Linear excitations and domain walls

Size: px
Start display at page:

Download "Linear excitations and domain walls"

Transcription

1 and domain walls Alessandro Vindigni Laboratorium für Festkörperphysik, ETH Zürich ETH November 26, 2012

2 Lecture plan Real systems Lecture plan 1. Atomic magnetism (Pescia) 2. Magnetism in solids (Pescia) 3. Magnetic order at finite temperature (A. V.) Mean-filed theory and Landau approach Classical spin models 4. Magnetic domains and domain walls (A. V.) Magnetic anisotropy and domain walls Dipolar interaction and magnetic domains

3 Lecture plan Real systems Susceptibility and correlation length 2d-3d systems T T C 1d-system Paramagnet χ(t, 0) χ Γ ± T T C γ χ ξ T χ = C T In 1d systems, the universality class is determined by the temperature dependence of the correlation length MFA ξ 1 T T C 1/2 Ising ξ e /k BT Heisenberg and XY ξ 1 T

4 Lecture plan Real systems 1d Ising model: molecular spin chains S z i S z i+r = 1 4 e r/ξ with ξ = 1 [ ( )] e J/2k BT ln tanh βj 4

5 Harmonic Oscillators Landau theory of correlations Digression: chain of Harmonic Oscillators H = 1 2 K e (u k+1 u k ) m k k In the canonical ensemble, the partition function is given by [ ] Z = T r e βh(u k, u k ) 1 = (2π ) N Π k du k d u k e βh(u k, u k ) H = 1 [ ] Z T r He βh(u k, u k ) = 1 ( ) Z β Z = (ln Z) β u 2 k

6 Harmonic Oscillators Landau theory of correlations Digression: chain of Harmonic Oscillators, Kinetic energy Case K e = 0 Πk du k = V N so that Z = ( ) V N 2π Π k d u k e 1 2 βm k u2 k each Gaussian integral gives d u k e 1 2 βm u2 k and consequently H = (ln Z) = β β = N β ( ) V N = Π k 2π 2π = βm ( ) N V 2π ln 2π βm [ 12 ] ln β + const. = 1 2 N 1 β = 1 2 Nk BT d u k e 1 2 βm u2 k

7 Harmonic Oscillators Landau theory of correlations Digression: chain of Harmonic Oscillators, Potential energy Case K e 0 ( ) V N Z = 2π ( ) V N = 2π Π k du k e 1 2 βke k (u k+1 u k ) 2 Π k du k e 1 2 βke(u k+1 u k ) 2 After the transformation u k = 1 N q ũqe iqk one has [K e (1 cos q) ũ q ] m ũ q 2 Coupled H = q Z = 1 (2π ) N Π k dũ q d ũ q e βh(ũq, ũ q) { K e (1 cos q) ũ q 2 = 1 2 k BT 1 2 m ũ q 2 = 1 2 k BT

8 Harmonic Oscillators Landau theory of correlations Landau theory of correlations L GL [φ] = [ 1 2 J ( φ)2 + b 2 φ2 + λ ] 4 φ4 d d x = f GL [φ]d d x perturbations of the mean-field solution: φ = φ + δφ the integrand of th GL functional reads f GL [ φ + δφ] = 1 2 J ( δφ)2 + b 2 ( φ + δφ) 2 + λ 4 ( φ + δφ) 4 = = 1 2 J ( δφ)2 b δφ 2 + f GL [ φ] + (... ) The partition function Z (B, T ) = e βl GL[ φ] + D[δφ] e βl fl[δφ]

9 Harmonic Oscillators Landau theory of correlations Fluctuation quadratic Hamiltonian Fourier space L fl [δφ] = L fl [δφ] = 1 (2π) d Equipartition theorem [ ] 1 2 J ( δφ)2 b (δφ) 2 d d x. 1 ( Jq 2 2b ) δφ(q) 2 d d q. 2 1 ( Jq 2 2b ) δφ(q) 2 fl = k BT δφ(q) 2 fl = k BT Jq 2 2b

10 Harmonic Oscillators Landau theory of correlations Landau theory of correlations 1 ( Jq 2 2b ) δφ(q) 2 fl = k BT δφ(q) 2 fl = correlation function in the continuum formalism k BT Jq 2 2b G(x, x ) = σ(x)σ(x ) σ(x) σ(x ) = δφ(x)δφ(x ) fl Ornstein-Zernicke form G(q) = k BT J 1 q 2 + ξ 2 with ξ 1 τ 1/2 G(x, x ) is actually the term that we neglected in the MFA

11 Magnetic Anisotropy Applications Uniaxial magnetic anisotropy DS 2 0 2

12 Magnetic Anisotropy Applications Magnetic anisotropy away from the bulk

13 Magnetic Anisotropy Applications Heisenberg model with anisotropy H = 1 2 J Ŝ(n) Ŝ(n ) + gµ B B Ŝ(n) D n n n =1 n (Ŝ z (n)) 2. When D becomes large with respect to J D J + Ising model D J XY / planar model.

