving:

The Schrodinger Wave Equation (Engel 2.4) In QM, the behavior of a particle is described by its wave function Ψ(x,t) which we get by solving: When do we use Quantum Mechanics? (Engel 2.1) Basically, when λ is close in magnitude to the dimensions of the problem, and to the degree that the system has a discrete energy spectrum The Schrodinger

More information

Vector Spaces in Quantum Mechanics

Vector Spaces in Quantum Mechanics Chapter 8 Vector Spaces in Quantum Mechanics We have seen in the previous Chapter that there is a sense in which the state of a quantum system can be thought of as being made up of other possible states.

More information

Angular Momentum - set 1

Angular Momentum - set 1 Angular Momentum - set PH0 - QM II August 6, 07 First of all, let us practise evaluating commutators. Consider these as warm up problems. Problem : Show the following commutation relations ˆx, ˆL x ] =

More information

Review of the Formalism of Quantum Mechanics

Review of the Formalism of Quantum Mechanics Review of the Formalism of Quantum Mechanics The postulates of quantum mechanics are often stated in textbooks. There are two main properties of physics upon which these postulates are based: 1)the probability

More information

We start with some important background material in classical and quantum mechanics.

We start with some important background material in classical and quantum mechanics. Chapter Basics We start with some important background material in classical and quantum mechanics.. Classical mechanics Lagrangian mechanics Compared to Newtonian mechanics, Lagrangian mechanics has the

More information

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Justin Campbell August 3, 2017 1 Representations of SU 2 and SO 3 (R) 1.1 The following observation is long overdue. Proposition

More information

Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 21 Square-Integrable Functions

Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 21 Square-Integrable Functions Quantum Mechanics-I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 21 Square-Integrable Functions (Refer Slide Time: 00:06) (Refer Slide Time: 00:14) We

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

Scattering Theory. In quantum mechanics the basic observable is the probability

Scattering Theory. In quantum mechanics the basic observable is the probability Scattering Theory In quantum mechanics the basic observable is the probability P = ψ + t ψ t 2, for a transition from and initial state, ψ t, to a final state, ψ + t. Since time evolution is unitary this

More information

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I Physics 342 Lecture 2 Linear Algebra I Lecture 2 Physics 342 Quantum Mechanics I Wednesday, January 27th, 21 From separation of variables, we move to linear algebra Roughly speaking, this is the study

More information

1 = I I I II 1 1 II 2 = normalization constant III 1 1 III 2 2 III 3 = normalization constant...

1 = I I I II 1 1 II 2 = normalization constant III 1 1 III 2 2 III 3 = normalization constant... Here is a review of some (but not all) of the topics you should know for the midterm. These are things I think are important to know. I haven t seen the test, so there are probably some things on it that

More information

Coordinate and Momentum Representation. Commuting Observables and Simultaneous Measurements. January 30, 2012

Coordinate and Momentum Representation. Commuting Observables and Simultaneous Measurements. January 30, 2012 Coordinate and Momentum Representation. Commuting Observables and Simultaneous Measurements. January 30, 2012 1 Coordinate and Momentum Representations Let us consider an eigenvalue problem for a Hermitian

More information

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet

Mathematical Tripos Part IB Michaelmas Term Example Sheet 1. Values of some physical constants are given on the supplementary sheet Mathematical Tripos Part IB Michaelmas Term 2015 Quantum Mechanics Dr. J.M. Evans Example Sheet 1 Values of some physical constants are given on the supplementary sheet 1. Whenasampleofpotassiumisilluminatedwithlightofwavelength3

More information

4.3 Lecture 18: Quantum Mechanics

4.3 Lecture 18: Quantum Mechanics CHAPTER 4. QUANTUM SYSTEMS 73 4.3 Lecture 18: Quantum Mechanics 4.3.1 Basics Now that we have mathematical tools of linear algebra we are ready to develop a framework of quantum mechanics. The framework

More information

5. Atoms and the periodic table of chemical elements. Definition of the geometrical structure of a molecule

5. Atoms and the periodic table of chemical elements. Definition of the geometrical structure of a molecule Historical introduction The Schrödinger equation for one-particle problems Mathematical tools for quantum chemistry 4 The postulates of quantum mechanics 5 Atoms and the periodic table of chemical elements

More information

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I

Physics 342 Lecture 2. Linear Algebra I. Lecture 2. Physics 342 Quantum Mechanics I Physics 342 Lecture 2 Linear Algebra I Lecture 2 Physics 342 Quantum Mechanics I Wednesday, January 3th, 28 From separation of variables, we move to linear algebra Roughly speaking, this is the study of

More information

Quantum Physics II (8.05) Fall 2002 Assignment 3

Quantum Physics II (8.05) Fall 2002 Assignment 3 Quantum Physics II (8.05) Fall 00 Assignment Readings The readings below will take you through the material for Problem Sets and 4. Cohen-Tannoudji Ch. II, III. Shankar Ch. 1 continues to be helpful. Sakurai

More information

Path integrals and the classical approximation 1 D. E. Soper 2 University of Oregon 14 November 2011