14 Magnetic Anisotropy Applications in experiments (a) Pescia group I II (b) IBM Rüschlikon

15 Magnetic Anisotropy Applications and Racetrack memory

16 Magnetic Anisotropy Applications Domain-wall energy N x [ E H = J J cos (θi+1 θ i ) + D sin 2 ] θ i. i= Broad DW 1.0 Sharp DW

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich

Mean-field theory. Alessandro Vindigni. ETH October 29, Laboratorium für Festkörperphysik, ETH Zürich Alessandro Vindigni Laboratorium für Festkörperphysik, ETH Zürich ETH October 29, 2012 Lecture plan N-body problem Lecture plan 1. Atomic magnetism (Pescia) 2. Magnetism in solids (Pescia) 3. Magnetic

More information

Magnetism at finite temperature: molecular field, phase transitions

Magnetism at finite temperature: molecular field, phase transitions Magnetism at finite temperature: molecular field, phase transitions -The Heisenberg model in molecular field approximation: ferro, antiferromagnetism. Ordering temperature; thermodynamics - Mean field

More information

9.1 System in contact with a heat reservoir

9.1 System in contact with a heat reservoir Chapter 9 Canonical ensemble 9. System in contact with a heat reservoir We consider a small system A characterized by E, V and N in thermal interaction with a heat reservoir A 2 characterized by E 2, V

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Suggestions for Further Reading

Suggestions for Further Reading Contents Preface viii 1 From Microscopic to Macroscopic Behavior 1 1.1 Introduction........................................ 1 1.2 Some Qualitative Observations............................. 2 1.3 Doing

More information

Critical Behavior I: Phenomenology, Universality & Scaling

Critical Behavior I: Phenomenology, Universality & Scaling Critical Behavior I: Phenomenology, Universality & Scaling H. W. Diehl Fachbereich Physik, Universität Duisburg-Essen, Campus Essen 1 Goals recall basic facts about (static equilibrium) critical behavior

More information

S j H o = gµ o H o. j=1

S j H o = gµ o H o. j=1 LECTURE 17 Ferromagnetism (Refs.: Sections 10.6-10.7 of Reif; Book by J. S. Smart, Effective Field Theories of Magnetism) Consider a solid consisting of N identical atoms arranged in a regular lattice.

More information

Phase transitions and critical phenomena

Phase transitions and critical phenomena Phase transitions and critical phenomena Classification of phase transitions. Discontinous (st order) transitions Summary week -5 st derivatives of thermodynamic potentials jump discontinously, e.g. (

More information

3.320 Lecture 18 (4/12/05)

3.320 Lecture 18 (4/12/05) 3.320 Lecture 18 (4/12/05) Monte Carlo Simulation II and free energies Figure by MIT OCW. General Statistical Mechanics References D. Chandler, Introduction to Modern Statistical Mechanics D.A. McQuarrie,

More information

Integration by Substitution

Integration by Substitution November 22, 2013 Introduction 7x 2 cos(3x 3 )dx =? 2xe x2 +5 dx =? Chain rule The chain rule: d dx (f (g(x))) = f (g(x)) g (x). Use the chain rule to find f (x) and then write the corresponding anti-differentiation

More information

The Ising model Summary of L12

The Ising model Summary of L12 The Ising model Summary of L2 Aim: Study connections between macroscopic phenomena and the underlying microscopic world for a ferromagnet. How: Study the simplest possible model of a ferromagnet containing

More information

Statistical Thermodynamics Solution Exercise 8 HS Solution Exercise 8

Statistical Thermodynamics Solution Exercise 8 HS Solution Exercise 8 Statistical Thermodynamics Solution Exercise 8 HS 05 Solution Exercise 8 Problem : Paramagnetism - Brillouin function a According to the equation for the energy of a magnetic dipole in an external magnetic

More information

Magnetism in Condensed Matter

Magnetism in Condensed Matter Magnetism in Condensed Matter STEPHEN BLUNDELL Department of Physics University of Oxford OXFORD 'UNIVERSITY PRESS Contents 1 Introduction 1.1 Magnetic moments 1 1 1.1.1 Magnetic moments and angular momentum

More information

Physics 212: Statistical mechanics II Lecture XI

Physics 212: Statistical mechanics II Lecture XI Physics 212: Statistical mechanics II Lecture XI The main result of the last lecture was a calculation of the averaged magnetization in mean-field theory in Fourier space when the spin at the origin is

More information

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

Metropolis Monte Carlo simulation of the Ising Model

Metropolis Monte Carlo simulation of the Ising Model Metropolis Monte Carlo simulation of the Ising Model Krishna Shrinivas (CH10B026) Swaroop Ramaswamy (CH10B068) May 10, 2013 Modelling and Simulation of Particulate Processes (CH5012) Introduction The Ising

More information

Kosterlitz-Thouless Transition

Kosterlitz-Thouless Transition Heidelberg University Seminar-Lecture 5 SS 16 Menelaos Zikidis Kosterlitz-Thouless Transition 1 Motivation Back in the 70 s, the concept of a phase transition in condensed matter physics was associated

More information

Handout 10. Applications to Solids

Handout 10. Applications to Solids ME346A Introduction to Statistical Mechanics Wei Cai Stanford University Win 2011 Handout 10. Applications to Solids February 23, 2011 Contents 1 Average kinetic and potential energy 2 2 Virial theorem

More information

II.D Scattering and Fluctuations

II.D Scattering and Fluctuations II.D Scattering and Fluctuations In addition to bulk thermodynamic experiments, scattering measurements can be used to probe microscopic fluctuations at length scales of the order of the probe wavelength

More information

Physics 562: Statistical Mechanics Spring 2003, James P. Sethna Homework 5, due Wednesday, April 2 Latest revision: April 4, 2003, 8:53 am

Physics 562: Statistical Mechanics Spring 2003, James P. Sethna Homework 5, due Wednesday, April 2 Latest revision: April 4, 2003, 8:53 am Physics 562: Statistical Mechanics Spring 2003, James P. Sethna Homework 5, due Wednesday, April 2 Latest revision: April 4, 2003, 8:53 am Reading David Chandler, Introduction to Modern Statistical Mechanics,

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics 1 Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 2, 24 March 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Phase transitions beyond the Landau-Ginzburg theory

Phase transitions beyond the Landau-Ginzburg theory Phase transitions beyond the Landau-Ginzburg theory Yifei Shi 21 October 2014 1 Phase transitions and critical points 2 Laudau-Ginzburg theory 3 KT transition and vortices 4 Phase transitions beyond Laudau-Ginzburg

More information

Magnetic ordering, magnetic anisotropy and the mean-field theory

Magnetic ordering, magnetic anisotropy and the mean-field theory Magnetic ordering, magnetic anisotropy and the mean-field theory Alexandra Kalashnikova kalashnikova@mail.ioffe.ru Ferromagnets Mean-field approximation Curie temperature and critical exponents Magnetic

More information

PHYSICS 219 Homework 2 Due in class, Wednesday May 3. Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235.

PHYSICS 219 Homework 2 Due in class, Wednesday May 3. Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235. PHYSICS 219 Homework 2 Due in class, Wednesday May 3 Note: Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235. No lecture: May 8 (I m away at a meeting) and May 29 (holiday).

More information

J ij S i S j B i S i (1)

J ij S i S j B i S i (1) LECTURE 18 The Ising Model (References: Kerson Huang, Statistical Mechanics, Wiley and Sons (1963) and Colin Thompson, Mathematical Statistical Mechanics, Princeton Univ. Press (1972)). One of the simplest

More information

Phys 622 Problems Chapter 5

Phys 622 Problems Chapter 5 1 Phys 622 Problems Chapter 5 Problem 1 The correct basis set of perturbation theory Consider the relativistic correction to the electron-nucleus interaction H LS = α L S, also known as the spin-orbit

More information

Statistical Mechanics

Statistical Mechanics Franz Schwabl Statistical Mechanics Translated by William Brewer Second Edition With 202 Figures, 26 Tables, and 195 Problems 4u Springer Table of Contents 1. Basic Principles 1 1.1 Introduction 1 1.2