Path integrals and the classical approximation 1 D. E. Soper 2 University of Oregon 14 November 2011 Path integrals and the classical approximation D. E. Soper University of Oregon 4 November 0 I offer here some background for Sections.5 and.6 of J. J. Sakurai, Modern Quantum Mechanics. Introduction There

More information

Fourier transforms, Generalised functions and Greens functions

Fourier transforms, Generalised functions and Greens functions Fourier transforms, Generalised functions and Greens functions T. Johnson 2015-01-23 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 1 Motivation A big part of this course concerns

More information

Introduction to Group Theory

Introduction to Group Theory Chapter 10 Introduction to Group Theory Since symmetries described by groups play such an important role in modern physics, we will take a little time to introduce the basic structure (as seen by a physicist)

More information

ADVANCED ENGINEERING MATHEMATICS MATLAB

ADVANCED ENGINEERING MATHEMATICS MATLAB ADVANCED ENGINEERING MATHEMATICS WITH MATLAB THIRD EDITION Dean G. Duffy Contents Dedication Contents Acknowledgments Author Introduction List of Definitions Chapter 1: Complex Variables 1.1 Complex Numbers

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Mathematical Formulation of the Superposition Principle

Mathematical Formulation of the Superposition Principle Mathematical Formulation of the Superposition Principle Superposition add states together, get new states. Math quantity associated with states must also have this property. Vectors have this property.

More information

8.04 Spring 2013 April 09, 2013 Problem 1. (15 points) Mathematical Preliminaries: Facts about Unitary Operators. Uφ u = uφ u

8.04 Spring 2013 April 09, 2013 Problem 1. (15 points) Mathematical Preliminaries: Facts about Unitary Operators. Uφ u = uφ u Problem Set 7 Solutions 8.4 Spring 13 April 9, 13 Problem 1. (15 points) Mathematical Preliminaries: Facts about Unitary Operators (a) (3 points) Suppose φ u is an eigenfunction of U with eigenvalue u,

More information

5.4 Given the basis e 1, e 2 write the matrices that represent the unitary transformations corresponding to the following changes of basis:

5.4 Given the basis e 1, e 2 write the matrices that represent the unitary transformations corresponding to the following changes of basis: 5 Representations 5.3 Given a three-dimensional Hilbert space, consider the two observables ξ and η that, with respect to the basis 1, 2, 3, arerepresentedby the matrices: ξ ξ 1 0 0 0 ξ 1 0 0 0 ξ 3, ξ

More information

Quantum Final Project by Anustup Poddar and Cody Tripp 12/10/2013

Quantum Final Project by Anustup Poddar and Cody Tripp 12/10/2013 Quantum Final Project by Anustup Poddar and Cody Tripp 12102013 Introduction The Hamiltonian in the Schrӧdinger equation is the sum of a kinetic and potential energy operator. The Fourier grid Hamiltonian

More information

1 Distributions (due January 22, 2009)

1 Distributions (due January 22, 2009) Distributions (due January 22, 29). The distribution derivative of the locally integrable function ln( x ) is the principal value distribution /x. We know that, φ = lim φ(x) dx. x ɛ x Show that x, φ =

More information

Physics 505 Homework No. 1 Solutions S1-1

Physics 505 Homework No. 1 Solutions S1-1 Physics 505 Homework No s S- Some Preliminaries Assume A and B are Hermitian operators (a) Show that (AB) B A dx φ ABψ dx (A φ) Bψ dx (B (A φ)) ψ dx (B A φ) ψ End (b) Show that AB [A, B]/2+{A, B}/2 where

More information

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008

Physics 217 Problem Set 1 Due: Friday, Aug 29th, 2008 Problem Set 1 Due: Friday, Aug 29th, 2008 Course page: http://www.physics.wustl.edu/~alford/p217/ Review of complex numbers. See appendix K of the textbook. 1. Consider complex numbers z = 1.5 + 0.5i and

More information

Quantum Mechanics Solutions. λ i λ j v j v j v i v i.

Quantum Mechanics Solutions. λ i λ j v j v j v i v i. Quantum Mechanics Solutions 1. (a) If H has an orthonormal basis consisting of the eigenvectors { v i } of A with eigenvalues λ i C, then A can be written in terms of its spectral decomposition as A =

More information

Notes on Quantum Mechanics. Finn Ravndal Institute of Physics University of Oslo, Norway

Notes on Quantum Mechanics. Finn Ravndal Institute of Physics University of Oslo, Norway Notes on Quantum Mechanics Finn Ravndal Institute of Physics University of Oslo, Norway e-mail: finnr@fys.uio.no v.3: November, 2006 2 Contents 1 Linear vector spaces 7 1.1 Real vector spaces...............................

More information

Topics for the Qualifying Examination

Topics for the Qualifying Examination Topics for the Qualifying Examination Quantum Mechanics I and II 1. Quantum kinematics and dynamics 1.1 Postulates of Quantum Mechanics. 1.2 Configuration space vs. Hilbert space, wave function vs. state

More information

Total Angular Momentum for Hydrogen

Total Angular Momentum for Hydrogen Physics 4 Lecture 7 Total Angular Momentum for Hydrogen Lecture 7 Physics 4 Quantum Mechanics I Friday, April th, 008 We have the Hydrogen Hamiltonian for central potential φ(r), we can write: H r = p

More information