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-Thermodynamics & Statistical Mechanics 1. Kinetic theory of gases..(1-13) 1.1 Basic assumption of kinetic theory 1.1.1 Pressure exerted by a gas 1.2 Gas Law for Ideal gases: 1.2.1 Boyle s Law 1.2.2

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Phys Midterm. March 17

Phys Midterm. March 17 Phys 7230 Midterm March 17 Consider a spin 1/2 particle fixed in space in the presence of magnetic field H he energy E of such a system can take one of the two values given by E s = µhs, where µ is the

More information

MAGNETISM MADE SIMPLE. An Introduction to Physical Concepts and to Some Useful Mathematical Methods. Daniel C. Mattis

MAGNETISM MADE SIMPLE. An Introduction to Physical Concepts and to Some Useful Mathematical Methods. Daniel C. Mattis THE THEORY OF MAGNETISM MADE SIMPLE An Introduction to Physical Concepts and to Some Useful Mathematical Methods Daniel C. Mattis Department of Physics, University of Utah lb World Scientific NEW JERSEY

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

Solution to the exam in TFY4230 STATISTICAL PHYSICS Friday december 19, 2014

Solution to the exam in TFY4230 STATISTICAL PHYSICS Friday december 19, 2014 NTNU Page 1 of 10 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk This solution consists of 10 pages. Problem 1. Cold Fermi gases Solution to the exam in TFY4230 STATISTICAL PHYSICS

More information

Physics 127b: Statistical Mechanics. Second Order Phase Transitions. The Ising Ferromagnet

Physics 127b: Statistical Mechanics. Second Order Phase Transitions. The Ising Ferromagnet Physics 127b: Statistical Mechanics Second Order Phase ransitions he Ising Ferromagnet Consider a simple d-dimensional lattice of N classical spins that can point up or down, s i =±1. We suppose there

More information

Ginzburg-Landau Phenomenology

Ginzburg-Landau Phenomenology Chapter Ginzburg-Landau Phenomenology The divergence of the correlation length in the vicinity of a second-order phase transition indicates that the properties of the critical point are insensitive to

More information

Principles of Equilibrium Statistical Mechanics

Principles of Equilibrium Statistical Mechanics Debashish Chowdhury, Dietrich Stauffer Principles of Equilibrium Statistical Mechanics WILEY-VCH Weinheim New York Chichester Brisbane Singapore Toronto Table of Contents Part I: THERMOSTATICS 1 1 BASIC

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 5: MAGNETIC STRUCTURES - Mean field theory and magnetic order - Classification of magnetic structures - Collinear and non-collinear magnetic structures. - Magnetic

More information

Quantum Phase Transitions

Quantum Phase Transitions Quantum Phase Transitions Subir Sachdev Department of Physics Yale University P.O. Box 208120, New Haven, CT 06520-8120 USA E-mail: subir.sachdev@yale.edu May 19, 2004 To appear in Encyclopedia of Mathematical

More information

Problem set for the course Skálázás és renormálás a statisztikus fizikában, 2014

Problem set for the course Skálázás és renormálás a statisztikus fizikában, 2014 1 Problem set for the course Skálázás és renormálás a statisztikus fizikában, 014 Rules: You can choose at wish from problems having the same main number (i.e. from a given section), but you can collect

More information

Introduction to Phase Transitions in Statistical Physics and Field Theory

Introduction to Phase Transitions in Statistical Physics and Field Theory Introduction to Phase Transitions in Statistical Physics and Field Theory Motivation Basic Concepts and Facts about Phase Transitions: Phase Transitions in Fluids and Magnets Thermodynamics and Statistical

More information

Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 2018, 5:00 pm. 1 Spin waves in a quantum Heisenberg antiferromagnet

Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 2018, 5:00 pm. 1 Spin waves in a quantum Heisenberg antiferromagnet Physics 58, Fall Semester 018 Professor Eduardo Fradkin Problem Set No. 3: Canonical Quantization Due Date: Wednesday October 19, 018, 5:00 pm 1 Spin waves in a quantum Heisenberg antiferromagnet In this

More information

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization 8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization This problem set is partly intended to introduce the transfer matrix method, which is used

More information

Ernst Ising. Student of Wilhelm Lenz in Hamburg. PhD Thesis work on linear chains of coupled magnetic moments. This is known as the Ising model.

Ernst Ising. Student of Wilhelm Lenz in Hamburg. PhD Thesis work on linear chains of coupled magnetic moments. This is known as the Ising model. The Ising model Ernst Ising May 10, 1900 in Köln-May 11 1998 in Peoria (IL) Student of Wilhelm Lenz in Hamburg. PhD 1924. Thesis work on linear chains of coupled magnetic moments. This is known as the

More information

Lecture Notes, Statistical Mechanics (Theory F) Jörg Schmalian

Lecture Notes, Statistical Mechanics (Theory F) Jörg Schmalian Lecture Notes, Statistical Mechanics Theory F) Jörg Schmalian April 14, 2014 2 Institute for Theory of Condensed Matter TKM) Karlsruhe Institute of Technology Summer Semester, 2014 Contents 1 Introduction

More information

Interface Profiles in Field Theory

Interface Profiles in Field Theory Florian König Institut für Theoretische Physik Universität Münster January 10, 2011 / Forschungsseminar Quantenfeldtheorie Outline φ 4 -Theory in Statistical Physics Critical Phenomena and Order Parameter

More information

c 2007 by Harvey Gould and Jan Tobochnik 28 May 2007

c 2007 by Harvey Gould and Jan Tobochnik 28 May 2007 Chapter 5 Magnetic Systems c 2007 by Harvey Gould and Jan Tobochnik 28 May 2007 We apply the general formalism of statistical mechanics developed in Chapter 4 to the Ising model, a model magnetic system

More information

Symmetry of the Dielectric Tensor

Symmetry of the Dielectric Tensor Symmetry of the Dielectric Tensor Curtis R. Menyuk June 11, 2010 In this note, I derive the symmetry of the dielectric tensor in two ways. The derivations are taken from Landau and Lifshitz s Statistical

More information

Spin Models and Gravity

Spin Models and Gravity Spin Models and Gravity Umut Gürsoy (CERN) 6th Regional Meeting in String Theory, Milos June 25, 2011 Spin Models and Gravity p.1 Spin systems Spin Models and Gravity p.2 Spin systems Many condensed matter

More information

(1) Consider a lattice of noninteracting spin dimers, where the dimer Hamiltonian is

(1) Consider a lattice of noninteracting spin dimers, where the dimer Hamiltonian is PHYSICS 21 : SISICL PHYSICS FINL EXMINION 1 Consider a lattice of noninteracting spin dimers where the dimer Hamiltonian is Ĥ = H H τ τ Kτ where H and H τ are magnetic fields acting on the and τ spins

More information

An introduction to magnetism in three parts

An introduction to magnetism in three parts An introduction to magnetism in three parts Wulf Wulfhekel Physikalisches Institut, Karlsruhe Institute of Technology (KIT) Wolfgang Gaede Str. 1, D-76131 Karlsruhe 0. Overview Chapters of the three lectures

More information

3.5 The random-phase approximation

3.5 The random-phase approximation 154 3. LINEAR RESPONSE THEORY 3.5 The random-phase approximation Earlier in this chapter, we have demonstrated that many experimentally observable properties of solids can be expressed in terms of two-particle

More information

The Quantum Heisenberg Ferromagnet

The Quantum Heisenberg Ferromagnet The Quantum Heisenberg Ferromagnet Soon after Schrödinger discovered the wave equation of quantum mechanics, Heisenberg and Dirac developed the first successful quantum theory of ferromagnetism W. Heisenberg,

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma sensarma@theory.tifr.res.in Quantum Dynamics Lecture #2 Recap of Last Class Schrodinger and Heisenberg Picture Time Evolution operator/ Propagator : Retarded

More information

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method

The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method The Magnetic Properties of Superparamagnetic Particles by a Monte Carlo Method D. A. Dimitrov and G. M. Wysin Department of Physics Kansas State University Manhattan, KS 6656-261 (June 19, 1996) We develop

More information

From quantum to classical statistical mechanics. Polyatomic ideal gas.

From quantum to classical statistical mechanics. Polyatomic ideal gas. From quantum to classical statistical mechanics. Polyatomic ideal gas. Peter Košovan peter.kosovan@natur.cuni.cz Dept. of Physical and Macromolecular Chemistry Lecture 5, Statistical Thermodynamics, MC260P105,

More information

Statistical mechanics, the Ising model and critical phenomena Lecture Notes. September 26, 2017

Statistical mechanics, the Ising model and critical phenomena Lecture Notes. September 26, 2017 Statistical mechanics, the Ising model and critical phenomena Lecture Notes September 26, 2017 1 Contents 1 Scope of these notes 3 2 Partition function and free energy 4 3 Definition of phase transitions

More information

NATURAL SCIENCES TRIPOS. Past questions. EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics. (27 February 2010)

NATURAL SCIENCES TRIPOS. Past questions. EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics. (27 February 2010) NATURAL SCIENCES TRIPOS Part III Past questions EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics (27 February 21) 1 In one-dimension, the q-state Potts model is defined by the lattice Hamiltonian βh =

More information

In-class exercises Day 1

In-class exercises Day 1 Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 11 Exercises due Mon Apr 16 Last correction at April 16, 2018, 11:19 am c 2018, James Sethna,

More information

The Quantum Theory of Magnetism

The Quantum Theory of Magnetism The Quantum Theory of Magnetism Norberto Mains McGill University, Canada I: 0 World Scientific Singapore NewJersey London Hong Kong Contents 1 Paramagnetism 1.1 Introduction 1.2 Quantum mechanics of atoms

More information

the renormalization group (RG) idea

the renormalization group (RG) idea the renormalization group (RG) idea Block Spin Partition function Z =Tr s e H. block spin transformation (majority rule) T (s, if s i ; s,...,s 9 )= s i > 0; 0, otherwise. b Block Spin (block-)transformed

More information

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff

Outline for Fundamentals of Statistical Physics Leo P. Kadanoff Outline for Fundamentals of Statistical Physics Leo P. Kadanoff text: Statistical Physics, Statics, Dynamics, Renormalization Leo Kadanoff I also referred often to Wikipedia and found it accurate and helpful.

More information

Ginzburg-Landau Theory of Phase Transitions

Ginzburg-Landau Theory of Phase Transitions Subedi 1 Alaska Subedi Prof. Siopsis Physics 611 Dec 5, 008 Ginzburg-Landau Theory of Phase Transitions 1 Phase Transitions A phase transition is said to happen when a system changes its phase. The physical

More information

PHASE TRANSITIONS AND CRITICAL PHENOMENA

PHASE TRANSITIONS AND CRITICAL PHENOMENA INTRODUCTION TO PHASE TRANSITIONS AND CRITICAL PHENOMENA BY H. EUGENE STANLEY Boston University OXFORD UNIVERSITY PRESS New York Oxford CONTENTS NOTATION GUIDE xv PART I INTRODUCTION 1. WHAT ARE THE CRITICAL

More information

Modeling and testing long memory in random fields

Modeling and testing long memory in random fields Modeling and testing long memory in random fields Frédéric Lavancier lavancier@math.univ-lille1.fr Université Lille 1 LS-CREST Paris 24 janvier 6 1 Introduction Long memory random fields Motivations Previous

More information

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Mesoscale Simulation Methods Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Outline What is mesoscale? Mesoscale statics and dynamics through coarse-graining. Coarse-grained equations

More information

Statistical Physics. Solutions Sheet 11.

Statistical Physics. Solutions Sheet 11. Statistical Physics. Solutions Sheet. Exercise. HS 0 Prof. Manfred Sigrist Condensation and crystallization in the lattice gas model. The lattice gas model is obtained by dividing the volume V into microscopic

More information

Monte Carlo Study of Planar Rotator Model with Weak Dzyaloshinsky Moriya Interaction

Monte Carlo Study of Planar Rotator Model with Weak Dzyaloshinsky Moriya Interaction Commun. Theor. Phys. (Beijing, China) 46 (2006) pp. 663 667 c International Academic Publishers Vol. 46, No. 4, October 15, 2006 Monte Carlo Study of Planar Rotator Model with Weak Dzyaloshinsky Moriya

More information

F(t) equilibrium under H 0

F(t) equilibrium under H 0 Physics 17b: Statistical Mechanics Linear Response Theory Useful references are Callen and Greene [1], and Chandler [], chapter 16. Task To calculate the change in a measurement B t) due to the application

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2024W1 SEMESTER 2 EXAMINATION 2011/12 Quantum Physics of Matter Duration: 120 MINS VERY IMPORTANT NOTE Section A answers MUST BE in a separate blue answer book. If any blue

More information

The phase diagram of polar condensates

The phase diagram of polar condensates The phase diagram of polar condensates Taking the square root of a vortex Austen Lamacraft [with Andrew James] arxiv:1009.0043 University of Virginia September 23, 2010 KITP, UCSB Austen Lamacraft (University

More information

Computational Physics (6810): Session 13

Computational Physics (6810): Session 13 Computational Physics (6810): Session 13 Dick Furnstahl Nuclear Theory Group OSU Physics Department April 14, 2017 6810 Endgame Various recaps and followups Random stuff (like RNGs :) Session 13 stuff

More information

Canonical ensembles. system: E,V,N,T,p,... E, V, N,T, p... R R R R R

Canonical ensembles. system: E,V,N,T,p,... E, V, N,T, p... R R R R R Canonical ensembles So far, we have studied classical and quantum microcanonical ensembles, i.e. ensembles of large numbers of isolated thermodynamic systems that are all in the same (equilibrium) macrostate.

More information

Quantum criticality of Fermi surfaces

Quantum criticality of Fermi surfaces Quantum criticality of Fermi surfaces Subir Sachdev Physics 268br, Spring 2018 HARVARD Quantum criticality of Ising-nematic ordering in a metal y Occupied states x Empty states A metal with a Fermi surface

More information

Application of Mean-Field Jordan Wigner Transformation to Antiferromagnet System

Application of Mean-Field Jordan Wigner Transformation to Antiferromagnet System Commun. Theor. Phys. Beijing, China 50 008 pp. 43 47 c Chinese Physical Society Vol. 50, o. 1, July 15, 008 Application of Mean-Field Jordan Wigner Transformation to Antiferromagnet System LI Jia-Liang,

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 5, April 14, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

3. Riley 12.9: The equation sin x dy +2ycos x 1 dx can be reduced to a quadrature by the standard integrating factor,» Z x f(x) exp 2 dt cos t exp (2

3. Riley 12.9: The equation sin x dy +2ycos x 1 dx can be reduced to a quadrature by the standard integrating factor,» Z x f(x) exp 2 dt cos t exp (2 PHYS 725 HW #4. Due 15 November 21 1. Riley 12.3: R dq dt + q C V (t); The solution is obtained with the integrating factor exp (t/rc), giving q(t) e t/rc 1 R dsv (s) e s/rc + q() With q() and V (t) V

More information

b) Derive the generating function for the Hermite s polynomials. 3) Find the necessary and sufficient condition for F(z) to be analytic.

b) Derive the generating function for the Hermite s polynomials. 3) Find the necessary and sufficient condition for F(z) to be analytic. (DPHY 01(NR)) ASSIGNMENT - 1, DEC - 2018. PAPER- I : MATHEMATICAL 1) a)write the Hermite s equation and find its solution. b) Derive the generating function for the Hermite s polynomials. 2) a)write the

More information

1. Thermodynamics 1.1. A macroscopic view of matter

1. Thermodynamics 1.1. A macroscopic view of matter 1. Thermodynamics 1.1. A macroscopic view of matter Intensive: independent of the amount of substance, e.g. temperature,pressure. Extensive: depends on the amount of substance, e.g. internal energy, enthalpy.

More information

PHY331 Magnetism. Lecture 6

PHY331 Magnetism. Lecture 6 PHY331 Magnetism Lecture 6 Last week Learned how to calculate the magnetic dipole moment of an atom. Introduced the Landé g-factor. Saw that it compensates for the different contributions from the orbital

More information

Domains and Domain Walls in Quantum Spin Chains

Domains and Domain Walls in Quantum Spin Chains Domains and Domain Walls in Quantum Spin Chains Statistical Interaction and Thermodynamics Ping Lu, Jared Vanasse, Christopher Piecuch Michael Karbach and Gerhard Müller 6/3/04 [qpis /5] Domains and Domain

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011 Numerical Analysis of 2-D Ising Model By Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011 Contents Abstract Acknowledgment Introduction Computational techniques Numerical Analysis

More information

Thickness Dependence of Magnetic Hysteresis of Ising Films in Nano-thickness Range

Thickness Dependence of Magnetic Hysteresis of Ising Films in Nano-thickness Range CMU. J.Nat.Sci. Special Issue on Nanotechnology (2008) Vol. 7(1) 203 Thickness Dependence of Magnetic Hysteresis of Ising Films in Nano-thickness Range Atchara Punya 1*, Pitak Laoratanakul 2, Rattikorn

More information

NPTEL

NPTEL NPTEL Syllabus Nonequilibrium Statistical Mechanics - Video course COURSE OUTLINE Thermal fluctuations, Langevin dynamics, Brownian motion and diffusion, Fokker-Planck equations, linear response theory,

More information

Abrikosov vortex lattice solution

Abrikosov vortex lattice solution Abrikosov vortex lattice solution A brief exploration O. Ogunnaike Final Presentation Ogunnaike Abrikosov vortex lattice solution Physics 295b 1 / 31 Table of Contents 1 Background 2 Quantization 3 Abrikosov

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

5. Superconductivity. R(T) = 0 for T < T c, R(T) = R 0 +at 2 +bt 5, B = H+4πM = 0,

5. Superconductivity. R(T) = 0 for T < T c, R(T) = R 0 +at 2 +bt 5, B = H+4πM = 0, 5. Superconductivity In this chapter we shall introduce the fundamental experimental facts about superconductors and present a summary of the derivation of the BSC theory (Bardeen Cooper and Schrieffer).

More information

Long-range order in (quasi-) 2D systems

Long-range order in (quasi-) 2D systems PHYS598PTD A.J.Leggett 2016 Lecture 9 Long-range order in (quasi-) 2D systems 1 Long-range order in (quasi-) 2D systems Suppose we have a many-body system that is described by some order parameter Ψ. The

More information

P3317 HW from Lecture and Recitation 10

P3317 HW from Lecture and Recitation 10 P3317 HW from Lecture 18+19 and Recitation 10 Due Nov 6, 2018 Problem 1. Equipartition Note: This is a problem from classical statistical mechanics. We will need the answer for the next few problems, and

More information

Ising model and phase transitions

Ising model and phase transitions Chapter 5 Ising model and phase transitions 05 by Alessandro Codello 5. Equilibrium statistical mechanics Aspinsystemisdescribedbyplacingaspinvariableσ i {, } at every site i of a given lattice. A microstate

More information

Lecture 11: Long-wavelength expansion in the Neel state Energetic terms

Lecture 11: Long-wavelength expansion in the Neel state Energetic terms Lecture 11: Long-wavelength expansion in the Neel state Energetic terms In the last class we derived the low energy effective Hamiltonian for a Mott insulator. This derivation is an example of the kind

More information

The Microcanonical Approach. (a) The volume of accessible phase space for a given total energy is proportional to. dq 1 dq 2 dq N dp 1 dp 2 dp N,

The Microcanonical Approach. (a) The volume of accessible phase space for a given total energy is proportional to. dq 1 dq 2 dq N dp 1 dp 2 dp N, 8333: Statistical Mechanics I Problem Set # 6 Solutions Fall 003 Classical Harmonic Oscillators: The Microcanonical Approach a The volume of accessible phase space for a given total energy is proportional

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics 1 Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 5, April 14, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/

More information

Physics 7240: Advanced Statistical Mechanics Lecture 1: Introduction and Overview

Physics 7240: Advanced Statistical Mechanics Lecture 1: Introduction and Overview Physics 7240: Advanced Statistical Mechanics Lecture 1: Introduction and Overview Leo Radzihovsky Department of Physics, University of Colorado, Boulder, CO 80309 (Dated: 30 May, 2017) Electronic address:

More information

Collective behavior, from particles to fields

Collective behavior, from particles to fields 978-0-51-87341-3 - Statistical Physics of Fields 1 Collective behavior, from particles to fields 1.1 Introduction One of the most successful aspects of physics in the twentieth century was revealing the

More information

NMR Dynamics and Relaxation

NMR Dynamics and Relaxation NMR Dynamics and Relaxation Günter Hempel MLU Halle, Institut für Physik, FG Festkörper-NMR 1 Introduction: Relaxation Two basic magnetic relaxation processes: Longitudinal relaxation: T 1 Relaxation Return

More information

Physics 4230 Final Examination 10 May 2007

Physics 4230 Final Examination 10 May 2007 Physics 43 Final Examination May 7 In each problem, be sure to give the reasoning for your answer and define any variables you create. If you use a general formula, state that formula clearly before manipulating

More information

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Thermal and Statistical Physics Department Exam Last updated November 4, L π Thermal and Statistical Physics Department Exam Last updated November 4, 013 1. a. Define the chemical potential µ. Show that two systems are in diffusive equilibrium if µ 1 =µ. You may start with F =

More information

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems 8.334: Statistical Mechanics II Spring 014 Test Review Problems The test is closed book, but if you wish you may bring a one-sided sheet of formulas. The intent of this sheet is as a reminder of important

More information

Clusters and Percolation

Clusters and Percolation Chapter 6 Clusters and Percolation c 2012 by W. Klein, Harvey Gould, and Jan Tobochnik 5 November 2012 6.1 Introduction In this chapter we continue our investigation of nucleation near the spinodal. We

More information